首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K Havermann  R Volcic  M Lappe 《PloS one》2012,7(6):e39708
Saccades are so called ballistic movements which are executed without online visual feedback. After each saccade the saccadic motor plan is modified in response to post-saccadic feedback with the mechanism of saccadic adaptation. The post-saccadic feedback is provided by the retinal position of the target after the saccade. If the target moves after the saccade, gaze may follow the moving target. In that case, the eyes are controlled by the pursuit system, a system that controls smooth eye movements. Although these two systems have in the past been considered as mostly independent, recent lines of research point towards many interactions between them. We were interested in the question if saccade amplitude adaptation is induced when the target moves smoothly after the saccade. Prior studies of saccadic adaptation have considered intra-saccadic target steps as learning signals. In the present study, the intra-saccadic target step of the McLaughlin paradigm of saccadic adaptation was replaced by target movement, and a post-saccadic pursuit of the target. We found that saccadic adaptation occurred in this situation, a further indication of an interaction of the saccadic system and the pursuit system with the aim of optimized eye movements.  相似文献   

2.
When goal-directed movements are inaccurate, two responses are generated by the brain: a fast motor correction toward the target and an adaptive motor recalibration developing progressively across subsequent trials. For the saccadic system, there is a clear dissociation between the fast motor correction (corrective saccade production) and the adaptive motor recalibration (primary saccade modification). Error signals used to trigger corrective saccades and to induce adaptation are based on post-saccadic visual feedback. The goal of this study was to determine if similar or different error signals are involved in saccadic adaptation and in corrective saccade generation. Saccadic accuracy was experimentally altered by systematically displacing the visual target during motor execution. Post-saccadic error signals were studied by manipulating visual information in two ways. First, the duration of the displaced target after primary saccade termination was set at 15, 50, 100 or 800 ms in different adaptation sessions. Second, in some sessions, the displaced target was followed by a visual mask that interfered with visual processing. Because they rely on different mechanisms, the adaptation of reactive saccades and the adaptation of voluntary saccades were both evaluated. We found that saccadic adaptation and corrective saccade production were both affected by the manipulations of post-saccadic visual information, but in different ways. This first finding suggests that different types of error signal processing are involved in the induction of these two motor corrections. Interestingly, voluntary saccades required a longer duration of post-saccadic target presentation to reach the same amount of adaptation as reactive saccades. Finally, the visual mask interfered with the production of corrective saccades only during the voluntary saccades adaptation task. These last observations suggest that post-saccadic perception depends on the previously performed action and that the differences between saccade categories of motor correction and adaptation occur at an early level of visual processing.  相似文献   

3.
Catz N  Dicke PW  Thier P 《Current biology : CB》2005,15(24):2179-2189
BACKGROUND: Cerebellar Purkinje cells (PC) generate two responses: the simple spike (SS), with high firing rates (>100 Hz), and the complex spike (CS), characterized by conspicuously low discharge rates (1-2 Hz). Contemporary theories of cerebellar learning suggest that the CS discharge pattern encodes an error signal that drives changes in SS activity, ultimately related to motor behavior. This then predicts that CS will discharge in relation to the error and at random once the error has been nulled by the new behavior. RESULTS: We tested this hypothesis with saccadic adaptation in macaque monkeys as a model of cerebellar-dependent motor learning. During saccadic adaptation, error information unconsciously changes the endpoint of a saccade prompted by a visual target that shifts its final position during the saccade. We recorded CS from PC of the posterior vermis before, during, and after saccadic adaptation. In clear contradiction to the "error signal" concept, we found that CS occurred at random before adaptation onset, i.e., when the error was maximal, and built up to a specific saccade-related discharge profile during the course of adaptation. This profile became most pronounced at the end of adaptation, i.e., when the error had been nulled. CONCLUSIONS: We suggest that CS firing may underlie the stabilization of a learned motor behavior, rather than serving as an electrophysiological correlate of an error.  相似文献   

4.
Saccadic adaptation [1] is a powerful experimental paradigm to probe the mechanisms of eye movement control and spatial vision, in which saccadic amplitudes change in response to false visual feedback. The adaptation occurs primarily in the motor system [2, 3], but there is also evidence for visual adaptation, depending on the size and the permanence of the postsaccadic error [4-7]. Here we confirm that adaptation has a strong visual component and show that the visual component of the adaptation is spatially selective in external, not retinal coordinates. Subjects performed?a memory-guided, double-saccade, outward-adaptation task designed to maximize visual adaptation and to dissociate the visual and motor corrections. When the memorized saccadic target was in the same position (in external space) as that used in the adaptation training, saccade targeting was strongly influenced by adaptation (even if not matched in retinal or cranial position), but when in the same retinal or cranial but different external spatial position, targeting was unaffected by adaptation, demonstrating unequivocal spatiotopic selectivity. These results point to the existence of a spatiotopic neural representation for eye movement control that adapts in response to saccade error signals.  相似文献   

5.
When each of many saccades is made to overshoot its target, amplitude gradually decreases in a form of motor learning called saccade adaptation. Overshoot is induced experimentally by a secondary, backwards intrasaccadic target step (ISS) triggered by the primary saccade. Surprisingly, however, no study has compared the effectiveness of different sizes of ISS in driving adaptation by systematically varying ISS amplitude across different sessions. Additionally, very few studies have examined the feasibility of adaptation with relatively small ISSs. In order to best understand saccade adaptation at a fundamental level, we addressed these two points in an experiment using a range of small, fixed ISS values (from 0° to 1° after a 10° primary target step). We found that significant adaptation occurred across subjects with an ISS as small as 0.25°. Interestingly, though only adaptation in response to 0.25° ISSs appeared to be complete (the magnitude of change in saccade amplitude was comparable to size of the ISS), further analysis revealed that a comparable proportion of the ISS was compensated for across conditions. Finally, we found that ISS size alone was sufficient to explain the magnitude of adaptation we observed; additional factors did not significantly improve explanatory power. Overall, our findings suggest that current assumptions regarding the computation of saccadic error may need to be revisited.  相似文献   

6.
Eye movements modulate visual receptive fields of V4 neurons   总被引:11,自引:0,他引:11  
The receptive field, defined as the spatiotemporal selectivity of neurons to sensory stimuli, is central to our understanding of the neuronal mechanisms of perception. However, despite the fact that eye movements are critical during normal vision, the influence of eye movements on the structure of receptive fields has never been characterized. Here, we map the receptive fields of macaque area V4 neurons during saccadic eye movements and find that receptive fields are remarkably dynamic. Specifically, before the initiation of a saccadic eye movement, receptive fields shrink and shift towards the saccade target. These spatiotemporal dynamics may enhance information processing of relevant stimuli during the scanning of a visual scene, thereby assisting the selection of saccade targets and accelerating the analysis of the visual scene during free viewing.  相似文献   

7.
Biber U  Ilg UJ 《PloS one》2011,6(1):e16265
Eye movements create an ever-changing image of the world on the retina. In particular, frequent saccades call for a compensatory mechanism to transform the changing visual information into a stable percept. To this end, the brain presumably uses internal copies of motor commands. Electrophysiological recordings of visual neurons in the primate lateral intraparietal cortex, the frontal eye fields, and the superior colliculus suggest that the receptive fields (RFs) of special neurons shift towards their post-saccadic positions before the onset of a saccade. However, the perceptual consequences of these shifts remain controversial. We wanted to test in humans whether a remapping of motion adaptation occurs in visual perception.The motion aftereffect (MAE) occurs after viewing of a moving stimulus as an apparent movement to the opposite direction. We designed a saccade paradigm suitable for revealing pre-saccadic remapping of the MAE. Indeed, a transfer of motion adaptation from pre-saccadic to post-saccadic position could be observed when subjects prepared saccades. In the remapping condition, the strength of the MAE was comparable to the effect measured in a control condition (33±7% vs. 27±4%). Contrary, after a saccade or without saccade planning, the MAE was weak or absent when adaptation and test stimulus were located at different retinal locations, i.e. the effect was clearly retinotopic. Regarding visual cognition, our study reveals for the first time predictive remapping of the MAE but no spatiotopic transfer across saccades. Since the cortical sites involved in motion adaptation in primates are most likely the primary visual cortex and the middle temporal area (MT/V5) corresponding to human MT, our results suggest that pre-saccadic remapping extends to these areas, which have been associated with strict retinotopy and therefore with classical RF organization. The pre-saccadic transfer of visual features demonstrated here may be a crucial determinant for a stable percept despite saccades.  相似文献   

8.
It has long been appreciated that the posterior parietal cortex plays a role in the processing of saccadic eye movements. Only recently has it been discovered that a small cortical area, the lateral intraparietal area, within this much larger area appears to be specialized for saccadic eye movements. Unlike other cortical areas in the posterior parietal cortex, the lateral intraparietal area has strong anatomical connections to other saccade centers, and its cells have saccade-related responses that begin before the saccades. The lateral intraparietal area appears to be neither a strictly visual nor strictly motor structure; rather it performs visuomotor integration functions including determining the spatial location of saccade targets and forming plans to make eye movements.  相似文献   

9.
Wong AL  Shelhamer M 《PloS one》2011,6(9):e25225
The maintenance of movement accuracy uses prior performance errors to correct future motor plans; this motor-learning process ensures that movements remain quick and accurate. The control of predictive saccades, in which anticipatory movements are made to future targets before visual stimulus information becomes available, serves as an ideal paradigm to analyze how the motor system utilizes prior errors to drive movements to a desired goal. Predictive saccades constitute a stationary process (the mean and to a rough approximation the variability of the data do not vary over time, unlike a typical motor adaptation paradigm). This enables us to study inter-trial correlations, both on a trial-by-trial basis and across long blocks of trials. Saccade errors are found to be corrected on a trial-by-trial basis in a direction-specific manner (the next saccade made in the same direction will reflect a correction for errors made on the current saccade). Additionally, there is evidence for a second, modulating process that exhibits long memory. That is, performance information, as measured via inter-trial correlations, is strongly retained across a large number of saccades (about 100 trials). Together, this evidence indicates that the dynamics of motor learning exhibit complexities that must be carefully considered, as they cannot be fully described with current state-space (ARMA) modeling efforts.  相似文献   

10.
Humans and other primates are equipped with a foveated visual system. As a consequence, we reorient our fovea to objects and targets in the visual field that are conspicuous or that we consider relevant or worth looking at. These reorientations are achieved by means of saccadic eye movements. Where we saccade to depends on various low-level factors such as a targets’ luminance but also crucially on high-level factors like the expected reward or a targets’ relevance for perception and subsequent behavior. Here, we review recent findings how the control of saccadic eye movements is influenced by higher-level cognitive processes. We first describe the pathways by which cognitive contributions can influence the neural oculomotor circuit. Second, we summarize what saccade parameters reveal about cognitive mechanisms, particularly saccade latencies, saccade kinematics and changes in saccade gain. Finally, we review findings on what renders a saccade target valuable, as reflected in oculomotor behavior. We emphasize that foveal vision of the target after the saccade can constitute an internal reward for the visual system and that this is reflected in oculomotor dynamics that serve to quickly and accurately provide detailed foveal vision of relevant targets in the visual field.  相似文献   

11.
 We review data showing that the cerebellum is required for adaptation of saccadic gain to repeated presentations of dual-step visual targets and thus, presumably, for providing adaptive corrections for the brainstem saccade generator in response to any error created by the open-loop saccadic system. We model the adaptability of the system in terms of plasticity of synapses from parallel fibers to Purkinje cells in cerebellar cortex, stressing the integration of cerebellar cortex and nuclei in microzones as the units for correction of motor pattern generators. We propose a model of the inferior olive as an error detector, and use a ‘window of eligibility’ to insure that error signals that elicit a corrective movement are used to adjust the original movement, not the secondary movement. In a companion paper we simulate this large, realistic network of neural-like units to study the complex spatiotemporal behavior of neuronal subpopulations implicated in the control and adaptation of saccades. Received: 25 November 1994/Accepted in revised form: 6 February 1996  相似文献   

12.
During attempted visual fixation, saccades of a range of sizes occur. These “fixational saccades” include microsaccades, which are not apparent in regular clinical tests, and “saccadic intrusions”, predominantly horizontal saccades that interrupt accurate fixation. Square-wave jerks (SWJs), the most common type of saccadic intrusion, consist of an initial saccade away from the target followed, after a short delay, by a “return saccade” that brings the eye back onto target. SWJs are present in most human subjects, but are prominent by their increased frequency and size in certain parkinsonian disorders and in recessive, hereditary spinocerebellar ataxias. Here we asked whether fixational saccades showed distinctive features in various parkinsonian disorders and in recessive ataxia. Although some saccadic properties differed between patient groups, in all conditions larger saccades were more likely to form SWJs, and the intervals between the first and second saccade of SWJs were similar. These findings support the proposal of a common oculomotor mechanism that generates all fixational saccades, including microsaccades and SWJs. The same mechanism also explains how the return saccade in SWJs is triggered by the position error that occurs when the first saccadic component is large, both in the healthy brain and in neurological disease.  相似文献   

13.
Adaptation is an automatic neural mechanism supporting the optimization of visual processing on the basis of previous experiences. While the short-term effects of adaptation on behaviour and physiology have been studied extensively, perceptual long-term changes associated with adaptation are still poorly understood. Here, we show that the integration of adaptation-dependent long-term shifts in neural function is facilitated by sleep. Perceptual shifts induced by adaptation to a distorted image of a famous person were larger in a group of participants who had slept (experiment 1) or merely napped for 90 min (experiment 2) during the interval between adaptation and test compared with controls who stayed awake. Participants'' individual rapid eye movement sleep duration predicted the size of post-sleep behavioural adaptation effects. Our data suggest that sleep prevented decay of adaptation in a way that is qualitatively different from the effects of reduced visual interference known as ‘storage’. In the light of the well-established link between sleep and memory consolidation, our findings link the perceptual mechanisms of sensory adaptation—which are usually not considered to play a relevant role in mnemonic processes—with learning and memory, and at the same time reveal a new function of sleep in cognition.  相似文献   

14.
The effect of sleep deprivation by 'carousel' method on spatial memory consolidation in a Morris water maze was studied in Wistar male rats after one-day learning (in accordance to a protocol by Frick et al., 2000). It was found that after fast 3-hr learning the memory trace retains during 24-hr. Twenty four hour sleep deprivation followed learning impaired consolidation of spatial memory. So the rat model of a one-day learning is suitable for the studying of neurophysiological mechanisms of sleep deprivation effects on spatial memory consolidation.  相似文献   

15.
Fast presaccadic EEG potentials in saccadic latency were studied with the use of inverse averaging during monocular stimulation of the leading or nonleading eye. Two paradigms were followed, with presentation of visual stimuli consecutively or with a 200-ms overlap. Irrespective of the paradigm and the stimulated eye, the negative N –1 potential in the interval of 50–20 ms preceding the beginning of the saccade predominated in the hemisphere contralateral to the saccade direction, reflecting the command processes of saccadic initiation. The N –2 potential was more pronounced in the case of direct averaging, starting from the stimulus. Its amplitude increased with increasing concentration of attention on the fixation stimulus under the overlap conditions, and its foci predominated in the left hemisphere, in the frontal, central, and parietosagittal regions. Hence, the N –2 potential was assumed to reflect spatial perception and attention as initial stages of saccadic programming. The findings testify to the priority of the leading eye both in fixation and in spatial attention.  相似文献   

16.
Our ability to interact with the environment hinges on creating a stable visual world despite the continuous changes in retinal input. To achieve visual stability, the brain must distinguish the retinal image shifts caused by eye movements and shifts due to movements of the visual scene. This process appears not to be flawless: during saccades, we often fail to detect whether visual objects remain stable or move, which is called saccadic suppression of displacement (SSD). How does the brain evaluate the memorized information of the presaccadic scene and the actual visual feedback of the postsaccadic visual scene in the computations for visual stability? Using a SSD task, we test how participants localize the presaccadic position of the fixation target, the saccade target or a peripheral non-foveated target that was displaced parallel or orthogonal during a horizontal saccade, and subsequently viewed for three different durations. Results showed different localization errors of the three targets, depending on the viewing time of the postsaccadic stimulus and its spatial separation from the presaccadic location. We modeled the data through a Bayesian causal inference mechanism, in which at the trial level an optimal mixing of two possible strategies, integration vs. separation of the presaccadic memory and the postsaccadic sensory signals, is applied. Fits of this model generally outperformed other plausible decision strategies for producing SSD. Our findings suggest that humans exploit a Bayesian inference process with two causal structures to mediate visual stability.  相似文献   

17.
The ability to use advance information to prepare and execute a movement requires cognitive control of behaviour (e.g., anticipation and inhibition). Our aim was to explore the integrity of saccadic eye movement control in developmental coordination disorder (DCD) and typically developing (TD) children (8–12 years) and assess how these children plan and inhibit saccadic responses, the principal mechanisms within visual attention control. Eye movements and touch responses were measured (separately and concurrently) in Cued and Non-Cued conditions. We found that children with DCD had similar saccade kinematics to the TD group during saccade initiation. Advance information decreased hand movement duration in both groups during Cued trials, but decrements in accuracy were significantly worse in the DCD group. In addition, children with DCD exhibited greater inhibitory errors and inaccurate fixation during the Cued trials. Thus, children with DCD were reasonably proficient in executing saccades during reflexive (Non-Cued) conditions, but showed deficits in more complex control processes involving prediction and inhibition. These findings have implications for our understanding of motor control in children with DCD.  相似文献   

18.
Fast negative EEG potentials preceding fast regular saccades and express saccades were studied by the method of backward averaging under conditions of monocular stimulation of the right and left eye. "Step" and "gap" experimental paradigms were used for visual stimulation. Analysis of parameters of potentials and their spatiotemporal dynamics suggests that, under conditions of the increased attention and optimal readiness of the neural structures, express saccades appear when the previously chosen program of the future eye movement coincides with the actual target coordinates. We assumed that the saccade latency decreases at the expense of the involvement of the main oculomotor areas of motor and saccadic planning in its initiation; an express saccade can be initiated also by means of direct transmission of the signal from the cortex to the brainstem saccadic generator passing by the superior colliculus. Moreover, anticipating release from the central fixation and attention distraction are necessary for the successful initiation of an express saccade.  相似文献   

19.
In 31 astronauts under conditions of free falling, when the visual functions proper were preserved, the precision and speedy parameters of all the forms of visual tracing (saccades, smooth tracing) became worse, and in a number of cases a complete disintegration of the smooth tracing reflex occurred as well as a 2-fold and greater enhancement of the time for fixing the stare at a target. In the beginning of adaptation to altered gravitation conditions, a transition of the smooth visual tracing into the strategy of saccadic approximation, occurs. These disorders were shown to be due to a vestibular deprivation.  相似文献   

20.
Functional magnetic resonance imaging (fMRI) was used to investigate the cerebral correlates of motor sequence memory consolidation. Participants were scanned while training on an implicit oculomotor sequence learning task and during a single testing session taking place 30 min, 5 hr, or 24 hr later. During training, responses observed in hippocampus and striatum were linearly related to the gain in performance observed overnight, but not over the day. Responses in both structures were significantly larger at 24 hr than at 30 min or 5 hr. Additionally, the competitive interaction observed between these structures during training became cooperative overnight. These results stress the importance of both hippocampus and striatum in procedural memory consolidation. Responses in these areas during training seem to condition the overnight memory processing that is associated with a change in their functional interactions. These results show that both structures interact during motor sequence consolidation to optimize subsequent behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号