首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adeno-associated virus vector is a good tool for gene transfer into skeletal muscle, but the length of a gene that can be incorporated is limited. To develop a gene therapy for Duchenne muscular dystrophy, we generated a series of rod-truncated micro-dystrophin cDNAs: M3 (one rod repeat, 3.9 kb), AX11 (three rod repeats, 4.4 kb), and CS1 (four rod repeats, 4.9 kb). These micro-dystrophins, driven by a CAG promoter, were used to produce transgenic (Tg) mdx mice and all three micro-dystrophins were shown to localize at the sarcolemma together with the expression of dystrophin-associated proteins. Among them, CS1 greatly improved dystrophic phenotypes of mdx mice and contractile force of the diaphragm in particular was restored to the level of normal C57BL/10 mice. AX11 modestly ameliorated the dystrophic pathology, but, importantly, M3-Tg mdx mice still showed severe dystrophic phenotypes. These data suggest that the rod structure, and its length in particular, is crucial for the function of micro-dystrophin.  相似文献   

2.
Gene therapy studies for Duchenne muscular dystrophy (DMD) have focused on viral vector-mediated gene transfer to provide therapeutic protein expression or treatment with drugs to limit dystrophic changes in muscle. The pathological activation of the nuclear factor (NF)-κB signaling pathway has emerged as an important cause of dystrophic muscle changes in muscular dystrophy. Furthermore, activation of NF-κB may inhibit gene transfer by promoting inflammation in response to the transgene or vector. Therefore, we hypothesized that inhibition of pathological NF-κB activation in muscle would complement the therapeutic benefits of dystrophin gene transfer in the mdx mouse model of DMD. Systemic gene transfer using serotype 9 adeno-associated viral (AAV9) vectors is promising for treatment of preclinical models of DMD because of vector tropism to cardiac and skeletal muscle. In quadriceps of C57BL/10ScSn-Dmd(mdx)/J (mdx) mice, the addition of octalysine (8K)-NF-κB essential modulator (NEMO)-binding domain (8K-NBD) peptide treatment to AAV9 minidystrophin gene delivery resulted in increased levels of recombinant dystrophin expression suggesting that 8K-NBD treatment promoted an environment in muscle tissue conducive to higher levels of expression. Indices of necrosis and regeneration were diminished with AAV9 gene delivery alone and to a greater degree with the addition of 8K-NBD treatment. In diaphragm muscle, high-level transgene expression was achieved with AAV9 minidystoophin gene delivery alone; therefore, improvements in histological and physiological indices were comparable in the two treatment groups. The data support benefit from 8K-NBD treatment to complement gene transfer therapy for DMD in muscle tissue that receives incomplete levels of transduction by gene transfer, which may be highly significant for clinical applications of muscle gene delivery.  相似文献   

3.
Muscular dystrophy is a genetic disorder of skeletal muscle characterized by progressive muscle weakness. Here we assessed whether muscle wasting affects cell viability and mechanical properties of extensor digitorum longus (EDL) and of tibialis anterior (TA) tendons from mdx dystrophic mice compared to wild type (WT) mice. mdx mice represent the classical animal model for human Duchenne muscular dystrophy, and show several signs of the pathology, including a decrease in specific force and an increase of fibrotic index. Cell viability of tendons was evaluated by histological analysis, and viscoelastic properties have been assessed by a rapid measurement protocol that allowed us to compute, at the same time, tissue complex compliance for all the frequencies of interest. Confocal microscopy and mechanical properties measurements revealed that mdx tendons, compared to WT ones, have an increase in the number of dead cells and a significant reduction in tissue elasticity for all the frequencies that were tested. These findings indicate a reduced quality of the tissue. Moreover, mdx tendons have an increase in the viscous response, indicating that during dynamic loading, they dissipate more energy compared to WT. Our results demonstrate that muscular dystrophy involves not only muscle wasting, but also alteration in the viscoelastic properties of tendons, suggesting a paracrine effect of altered skeletal muscle on tendinous tissue.  相似文献   

4.
Limb-girdle muscular dystrophy type 2D (LGMD2D) is caused by autosomal recessive mutations in the alpha-sarcoglycan gene. The clinical, biochemical, histological, imunohistochemical and molecular genetic data in 2 Albanian siblings with LGMD2D (adhalinopathy or alpha-sarcoglycanopathy) are presented and the resemblance with Duchenne muscular dystrophy (DMD) is discussed. Both siblings had very high level of CK and a negative molecular test for DMD deletions and duplications. The muscle biopsy showed dystrophic features as well as deficiency in two different proteins, the Gamma sarcoglycan protein (-SG) and the Alpha -SG protein (-SG). DNA analysis demonstrated homozygosity for a pathogenic point mutation (574C>T) in the alpha-sarcoglycan gene, confirming the diagnosis of limb-girdle muscular dystrophy type 2D. We believe it is the first confirmed case of primary alpha-sarcoglycanopathy identified in Albania which support the assumption of a wide geographic prevalence of severe childhood onset of autosomal recessive muscular dystrophy, We show that muscle biopsy and DNA diagnosis remains the most sensitive and specific method for differential diagnosis.  相似文献   

5.
Based on originally designed technique of myoblast cultivation and in accordance with the approved by the Russian Ministry of Health "one muscle treatment" protocol of myoblast transplantation to the Duchenne muscular dystrophy patients, the first in Russia clinical trial of this gene correction method was carried out. Immonologically related myoblast cultures (30 to 90 million cells per patient) were injected after all preliminary procedures into tibialis anterior muscles of four boys selected from a group of volunteer recipients (Duchenne muscular dystrophy patients) based on the analysis of a number of surface antigens in donor-recipient pairs. The condition of the patients remained satisfactory during the whole period of post-transplantation follow-up (from 6 months to 1.5 years). Six months after myoblast transplantation the presence of donor DNA or dystrophin synthesis was demonstrated in muscle biopsies of three out of four patients. This result confirms efficacy and safety of the procedure used.  相似文献   

6.
Duchenne muscular dystrophy is a musculoskeletal disease caused by mutations in the dystrophin gene. The purpose of this study was to use the mouse model of muscular dystrophy (mdx) to determine if the progression of the dystrophic phenotype in the diaphragm (costal) versus limb skeletal muscle (tibialis anterior) is associated with specific changes in extracellular regulated kinase (ERK1/2), p70 S6 kinase (p70(S6k)), or p38 signaling pathways. The studies detected that consistent with an earlier dystrophic phenotype, phosphorylation of p70(S6k) is elevated by 40% in the diaphragm with no change in limb muscle. In addition, phosphorylation of p38 kinase was decreased by 33% in the mdx diaphragm muscle. Levels of ERK1/2 as well as phosphorylation states were elevated in the diaphragm and limb muscle of mdx mice compared with age-matched control muscles. These results indicate that distinct signaling pathways are differentially activated in skeletal muscle of mdx mice. The specificity of these responses, particularly in the diaphragm, provides insight for potential targets for blunting the progression of the muscular dystrophy phenotype.  相似文献   

7.
Mice carrying mutations in both the dystrophin and utrophin genes die prematurely as a consequence of severe muscular dystrophy. Here, we show that intravascular administration of recombinant adeno-associated viral (rAAV) vectors carrying a microdystrophin gene restores expression of dystrophin in the respiratory, cardiac and limb musculature of these mice, considerably reducing skeletal muscle pathology and extending lifespan. These findings suggest rAAV vector-mediated systemic gene transfer may be useful for treatment of serious neuromuscular disorders such as Duchenne muscular dystrophy.  相似文献   

8.
Duchenne muscular dystrophy (DMD) is the most common neuromuscular disorder during childhood. It shows x-linked inheritance and is clinically characterized by progressive muscle weakness starting during infancy and leading to loss of ambulation during early adolescence. Serum creatine kinase levels are markedly elevated and the diagnosis is confirmed through genetic testing of the dystrophin gene or a muscle biopsy. Therapy of DMD necessitates a multidisciplinary approach. Use of medications, physiotherapy, orthopaedic care and non-invasive ventilation can markedly improve life expectancy and quality of life. Causative treatment strategies are in clinical development, but it is too early for a conclusion about their effectiveness. Becker muscular dystrophy is a much rarer allelic disorder with partial dystrophin deficiency and a milder clinical phenotype.  相似文献   

9.
Magnetic resonance imaging (MRI) provides non-invasive, repetitive measures in the same individual, allowing the study of a physio-pathological event over time. In this study, we tested the performance of 7 Tesla multi-parametric MRI to monitor the dynamic changes of mouse skeletal muscle injury and regeneration upon acute ischemia induced by femoral artery dissection. T2-mapping (T2 relaxation time), diffusion-tensor imaging (Fractional Anisotropy) and perfusion by Dynamic Contrast-Enhanced MRI (K-trans) were measured and imaging results were correlated with histological morphometric analysis in both Gastrocnemius and Tibialis anterior muscles. We found that tissue damage positively correlated with T2-relaxation time, while myofiber regeneration and capillary density positively correlated with Fractional Anisotropy. Interestingly, K-trans positively correlated with capillary density. Accordingly, repeated MRI measurements between day 1 and day 28 after surgery in ischemic muscles showed that: 1) T2-relaxation time rapidly increased upon ischemia and then gradually declined, returning almost to basal level in the last phases of the regeneration process; 2) Fractional Anisotropy dropped upon ischemic damage induction and then recovered along with muscle regeneration and neoangiogenesis; 3) K-trans reached a minimum upon ischemia, then progressively recovered. Overall, Gastrocnemius and Tibialis anterior muscles displayed similar patterns of MRI parameters dynamic, with more marked responses and less variability in Tibialis anterior. We conclude that MRI provides quantitative information about both tissue damage after ischemia and the subsequent vascular and muscle regeneration, accounting for the differences between subjects and, within the same individual, between different muscles.  相似文献   

10.

Background

Outcome measures for clinical trials in neuromuscular diseases are typically based on physical assessments which are dependent on patient effort, combine the effort of different muscle groups, and may not be sensitive to progression over short trial periods in slow-progressing diseases. We hypothesised that quantitative fat imaging by MRI (Dixon technique) could provide more discriminating quantitative, patient-independent measurements of the progress of muscle fat replacement within individual muscle groups.

Objective

To determine whether quantitative fat imaging could measure disease progression in a cohort of limb-girdle muscular dystrophy 2I (LGMD2I) patients over a 12 month period.

Methods

32 adult patients (17 male;15 female) from 4 European tertiary referral centres with the homozygous c.826C>A mutation in the fukutin-related protein gene (FKRP) completed baseline and follow up measurements 12 months later. Quantitative fat imaging was performed and muscle fat fraction change was compared with (i) muscle strength and function assessed using standardized physical tests and (ii) standard T1-weighted MRI graded on a 6 point scale.

Results

There was a significant increase in muscle fat fraction in 9 of the 14 muscles analyzed using the quantitative MRI technique from baseline to 12 months follow up. Changes were not seen in the conventional longitudinal physical assessments or in qualitative scoring of the T1w images.

Conclusions

Quantitative muscle MRI, using the Dixon technique, could be used as an important longitudinal outcome measure to assess muscle pathology and monitor therapeutic efficacy in patients with LGMD2I.  相似文献   

11.
In Duchenne muscular dystrophy (DMD), a genetic disruption of dystrophin protein expression results in repeated muscle injury and chronic inflammation. Magnetic resonance imaging shows promise as a surrogate outcome measure in both DMD and rehabilitation medicine that is capable of predicting clinical benefit years in advance of functional outcome measures. The mdx mouse reproduces the dystrophin deficiency that causes DMD and is routinely used for preclinical drug testing. There is a need to develop sensitive, non-invasive outcome measures in the mdx model that can be readily translatable to human clinical trials. Here we report the use of magnetic resonance imaging and spectroscopy techniques for the non-invasive monitoring of muscle damage in mdx mice. Using these techniques, we studied dystrophic mdx muscle in mice from 6 to 12 weeks of age, examining both the peak disease phase and natural recovery phase of the mdx disease course. T2 and fat-suppressed imaging revealed significant levels of tissue with elevated signal intensity in mdx hindlimb muscles at all ages; spectroscopy revealed a significant deficiency of energy metabolites in 6-week-old mdx mice. As the mdx mice progressed from the peak disease stage to the recovery stage of disease, each of these phenotypes was either eliminated or reduced, and the cross-sectional area of the mdx muscle was significantly increased when compared to that of wild-type mice. Histology indicates that hyper-intense MRI foci correspond to areas of dystrophic lesions containing inflammation as well as regenerating, degenerating and hypertrophied myofibers. Statistical sample size calculations provide several robust measures with the ability to detect intervention effects using small numbers of animals. These data establish a framework for further imaging or preclinical studies, and they support the development of MRI as a sensitive, non-invasive outcome measure for muscular dystrophy.  相似文献   

12.
Duchenne muscular dystrophy is a severe and currently incurable progressive neuromuscular condition, caused by mutations in the DMD gene that result in the inability to produce dystrophin. Lack of dystrophin leads to loss of muscle fibres and a reduction in muscle mass and function. There is evidence from dystrophin-deficient mouse models that increasing levels of utrophin at the muscle fibre sarcolemma by genetic or pharmacological means significantly reduces the muscular dystrophy pathology. In order to determine the efficacy of utrophin modulators in clinical trials, it is necessary to accurately measure utrophin levels and other biomarkers on a fibre by fibre basis within a biopsy section. Our aim was to develop robust and reproducible staining and imaging protocols to quantify sarcolemmal utrophin levels, sarcolemmal dystrophin complex members and numbers of regenerating fibres within a biopsy section. We quantified sarcolemmal utrophin in mature and regenerating fibres and the percentage of regenerating muscle fibres, in muscle biopsies from Duchenne, the milder Becker muscular dystrophy and controls. Fluorescent immunostaining followed by image analysis was performed to quantify utrophin intensity and β-dystrogylcan and ɣ –sarcoglycan intensity at the sarcolemma. Antibodies to fetal and developmental myosins were used to identify regenerating muscle fibres allowing the accurate calculation of percentage regeneration fibres in the biopsy. Our results indicate that muscle biopsies from Becker muscular dystrophy patients have fewer numbers of regenerating fibres and reduced utrophin intensity compared to muscle biopsies from Duchenne muscular dystrophy patients. Of particular interest, we show for the first time that the percentage of regenerating muscle fibres within the muscle biopsy correlate with the clinical severity of Becker and Duchenne muscular dystrophy patients from whom the biopsy was taken. The ongoing development of these tools to quantify sarcolemmal utrophin and muscle regeneration in muscle biopsies will be invaluable for assessing utrophin modulator activity in future clinical trials.  相似文献   

13.
14.
First-generation adenovirus vectors (AdV) have been used successfully to transfer a human dystrophin minigene to skeletal muscle of mdx mice. In most studies, strong viral promoters such as the cytomegalovirus promoter/enhancer (CMV) were used to drive dystrophin expression. More recently, a short version of the muscle creatine kinase promoter (MCK1350) has been shown to provide muscle-specific reporter gene expression after AdV-mediated gene delivery. Therefore, we generated a recombinant AdV where dystrophin expression is controlled by MCK1350 (AdVMCKdys). AdVMCKdys was injected by the intramuscular route into anterior tibialis muscle of mdx mice shortly after birth. Dystrophin expression was assessed at 20, 30, and 60 days after AdV-injection. At 20 days, muscles of AdVMCKdys-injected mdx mice showed a high number of dystrophin-positive fibers (mean: 365). At 60 days, the number of dystrophin-positive fibers was not only maintained, but increased significantly (mean: 600). In conclusion, MCK1350 allows for sustained dystrophin expression after AdV-mediated gene transfer to skeletal muscle of newborn mdx mice. In contrast to previous studies, where strong viral promoters were used, dystrophin expression driven by MCK1350 peaks at later time points. This may have implications for the future use of muscle-specific promoters for gene therapy of Duchenne muscular dystrophy.  相似文献   

15.
Duchenne muscular dystrophy (DMD) is an X-linked, lethal, degenerative disease that results from mutations in the dystrophin gene, causing necrosis and inflammation in skeletal muscle tissue. Treatments that reduce muscle fiber destruction and immune cell infiltration can ameliorate DMD pathology. We treated the mdx mouse, a model for DMD, with the immunosuppressant drug rapamycin (RAPA) both locally and systemically to examine its effects on dystrophic mdx muscles. We observed a significant reduction of muscle fiber necrosis in treated mdx mouse tibialis anterior (TA) and diaphragm (Dia) muscles 6 wks post-treatment. This effect was associated with a significant reduction in infiltration of effector CD4(+) and CD8(+) T cells in skeletal muscle tissue, while Foxp3(+) regulatory T cells were preserved. Because RAPA exerts its effects through the mammalian target of RAPA (mTOR), we studied the activation of mTOR in mdx TA and Dia with and without RAPA treatment. Surprisingly, mTOR activation levels in mdx TA were not different from control C57BL/10 (B10). However, mTOR activation was different in Dia between mdx and B10; mTOR activation levels did not rise between 6 and 12 wks of age in mdx Dia muscle, whereas a rise in mTOR activation level was observed in B10 Dia muscle. Furthermore, mdx Dia, but not TA, muscle mTOR activation was responsive to RAPA treatment.  相似文献   

16.
A clinical strength MRI and intact bovine caudal intervertebral discs were used to test the hypotheses that (1) mechanical loading and trypsin treatment induce changes in NMR parameters, mechanical properties and biochemical contents; and (2) mechanical properties are quantitatively related to NMR parameters. MRI acquisitions, confined compression stress-relaxation experiments, and biochemical assays were applied to determine the NMR parameters (relaxation times T1 and T2, magnetization transfer ratio (MTR) and diffusion trace (TrD)), mechanical properties (compressive modulus H(A0) and hydraulic permeability k(0)), and biochemical contents (H(2)O, proteoglycan and total collagen) of nucleus pulposus tissue from bovine caudal discs subjected to one of two injections and one of two mechanical loading conditions. Significant correlations were found between k(0) and T1 (r=0.75,p=0.03), T2 (r=0.78, p=0.02), and TrD (r=0.85, p=0.007). A trend was found between H(A0) and TrD (r=0.56, p=0.12). However, loading decreased these correlations (r=0.4, p=0.2). The significant effect of trypsin treatment on mechanical properties, but not on NMR parameters, may suggest that mechanical properties are more sensitive to the structural changes induced by trypsin treatment. The significant effect of loading on T1 and T2, but not on H(A0) or k(0), may suggest that NMR parameters are more sensitive to the changes in water content enhanced by loading. We conclude that MRI offers promise as a sensitive and non-invasive technique for describing alterations in material properties of intervertebral disc nucleus, and our results demonstrate that the hydraulic permeability correlated more strongly to the quantitative NMR parameters than did the compressive modulus; however, more studies are necessary to more precisely characterize these relationships.  相似文献   

17.
To obtain insight into the etiology of deep pressure sores, understanding of the relationship between prolonged transverse loading and local muscle damage is required. To date, the amount and location of muscle damage have been determined by histological examination. In the present study, we determined whether T2-weighted high-resolution magnetic resonance imaging (MRI) can also be applied to evaluate muscle tissue after prolonged transverse loading. The tibialis anterior muscle and overlying skin in the right hindlimbs of five rats were compressed between an indenter and the tibia. The in vivo magnetic resonance images of the loaded and contralateral hindlimbs were obtained 24 h after load application. The tibialis anterior muscles were then processed for histological examination. In the magnetic resonance images of all five loaded hindlimbs, signal intensity appeared higher in the loaded regions of the muscle compared with the unloaded regions. The location of the higher signal intensity coincided with the location of damage assessed from histology. Also the amount of damage determined with MRI was in good agreement with the amount of damage assessed from histological examination. Because MRI is nondestructive, it is a promising alternative for histology in research on pressure sore etiology, especially in follow-up studies to evaluate the development of muscle damage in time and in clinical studies.  相似文献   

18.
A major obstacle limiting gene therapy for diseases of the heart and skeletal muscles is an inability to deliver genes systemically to muscles of an adult organism. Systemic gene transfer to striated muscles is hampered by the vascular endothelium, which represents a barrier to distribution of vectors via the circulation. Here we show the first evidence of widespread transduction of both cardiac and skeletal muscles in an adult mammal, after a single intravenous administration of recombinant adeno-associated virus pseudotype 6 vectors. The inclusion of vascular endothelium growth factor/vascular permeability factor, to achieve acute permeabilization of the peripheral microvasculature, enhanced tissue transduction at lower vector doses. This technique enabled widespread muscle-specific expression of a functional micro-dystrophin in the skeletal muscles of dystrophin-deficient mdx mice, which model Duchenne muscular dystrophy. We propose that these methods may be applicable for systemic delivery of a wide variety of genes to the striated muscles of adult mammals.  相似文献   

19.
《Autophagy》2013,9(12):1559-1561
Mitophagy, selective autophagy of mitochondria, has been extensively demonstrated in cultured cell models but has never been described in skeletal muscle in the context of muscle disease. We recently reported the first example of human muscle disease where mitophagy plays a role in the peculiar muscle pathology. This disease is caused by loss-of-function mutations in the CHKB gene encoding choline kinase β. “Patients” and rostrocaudal muscular dystrophy (rmd) mice, spontaneous Chkb mutants, develop congenital muscular dystrophy with a peculiar mitochondrial abnormality—mitochondria are markedly enlarged at the periphery of muscle fibers and absent from the center. Choline kinase is the first enzymatic step in a biosynthetic pathway for phosphatidylcholine, the most abundant phospholipid in eukaryotes. Our discovery demonstrates that a phosphatydilcholine biosynthetic defect leads to mitochondrial dysfunction and increased mitophagy.  相似文献   

20.
A class of recessive lethal zebrafish mutations has been identified in which normal skeletal muscle differentiation is followed by a tissue-specific degeneration that is reminiscent of the human muscular dystrophies. Here, we show that one of these mutations, sapje, disrupts the zebrafish orthologue of the X-linked human Duchenne muscular dystrophy (DMD) gene. Mutations in this locus cause Duchenne or Becker muscular dystrophies in human patients and are thought to result in a dystrophic pathology through disconnecting the cytoskeleton from the extracellular matrix in skeletal muscle by reducing the level of dystrophin protein at the sarcolemma. This is thought to allow tearing of this membrane, which in turn leads to cell death. Surprisingly, we have found that the progressive muscle degeneration phenotype of sapje mutant zebrafish embryos is caused by the failure of embryonic muscle end attachments. Although a role for dystrophin in maintaining vertebrate myotendinous junctions (MTJs) has been postulated previously and MTJ structural abnormalities have been identified in the Dystrophin-deficient mdx mouse model, in vivo evidence of pathology based on muscle attachment failure has thus far been lacking. This zebrafish mutation may therefore provide a model for a novel pathological mechanism of Duchenne muscular dystrophy and other muscle diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号