首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we demonstrated that analyzed strains of Vibrio mimicus and Vibrio cholerae could be separated in two groups by using multilocus enzyme electrophoresis (MEE) data from 14 loci. We also showed that the combination of four enzymatic loci enables us to differentiate these two species. Our results showed that the ribosomal intergenic spacer regions PCR-mediated identification system failed, in some cases, to differentiate between V. mimicus and V. cholerae. On the other hand, MEE proved to be a powerful molecular tool for the discrimination of these two species even when atypical strains were analyzed.  相似文献   

2.
Studies of Vibrio cholerae diversity have focused primarily on pathogenic isolates of the O1 and O139 serotypes. However, autochthonous environmental isolates of this species routinely display more extensive genetic diversity than the primarily clonal pathogenic strains. In this study, genomic and metabolic profiles of 41 non-O1/O139 environmental isolates from central California coastal waters and four clinical strains are used to characterize the core genome and metabolome of V. cholerae. Comparative genome hybridization using microarrays constructed from the fully sequenced V. cholerae O1 El Tor N16961 genome identified 2,787 core genes that approximated the projected species core genome within 1.6%. Core genes are almost universally present in strains with widely different niches, suggesting that these genes are essential for persistence in diverse aquatic environments. In contrast, the dispensable genes and phenotypic traits identified in this study should provide increased fitness for certain niche environments. Environmental parameters, measured in situ during sample collection, are correlated to the presence of specific dispensable genes and metabolic capabilities, including utilization of mannose, sialic acid, citrate, and chitosan oligosaccharides. These results identify gene content and metabolic pathways that are likely selected for in certain coastal environments and may influence V. cholerae population structure in aquatic environments.  相似文献   

3.
The macromolecular composition and a number of parameters affecting chromosome replication were examined over a range of exponential growth rates in two common Escherichia coli strains, B/r and K-12 AB1157. Based on improved measurements of DNA after treatment of exponential cultures with rifampin, the cell mass per chromosomal replication origin (initiation mass) and the time required to replicate the chromosome from origin to terminus (C period) were determined. For these two strains, the initiation mass approached values of 8 × 10−10 and 10 × 10−10 units of optical density (at 460 nm) of culture mass per oriC, respectively, at growth rates above 1 doubling/h (at 37°C). The amount of protein per oriC decreased with increasing growth rate for AB1157 and remained nearly constant for the B/r strain. The C period decreased for both strains in an essentially identical manner from about 70 min at 0.6 doublings/h to about 33 min at 3 doublings/h. From the initiation mass and C period, relative or absolute copy numbers for genes with known map locations can be accurately determined at different growth rates. At growth rates above 2 doublings/h, when chromosomes are highly branched, genes near the origin are about threefold more prevalent than genes near the terminus. At a growth rate of 0.6 doubling/h, this ratio is only about 1.7, which reflects the lower degree of chromosome branching.  相似文献   

4.
The aim of this study was to investigate the presence of TCP gene clusters among clinical and environmental Vibrio cholerae isolates and to explore the genetic relatedness of isolates using ribotyping technique. A total of 50 V. cholerae strains (30 clinical and 20 environmental) were included in this study. Three clinical isolates were negative for TCP cluster genes while the cluster was absent in all of the environmental strains. Ribotyping of rRNA genes with BglI produced 18 different ribotype patterns, three of which belonged to clinical O1 serotype isolates. The remaining 15 ribotypes belonged to clinical non-O1, non-O139 serogroups (two patterns) and environmental non-O1, non-O139 serogroups (13 patterns). Clinical V. cholerae O1 strains from 2004 through 2006 and several environmental non-O1, non-O139 V. cholerae strains from 2006 showed 67.3 % similarity and fell within one single gene cluster. Ribotyping analysis made it possible to further comprehend the close originality of clinical isolates as very little changes have been occurred within rRNA genes of different genotypes of V. cholerae strains through years. In conclusion, ribotyping analysis of environmental V. cholerae isolates showed a substantial genomic diversity supporting the fact that genetic changes within bacterial genome occurs during years in the environment, while only little changes may arise within the genome of clinical isolates.  相似文献   

5.
The Vibrio cholerae N-acetyl glucosamine-binding protein A (GbpA) is a chitin-binding protein involved in V. cholerae attachment to environmental chitin surfaces and human intestinal cells. We previously investigated the distribution and genetic variations of gbpA in a large collection of V. cholerae strains and found that the gene is consistently present and highly conserved in this species. Primers and probe were designed from the gbpA sequence of V. cholerae and a new Taq-based qPCR protocol was developed for diagnostic detection and quantification of the bacterium in environmental and stool samples. In addition, the positions of primers targeting the gbpA gene region were selected to obtain a short amplified fragment of 206 bp and the protocol was optimized for the analysis of formalin-fixed samples, such as historical Continuous Plankton Recorder (CPR) samples. Overall, the method is sensitive (50 gene copies), highly specific for V. cholerae and failed to amplify strains of the closely-related species Vibrio mimicus. The sensitivity of the assay applied to environmental and stool samples spiked with V. cholerae ATCC 39315 was comparable to that of pure cultures and was of 102 genomic units/l for drinking and seawater samples, 101 genomic units/g for sediment and 102 genomic units/g for bivalve and stool samples. The method also performs well when tested on artificially formalin-fixed and degraded genomic samples and was able to amplify V. cholerae DNA in historical CPR samples, the earliest of which date back to August 1966. The detection of V. cholerae in CPR samples collected in cholera endemic areas such as the Benguela Current Large Marine Ecosystem (BCLME) is of particular significance and represents a proof of concept for the possible use of the CPR technology and the developed qPCR assay in cholera studies.  相似文献   

6.
In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.  相似文献   

7.
Non-O1/non-O139 nontoxigenic Vibrio cholerae associated with cholera-like diarrhea has been reported in Kolkata, India. However, the property involved in the pathogenicity of these strains has remained unclear. The character of 25 non-O1/non-O139 nontoxigenic V. cholerae isolated during 8 years from 2007 to 2014 in Kolkata was examined. Determination of the serogroup showed that the serogroups O6, O10, O35, O36, O39, and O70 were represented by two strains in each serogroup, and the remaining isolates belonged to different serogroups. To clarify the character of antibiotic resistance of these isolates, an antibiotic resistance test and the gene analysis were performed. According to antimicrobial drug susceptibility testing, 13 strains were classified as drug resistant. Among them, 10 strains were quinolone resistant and 6 of the 13 strains were resistant to more than three antibiotics. To define the genetic background of the antibiotic character of these strains, whole-genome sequences of these strains were determined. From the analysis of these sequences, it becomes clear that all quinolone resistance isolates have mutations in quinolone resistance-determining regions. Further research on the genome sequence showed that four strains possess Class 1 integrons in their genomes, and that three of the four integrons are found to be located in their genomic islands. These genomic islands are novel types. This indicates that various integrons containing drug resistance genes are spreading among V. cholerae non-O1/non-O139 strains through the action of newly generated genomic islands.  相似文献   

8.
The new epidemic strain O139 of Vibrio cholerae, the etiologic agent of cholera, has probably emerged from the pandemic strain O1 El Tor through a genetic rearrangement involving the horizontal transfer of exogenous O-antigen- and capsule-encoding genes of unknown origin. In V. cholerae O139, these genes are associated with an insertion sequence designated IS1358O139. In this work, we studied the distribution of seven genes flanking the IS1358O139 element in 13 serovars of V. cholerae strains. All these O139 genes and an IS1358 element designated IS1358O22-1 were only found in V. cholerae O22 with a similar genetic organization. Sequence analysis of a 4.5-kb fragment containing IS1358022-1 and the adjacent genes revealed that these genes are highly homologous to those of V. cholerae O139. These results suggest that strains of V. cholerae O22 from the environment might have been the source of the exogenous DNA resulting in the emergence of the new epidemic strain O139.  相似文献   

9.
In cultures of Vibrio cholerae strains of Ogawa serotype, variant strains which had undergone serotype conversion from Ogawa to Inaba were identified. The rfbT genes cloned from the parent strains were found to produce a 31-kDa protein in the maxicell system, and to cause serotype conversion when introduced into E. coli cells expressing Inaba serotype specificity. On the other hand, rfbT genes cloned from the variant strains neither produced the 31-kDa protein nor caused serotype conversion. Nucleotide sequence of these rfbT genes as well as those of two clinical Vibrio cholerae strains of Inaba serotype revealed that mutations causing premature termination of their rfbT genes were invariably present in strains expressing Inaba serotype specificity. The result strongly suggested that genetic alteration of the rfbT gene is responsible for serotype conversion of Vibrio cholerae O1.  相似文献   

10.
Vibrio cholerae poses a threat to human health, and new epidemic variants have been reported so far. Seventh pandemic V. cholerae strains are characterized by highly related genomic sequences but can be discriminated by a large set of Genomic Islands, phages and Integrative Conjugative Elements. Classical serotyping and biotyping methods do not easily discriminate among new variants arising worldwide, therefore the establishment of new methods for their identification is required. We developed a multiplex PCR assay for the rapid detection of the major 7th pandemic variants of V. cholerae O1 and O139. Three specific genomic islands (GI-12, GI-14 and GI-15), two phages (Kappa and TLC), Vibrio Seventh Pandemic Island 2 (VSP-II), and the ICEs of the SXT/R391 family were selected as targets of our multiplex PCR based on a comparative genomic approach. The optimization and specificity of the multiplex PCR was assessed on 5 V. cholerae 7th pandemic reference strains, and other 34 V. cholerae strains from various epidemic events were analyzed to validate the reliability of our method. This assay had sufficient specificity to identify twelve different V. cholerae genetic profiles, and therefore has the potential to be used as a rapid screening method.  相似文献   

11.
Vibrio cholerae uses a variety of strategies for obtaining iron in its diverse environments. In this study we report the identification of a novel iron utilization protein in V. cholerae, VciB. The vciB gene and its linked gene, vciA, were isolated in a screen for V. cholerae genes that permitted growth of an Escherichia coli siderophore mutant in low-iron medium. The vciAB operon encodes a predicted TonB-dependent outer membrane receptor, VciA, and a putative inner membrane protein, VciB. VciB, but not VciA, was required for growth stimulation of E. coli and Shigella flexneri strains in low-iron medium. Consistent with these findings, TonB was not needed for VciB-mediated growth. No growth enhancement was seen when vciB was expressed in an E. coli or S. flexneri strain defective for the ferrous iron transporter Feo. Supplying the E. coli feo mutant with a plasmid encoding either E. coli or V. cholerae Feo, or the S. flexneri ferrous iron transport system Sit, restored VciB-mediated growth; however, no stimulation was seen when either of the ferric uptake systems V. cholerae Fbp and Haemophilus influenzae Hit was expressed. These data indicate that VciB functions by promoting iron uptake via a ferrous, but not ferric, iron transport system. VciB-dependent iron accumulation via Feo was demonstrated directly in iron transport assays using radiolabeled iron. A V. cholerae vciB mutant did not exhibit any growth defects in either in vitro or in vivo assays, possibly due to the presence of other systems with overlapping functions in this pathogen.  相似文献   

12.
Integrative conjugative elements (ICEs) are a class of self-transmissible mobile elements that mediate horizontal gene transfer in bacteria, and play an important role in bacterial evolution. Since 1992, ICEs of the SXT/R391 family have been found to be widely distributed among Vibrio cholerae strains isolated in Asian countries. Here we describe ICEVchB33, an ICE found in the genomes of two V. cholerae O1 Eltor strains, one isolated in India, 1994, and the other from Mozambique, 2004. ICEVchB33 revealed a new genetic organization, different from other ICEs of the SXT/R391 family, demonstrating the genomic plasticity of these elements.  相似文献   

13.
Three human Lactobacillus strains, coded B21060, B21070 and B21190, have recently been isolated. The strains show a series of features (acid and bile resistance, adhesion to various types of mucosal cell) which make them particularly promising for the preparation of probiotic products. In the present study, the ability of the strains to inhibit the growth of pathogens in coculture was investigated. Lactobacilli were incubated simultaneously or after one overnight growth with enterotoxigenic Escherichia coli, Salmonella enteritidis or Vibrio cholerae. After 24 and 48 h, bacterial counts of the pathogens and of the lactobacilli were performed. The results showed that these Lactobacillus strains inhibited the in vitro growth of E. coli and S. enteritidis under both conditions. Moreover, a cumulative effect was observed for mixtures of lactobacilli. In contrast, no significant inhibition of Vibrio cholerae growth was observed, provided that the pH of the medium was kept constant. The presence of the pathogens did not affect the growth of the Lactobacillus strains. Moreover, each of the Lactobacillus strains showed coaggregation ability with two pathogenic E. coli strains, namely ATCC 25922 and ATCC 35401.  相似文献   

14.
15.
Comparative genomics of Dehalococcoides strains and an enrichment were performed using a microarray targeting genes from all available sequenced genomes of the Dehalococcoides genus. The microarray was designed with 4305 probe sets to target 98.6% of the open-reading frames from strains 195, CBDB1, BAV1 and VS. The microarrays were validated and applied to query the genomes of two recently isolated Dehalococcoides strains, ANAS1 and ANAS2, and their enrichment source (ANAS) to understand the genome–physiology relationships. Strains ANAS1 and ANAS2 can both couple the reduction of trichloroethene, cis-dichloroethene (DCE) and 1,1-DCE, but not tetrachloroethene and trans-DCE with growth, whereas only strain ANAS2 couples vinyl chloride reduction to growth. Comparative genomic analysis showed that the genomes of both strains are similar to each other and to strain 195, except for genes that are within the previously defined integrated elements or high-plasticity regions. Combined results of the two isolates closely matched the results obtained using genomic DNA of the ANAS enrichment. The genome similarities, together with the distinct chlorinated ethene usage of strains ANAS1, ANAS2 and 195 demonstrate that closely phylogenetically related strains can be physiologically different. This incongruence between physiology and core genome phylogeny seems to be related to the presence of distinct reductive dehalogenase-encoding genes with assigned chlorinated ethene functions (pceA, tceA in strain 195; tceA in strain ANAS1; vcrA in strain ANAS2). Overall, the microarrays are a valuable high-throughput tool for comparative genomics of unsequenced Dehalococcoides-containing samples to provide insights into their gene content and dechlorination functions.  相似文献   

16.
17.

Background

Vibrio vulnificus is an important pathogen which can cause serious infections in humans. Yet, there is limited knowledge on its virulence factors and the question whether temperate phages might be involved in pathogenicity, as is the case with V. cholerae. Thus far, only two phages (SSP002 and VvAW1) infecting V. vulnificus have been genetically characterized. These phages were isolated from the environment and are not related to Vibrio cholerae phages. The lack of information on temperate V. vulnificus phages prompted us to isolate those phages from lysogenic strains and to compare them with phages of other Vibrio species.

Results

In this study the temperate phage PV94 was isolated from a V. vulnificus biotype 1 strain by mitomycin C induction. PV94 is a myovirus whose genome is a linear double-stranded DNA of 33,828 bp with 5′-protruding ends. Sequence analysis of PV94 revealed a modular organization of the genome. The left half of the genome comprising the immunity region and genes for the integrase, terminase and replication proteins shows similarites to V. cholerae kappa phages whereas the right half containing genes for structural proteins is closely related to a prophage residing in V. furnissii NCTC 11218.

Conclusion

We present the first genomic sequence of a temperate phage isolated from a human V. vulnificus isolate. The sequence analysis of the PV94 genome demonstrates the wide distribution of closely related prophages in various Vibrio species. Moreover, the mosaicism of the PV94 genome indicates a high degree of horizontal genetic exchange within the genus Vibrio, by which V. vulnificus might acquire virulence-associated genes from other species.  相似文献   

18.
Vibrio cholerae is an autochthonous inhabitant of riverine and estuarine environments and also is a facultative pathogen for humans. Genotyping can be useful in assessing the risk of contracting cholera, intestinal, or extraintestinal infections via drinking water and/or seafood. In this study, environmental isolates of V. cholerae were examined for the presence of ctxA, hlyA, ompU, stn/sto, tcpA, tcpI, toxR, and zot genes, using multiplex PCR. Based on tcpA and hlyA gene comparisons, the strains could be grouped into Classical and El Tor biotypes. The toxR, hlyA, and ompU genes were present in 100, 98.6, and 87.0% of the V. cholerae isolates, respectively. The CTX genetic element and toxin-coregulated pilus El Tor (tcpA ET) gene were present in all toxigenic V. cholerae O1 and V. cholerae O139 strains examined in this study. Three of four nontoxigenic V. cholerae O1 strains contained tcpA ET. Interestingly, among the isolates of V. cholerae non-O1/non-O139, two had tcpA Classical, nine contained tcpA El Tor, three showed homology with both biotype genes, and four carried the ctxA gene. The stn/sto genes were present in 28.2% of the non-O1/non-O139 strains, in 10.5% of the toxigenic V. cholerae O1, and in 14.3% of the O139 serogroups. Except for stn/sto genes, all of the other genes studied occurred with high frequency in toxigenic V. cholerae O1 and O139 strains. Based on results of this study, surveillance of non-O1/non-O139 V. cholerae in the aquatic environment, combined with genotype monitoring using ctxA, stn/sto, and tcpA ET genes, could be valuable in human health risk assessment.  相似文献   

19.
A total of 26 strains of Vibrio cholerae, including members of the O1, O139, and non-O1, non-O139 serogroups from both clinical and environmental sources, were examined for the presence of genes encoding cholera toxin (ctxA), zonula occludens toxin (zot), accessory cholera enterotoxin (ace), hemolysin (hlyA), NAG-specific heat-stable toxin (st), toxin-coregulated pilus (tcpA), and outer membrane protein (ompU), for genomic organization, and for the presence of the regulatory protein genes tcpI and toxR in order to determine relationships between epidemic serotypes and sources of isolation. While 22 of the 26 strains were hemolytic on 5% sheep blood nutrient agar, all strains were PCR positive for hlyA, the hemolysin gene. When multiplex PCR was used, all serogroup O1 and O139 strains were positive for tcpA, ompU, and tcpI. All O1 and O139 strains except one O1 strain and one O139 strain were positive for the ctxA, zot, and ace genes. Also, O1 strain VO3 was negative for the zot gene. All of the non-O1, non-O139 strains were negative for the ctxA, zot, ace, tcpA, and tcpI genes, and all of the non-O1, non-O139 strains except strain VO26 were negative for ompU. All of the strains except non-O1, non-O139 strain VO22 were PCR positive for the gene encoding the central regulatory protein, toxR. All V. cholerae strains were negative for the NAG-specific st gene. Of the nine non-ctx-producing strains of V. cholerae, only one, non-O1, non-O139 strain VO24, caused fluid accumulation in the rabbit ileal loop assay. The other eight strains, including an O1 strain, an O139 strain, and six non-O1, non-O139 strains, regardless of the source of isolation, caused fluid accumulation after two to five serial passages through the rabbit gut. Culture filtrates of all non-cholera-toxigenic strains grown in AKI media also caused fluid accumulation, suggesting that a new toxin was produced in AKI medium by these strains. Studies of clonality performed by using enterobacterial repetitive intergenic consensus sequence PCR, Box element PCR, amplified fragment length polymorphism (AFLP), and pulsed-field gel electrophoresis (PFGE) collectively indicated that the V. cholerae O1 and O139 strains had a clonal origin, whereas the non-O1, non-O139 strains belonged to different clones. The clinical isolates closely resembled environmental isolates in their genomic patterns. Overall, there was an excellent correlation among the results of the PCR, AFLP, and PFGE analyses, and individual strains derived from clinical and environmental sources produced similar fingerprint patterns. From the results of this study, we concluded that the non-cholera-toxin-producing strains of V. cholerae, whether of clinical or environmental origin, possess the ability to produce a new secretogenic toxin that is entirely different from the toxin produced by toxigenic V. cholerae O1 and O139 strains. We also concluded that the aquatic environment is a reservoir for V. cholerae O1, O139, non-O1, and non-O139 serogroup strains.  相似文献   

20.
The distribution ofVibrio cholerae was examined in 2 Florida estuaries, Apalachicola and Tampa Bay.Vibrio cholerae serotype non-01 was the most abundant serotype, being isolated from 45% of the oyster samples, 30% of the sediments, 50% of the waters, and 75% of the blue crabs.Vibrio cholerae serotype 01 was isolated from only one oyster sample. Strong linear correlations betweenV. cholerae and temperature, salinity, or the other physical/chemical parameters measured,Escherichia coli, or fecal coliforms were not observed, but a range of temperatures and salinities appeared relevant to the distribution of the organism. The organism was present in the highest concentrations when salinities were 10‰–25‰ and temperatures were 20?C–35?C.In vitro growth curves of 95V. cholerae environmental isolates further supported that 10‰–25‰ was an ideal salinity range for the organisms. The results suggest thatV. cholerae is a widely distributed organism in the nutrient-rich warm waters of the Gulf Coast estuaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号