首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
Abstract: We examined the immunocytochemical expression of GM3 and QD3 in 3-day-old chick embryo retinal pigment epithelium (RPE) and neural retina (NR). We also compared the composition of gangliosides and the activities of key ganglioside glycosyltransferases of the RPE and NR of 8-, 12-, and 15-day old embryos. The immunocytochemical studies in 3-day-old embryos showed heavy expression of GM3 and GD3 at the inner and outer layers of the optic vesicle that are the precursors of the RPE and NR, respectively. The compositional and enzymatic studies showed pronounced differences between RPE and NR of 8-day and older embryos. HPTLC showed that at 8 days the major species were GM3 and GD3 in RPE and GD3 and GT3 in NR. As development proceeded, GD3 decreased in both tissues, GM3 became the major ganglioside in RPE, and ganglio-series gangliosides (mainly GD1a) became the major species in NR. At 15 days the major species were GD1 a in NR and GM3 in RPE. Enzyme determinations showed that whereas in RPE from 12-day-old embryos GM2 synthase was under the limit of detection and GD3 synthase activity was about sixfold lower than GM3 synthase, in NR the activities of GM3 and GD3 synthases were similar and both six-to ninefold lower than GM2 synthase. These results evidence a markedly different modulation of the ganglioside glycosylating system in cells of a common origin that through distinct differentiation pathways originate two closely related tissues of the optic system. In addition, they reinforce the relevance of the relative activities of key transferases in determining the pattern of gangliosides in different cell types.  相似文献   

2.

Purpose

To evaluate whether optic disc hemorrhages are associated with faster rates of estimated retinal ganglion cell (RGC) loss in glaucoma.

Methods

A longitudinal observational cohort study of 222 eyes of 122 patients with glaucoma recruited from the Diagnostic Innovations Glaucoma Study (DIGS) followed for an average of 3.74±0.85 years. All subjects had optical coherence tomography and standard automated perimetry during follow up. Optic disc hemorrhages were detected by masked evaluation of stereophotographs. Rates of change in estimated numbers of RGCs were determined using a previously described method. A random coefficients model was used to investigate the relationship between disc hemorrhages and rates of change in estimated RGC counts over time.

Results

19 eyes of 18 subjects had at least one disc hemorrhage during follow up. At baseline, average estimated RGC counts in eyes with and without disc hemorrhages were 677,994 cells and 682,021 cells, respectively (P = 0.929). Eyes with optic disc hemorrhages during follow-up had significantly faster rates of estimated RGC loss than eyes without disc hemorrhages (22,233 cells/year versus 10,704 cells/year, P = 0.020). The effect of disc hemorrhages on the rates of estimated RGC loss remained significant after adjusting for confounding variables.

Conclusion

Eyes with disc hemorrhages showed faster rates of RGC loss compared to eyes without disc hemorrhages. These results provide further evidence that disc hemorrhages should be considered as an indicator of increased risk for faster neural loss in glaucoma.  相似文献   

3.
Biology Bulletin - Fluorescence and chromatographic analysis of bisretinoids from the retina and retinal pigment epithelium of mouse eyes was carried out before and after exposure to accelerated...  相似文献   

4.
BackgroundProgressive disc tilting and the development or enlargement of peripapillary atrophy (PPA) are observed during a myopic shift in children. This could be related to the changes around the optic nerve head during eyeball elongation. If the biomechanical properties at or around the optic nerve head are changed after exposure to elevated intraocular pressure (IOP) in glaucoma eyes, different response of the disc tilting and PPA changes could take place during eyeball elongation by myopic shift. On the basis of this background, the aim of this study was to compare the morphological changes in the optic disc induced by a myopic shift during childhood between normal control eyes, eyes from disc suspects with an enlarged cup-to-disc ratio (CDR), and eyes with childhood glaucoma.MethodsTotal of 82 eyes from 82 subjects younger than 14 years of age were included in the study. Serial disc photographs were classified into one of two groups: eyes with an optic nerve head (ONH) or peripapillary atrophy (PPA) change or without an ONH/PPA change. Using ImageJ software, the outlines of the optic disc and PPA were plotted, and the vertical disc diameter (VDD), horizontal disc diameter (HDD), and maximum PPA width (PPW) were measured. The changes in the ratios of these parameters and the relationships between the degree of myopic shift or the ONH/PPA change were analyzed.ResultsTwenty-five eyes with normal optic disc appearance, 36 eyes with enlarged cup-to-disc ratio, and 21 eyes of glaucoma patients were analyzed. The initial intraocular pressure (IOP) at diagnosis was significantly different among the groups (P<0.001). The degree of myopic shift during follow-up period was not significantly different among the groups (P=0.612). However, the changes in the HDD/VDD and PPW/VDD ratios were significantly greater in the disc suspect group and significantly smaller in the glaucoma group. Among the 42 eyes with an ONH/PPA change, 16 (38.1%) were from the normal control group, 24 (57.1%) were from the disc suspect group, and 2 (4.8%) were from the glaucoma group (P < 0.001).

Conclusions and Relevance

The optic disc change during childhood myopic shift was different in eyes with various conditions. Eyes of childhood glaucoma showed less change in the disc morphology during myopic shift compared to eyes with normal disc or enlarged cup-to-disc ratio.  相似文献   

5.
6.
7.
8.
9.
PPE represent a peculiar family of mycobacterial proteins characterized by a 180 aminoacids conserved N-terminal domain. Several PPE genes are co-transcribed with a gene encoding for a protein belonging to another family of mycobacterial specific proteins named PE. Only one PE-PPE couple has been extensively characterized so far (PE25-PPE41) and it was shown that these two proteins form a heterodimer and that this interaction is essential for PPE41 stability and translocation through the mycobacterial cell wall. In this study we characterize the PE11-PPE17 couple. In contrast with what was found for PE25-PPE41, we show that PPE17 is not secreted but surface exposed. Moreover, we demonstrate that the presence of PE11 is not necessary for PPE17 stability or for its localization on the mycobacterial surface. Finally, we show that the PPE domain of PPE17 targets the mycobacterial cell wall and that this domain can be used as a fusion partner to expose heterologous proteins on the mycobacterial surface.  相似文献   

10.

Objectives

To measure Lewis y antigen and CD44 antigen expression in epithelial ovarian carcinoma and to correlate the levels of these antigens with clinical response to chemotherapy.

Methods

The study cases included 34 cases of ovarian carcinoma with resistance to chemotherapeutic drugs, 6 partially drug-sensitive cases, and 52 drug-sensitive cases (92 total).

Results

The rates of expression of Lewis y antigen and CD44 antigen were significantly greater in the drug-resistant group than that in the partially-sensitive or sensitive groups. Surgical stage, residual tumor size and expression of CD44 and Lewis y antigen in ovarian carcinoma tissues were independent risk factors for chemotherapeutic drug resistance.

Conclusions

Over-expression of Lewis y and CD44 antigen are strong risk factors for chemotherapeutic drug resistance in ovarian carcinoma patients.  相似文献   

11.
12.
Increasing the leaf temperature of intact cotton (Gossypium hirsutum L.) and wheat (Triticum aestivum L.) plants caused a progressive decline in the light-saturated CO2-exchange rate (CER). CER was more sensitive to increased leaf temperature in wheat than in cotton, and both species demonstrated photosynthetic acclimation when leaf temperature was increased gradually. Inhibition of CER was not a consequence of stomatal closure, as indicated by a positive relationship between leaf temperature and transpiration. The activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), which is regulated by Rubisco activase, was closely correlated with temperature-induced changes in CER. Nonphotochemical chlorophyll fluorescence quenching increased with leaf temperature in a manner consistent with inhibited CER and Rubisco activation. Both nonphotochemical fluorescence quenching and Rubisco activation were more sensitive to heat stress than the maximum quantum yield of photochemistry of photosystem II. Heat stress led to decreased 3-phosphoglyceric acid content and increased ribulose-1,5-bisphosphate content, which is indicative of inhibited metabolite flow through Rubisco. We conclude that heat stress inhibited CER primarily by decreasing the activation state of Rubisco via inhibition of Rubisco activase. Although Rubisco activation was more closely correlated with CER than the maximum quantum yield of photochemistry of photosystem II, both processes could be acclimated to heat stress by gradually increasing the leaf temperature.  相似文献   

13.
During gastrulation of the sea urchin, Lytechinus variegutus there is localized proliferation of cells in the vegetal plate region prior to its invagination. Cell counts show that during gastrulation the number of cells per embryo increases 60% from 1025 to 1640. Measurements of cell volumes suggest that some growth may follow these divisions. Feulgen staining shows that the greatest mitotic activity throughout gastrulation occurs in the vegetal plate region. Labelling embryos with 3H-thymidine reveals that incorporation in the vegetal plate is confined to cells that encircle the base of the archenteron. Pulse-chase experiments indicate that these labelled cells contribute descendants to the vegetal half of the archenteron. Additionally, 3-dimensional reconstructions of vegetal regions at different stages reveal that by the end of gastrulation two bilateral clusters of labelled cells lie at the future sites of the post-oral arms of the pluteus larva, thus marking the axes of bilateral and dorso-ventral symmetry. Our findings suggest that two of the principal events of sea urchin gastrulation — the formation of the archenteron and the establishment of symmetry in the larva — are accompanied by distinct patterns of cell division.  相似文献   

14.
Hypoxia is known to play critical roles in cell survival, angiogenesis, tumor invasion, and metastasis. Hypoxia mediated over-expression of hypoxia-inducible factor (HIF) has been shown to be associated with therapeutic resistance, and contributes to poor prognosis of cancer patients. Emerging evidence suggest that hypoxia and HIF pathways contributes to the acquisition of epithelial-to-mesenchymal transition (EMT), maintenance of cancer stem cell (CSC) functions, and also maintains the vicious cycle of inflammation-all which lead to therapeutic resistance. However, the precise molecular mechanism(s) by which hypoxia/HIF drives these events are not fully understood. Here, we show, for the first time, that hypoxia leads to increased expression of VEGF, IL-6, and CSC signature genes Nanog, Oct4 and EZH2 consistent with increased cell migration/invasion and angiogenesis, and the formation of pancreatospheres, concomitant with increased expression of miR-21 and miR-210 in human pancreatic cancer (PC) cells. The treatment of PC cells with CDF, a novel synthetic compound inhibited the production of VEGF and IL-6, and down-regulated the expression of Nanog, Oct4, EZH2 mRNAs, as well as miR-21 and miR-210 under hypoxia. CDF also led to decreased cell migration/invasion, angiogenesis, and formation of pancreatospheres under hypoxia. Moreover, CDF decreased gene expression of miR-21, miR-210, IL-6, HIF-1α, VEGF, and CSC signatures in vivo in a mouse orthotopic model of human PC. Collectively, these results suggest that the anti-tumor activity of CDF is in part mediated through deregulation of tumor hypoxic pathways, and thus CDF could become a novel, and effective anti-tumor agent for PC therapy.  相似文献   

15.

Background

Drugs of abuse elevate brain dopamine levels, and, in vivo, chronic drug use is accompanied by a selective decrease in dopamine D2 receptor (D2R) availability in the brain. Such a decrease consequently alters the ratio of D1R∶D2R signaling towards the D1R. Despite a plethora of behavioral studies dedicated to the understanding of the role of dopamine in addiction, a molecular mechanism responsible for the downregulation of the D2R, in vivo, in response to chronic drug use has yet to be identified.

Methods and Findings

Ethics statement: All animal work was approved by the Gallo Center IACUC committee and was performed in our AAALAC approved facility. In this study, we used wild type (WT) and G protein coupled receptor associated sorting protein-1 (GASP-1) knock out (KO) mice to assess molecular changes that accompany cocaine sensitization. Here, we show that downregulation of D2Rs or upregulation of D1Rs is associated with a sensitized locomotor response to an acute injection of cocaine. Furthermore, we demonstrate that disruption of GASP-1, that targets D2Rs for degradation after endocytosis, prevents cocaine-induced downregulation of D2Rs. As a consequence, mice with a GASP-1 disruption show a reduction in the sensitized locomotor response to cocaine.

Conclusions

Together, our data suggests that changes in the ratio of the D1R∶D2R could contribute to cocaine-induced behavioral plasticity and demonstrates a role of GASP-1 in regulating both the levels of the D2R and cocaine sensitization.  相似文献   

16.
Cavitation of water in xylem vessels followed by embolism formation has been authenticated for more than 40 years. Embolism formation involves the gradual buildup of bubble pressure (air) to atmospheric pressure as demanded by Henry’s law of equilibrium between gaseous and liquid phases. However, the tempo of pressure increase has not been quantified. In this report, we show that the rate of pressurization of embolized vessels is controlled by both fast and slow kinetics, where both tempos are controlled by diffusion but over different spatial scales. The fast tempo involves a localized diffusion from endogenous sources: over a distance of about 0.05 mm from water-filled wood to the nearest embolized vessels; this process, in theory, should take <2 min. The slow tempo involves diffusion of air from exogenous sources (outside the stem). The latter diffusion process is slower because of the increased distance of diffusion of up to 4 mm. Radial diffusion models and experimental measurements both confirm that the average time constant is >17 h, with complete equilibrium requiring 1 to 2 d. The implications of these timescales for the standard methods of measuring percentage loss of hydraulic conductivity are discussed in theory and deserve more research in future.Vulnerability curves (VCs) have been used as a measure of drought resistance of woody plants, and many methods have been used and evaluated to construct VCs (Cochard et al., 2013). Vessels cavitate in response to increasing drought stress and immediately fill with a mixture of water vapor and air. Henry’s law of gas solubility in water demands that, eventually, the air pressure in an embolized vessel will equal atmospheric pressure provided that the surrounding water pressure remains low enough. Most presumed, until recently, that the air pressure builds up to atmospheric pressure in 10 to 20 min (Sperry and Tyree, 1988; Tyree and Zimmermann, 2002). In contrast, research has shown that dissolving of air bubbles in stem takes many hours (10–100) depending on water pressure applied and stem diameter (Tyree and Yang, 1992; Yang and Tyree, 1992), but how long it takes to fully embolize a vessel remains unknown. Recently, cavitron methods have been developed to estimate average bubble pressure by measuring the impact of the water tension on stem hydraulic conductivity when the water pressure adjacent to a bubble changes, causing bubble expansion or compression (Wang et al., 2014b, 2015).Subatmospheric bubble pressure in vessels makes the measurements of hydraulic conductivity of stems, kh, inaccurate when measured at or near atmospheric pressure, because bubble collapse will cause an increase in kh as shown by traditional measurements (Tyree and Yang, 1992; Yang and Tyree, 1992) and modern cavitron methods (Wang et al., 2015). Intuitively, if embolized vessels have subatmospheric air pressure, then the air bubbles ought to collapse in volume as the surrounding water tension increases to zero (atmospheric pressure). A collapsing air bubble will result in a vessel partly filled with water, and a partly water-filled vessel is capable of conducting water if it contacts adjacent water-filled vessels. Bubble pressure will also increase with time because of Henry’s law, and the time required to fully embolize the vessels depends on the penetration rate of air through the xylem as governed by Fick’s law of diffusion. Where does the air come from, and how long does it take to fully embolize a vessel?

Table I.

Table of abbreviations
AbbreviationMeaning
D, DwCoefficient of diffusion of gas in water and wood, respectively
khHydraulic conductivity of the stem
kmaxMaximum hydraulic conductivity of the stem
Lv, LbLength of vessel and bubble, respectively
τTime constant in an exponential process
TTension in xylem
TcCentral tension in stem that spins in a centrifuge
PLCPLC of stem
P50, P63Xylem pressure when stem loss is 50% or 63% of its maximum conductivity, respectively
VCVulnerability curve
CavitronCochard’s cavitron (Cochard rotor) that both spins stem and measures conductivity in the centrifuge
Sperry rotorStandard centrifuge method that spins stem in the centrifuge and measures kh in conductivity apparatus out of the centrifuge
Pb*Bubble pressure in stem before bubble collapse
Open in a separate windowTo answer the questions, some insights can be gained through some theoretical analyses and calculations before conducting experiments. Embolized vessels serve as a sink of air, and there are two main sources of air: (1) an endogenous source, which is the air dissolved in liquid phase inside the stem, and (2) an exogenous source, which is the air in atmospheric phase outside the stem. Air dissolved in water in the stem would be drawn out very quickly to fill recently cavitated vessels because of the very short distance between newly cavitated vessels and the surrounding water. For example, if one-half of the vessels cavitate quickly, the approximate distance between cavitation voids will be 0.05 mm (Wang et al., 2015), but ambient air beyond the bark boundary has to move a comparatively long way (many millimeters) into the cavitated vessels through the bark and wood. The reason for the longer time for exogenous air to move follows from the relationship between the median distance that a molecule can diffuse, x, and the time for the diffusion, t. The relationship is x2 = 2Dt, where D is the diffusion coefficient of air molecules in water. In a recent article (Wang et al., 2015), it was argued that the time for endogenous bubble pressure equilibrium was ≤10 s over diffusional distances of 0.05 to 0.1 mm. Hence, it follows that, if distances are 102 more, the time will be 104 more for diffusion from exogenous sources (i.e. 1–2 d versus 10 s). However, Wang et al. (2015) used an inappropriate value for D equal to air diffusion in pure water. Using a more appropriate value actually measured in wood (Sorz and Hietz, 2006), the recomputed time is nearly 1 min (Supplemental Fig. S1; Supplemental Theory S1). The original model (Wang et al., 2015) has not changed, except for the use of a more accurate value of D. However, the qualitative argument that some bubble pressurization is fast and that the rest is slow is still correct.It could be argued theoretically that, based on Fick’s law of diffusion, the ideal gas law of air bubbles, and Henry’s law of solubility of air in water, the time for exogenous bubble pressure equilibrium could be even more than 1 d. However, a technically valid, experimental verification of equilibrium time constant is always preferable to theory alone. Hence, the objective of this study is to first measure experimentally the time constant of exogenous equilibration and second, explain by theory why the time constant should be the value measured experimentally.Readers should consult the work by Wang et al. (2015) for details about the theoretical and experimental approaches used in this study, but the basic idea is easy to explain without rigorous theory. It is well known that stem kh increases if bubbles dissolve or otherwise grow smaller (Tyree and Yang, 1992; Yang and Tyree, 1992); therefore, information about bubble size or pressure can be deduced from repeated measurements of kh. In brief, bubbles in vessels can be compressed when bubble pressure is lower than the sum of water pressure and capillary pressure, and water will partly refill the vessel as bubbles collapse. Partly refilled vessels enhance stem conductivity provided that the water is in contact through pit membranes with adjacent water-filled vessels. In this article, we use a centrifuge technique (Wang et al., 2014b) to manipulate the water pressure or tension, T, adjacent to embolized vessels. If the initial bubble pressure, Pb*, is low, the bubbles will collapse more as tension decreases toward zero than if Pb* is high. Wang et al. (2015) showed that Pb* can be computed by fitting functions of kh versus T in a cavitron. Hence, by doing repeated measurements over many hours of kh versus T, one can determine the tempo of Pb* change.  相似文献   

17.
Chemokine receptor CXCR4 (also known as LESTR and fusin) has been shown to function as a coreceptor for T-cell-tropic strains of human immunodeficiency virus type 1 (HIV-1). We have developed a binding assay to show that HIV envelope (Env) can interact with CXCR4 independently of CD4 but that this binding is markedly enhanced by the previous interaction of Env with soluble CD4. We also show that nonglycosylated HIV-1SF-2 gp120 or sodium metaperiodate-treated oligomeric gp160 from HIV-1451 bound much more readily to CXCR4 than their counterparts with intact carbohydrate residues did.In the recent past, several members of the family of chemokine receptors have been identified as cofactors for human immunodeficiency virus type 1 (HIV-1) entry (1, 6, 8, 10). Specifically, CCR5 (as well as CCR3 and CCR2b in some instances) has been shown to mediate entry of viruses characterized as macrophage tropic or dual tropic (1, 58), while CXCR4 has been shown to mediate entry of T-cell-tropic or dual-tropic strains (7, 10). While several ligands have been found for CCR5, CXC chemokine stromal derivative factor (SDF1) remains the only known ligand for CXCR4 (4, 24). Coimmunoprecipitation studies have shown that HIV-1 Env from T-cell-tropic strains forms a complex with CD4 and CXCR4 (18), but the nature of the binding events leading to the formation of this complex and the possibility of a direct interaction between HIV Env and CXCR4 remained speculative. Data from Hesselgesser et al. (15) have more recently shown that gp120 from the T-cell-tropic strains IIIB or BRU was able to compete with SDF1 for binding to CXCR4 in hNT cells (a neuronal CD4-negative cell line), indicating the possibility of a direct interaction between CXCR4 and gp120, but no information was presented on the relevance of the interaction with CD4. Other data have shown that gp120 from macrophage-tropic strains of HIV might be able to bind directly to CCR5 and that the affinity for binding between the two molecules can be increased significantly by the presence of soluble CD4 (sCD4) (34), although this effect could not be reproduced by a different group (32).We have performed the following studies to determine if HIV Env binds to CXCR4 independently of CD4 and, if so, what would be the effect of previous binding of HIV Env to sCD4.

CD4-independent binding of HIV Env to CXCR4.

The phenotypes of the T-cell lines CEM-SS and Jurkat 25 (J25) were evaluated with respect to surface expression of both CD4 and CXCR4. J25 clone 22F6 cells (3, 21) were grown in complete medium (RPMI 1640, 2% penicillin-streptomycin, 2% l-glutamine; BioWhittaker, Walkersville, Md.) containing heat-inactivated 10% fetal calf serum at 37°C in a 5% CO2 atmosphere. CEM-SS is a T-cell line that was obtained from the AIDS Research and Reference Reagent Program and maintained in complete medium. CEM-SS cells were derived from a human lymphoblastoid tumor (22, 23). Commercial monoclonal antibody (MAb) to CD4 (mouse immunoglobulin G2a [IgG2a], clone S3.5), fluorescein isothiocyanate (FITC) labeled, and the necessary isotypic controls were obtained from Caltag Laboratories (San Francisco, Calif.). Mouse MAb 12G5 against CXCR4 was raised in BALB/c mice and has been described previously (9). Goat anti-mouse IgG–FITC was purchased from Becton Dickinson (San Jose, Calif.). Flow cytometric analysis was performed on a Becton Dickinson FACScan cytometer equipped with a 15-mW argon laser emitting at 488 nm. Dead cells were detected on the basis of their scatter and eliminated from the analysis. Live cells (10,000) were analyzed for each marker. CXCR4 surface expression was determined by washing the cells taken in logarithmic growth phase with phosphate-buffered saline (PBS) containing 1% horse serum and incubating them with 10 μl of 12G5 antibody/100 μl (0.16 mg/ml) at 4°C for 30 min. The cells were then washed again in PBS, and a secondary goat anti-mouse IgG–FITC (Becton Dickinson) was incubated with the cells for another 30 min at 4°C. Finally, the cells were washed with PBS and fixed with 2% paraformaldehyde. As a control, equal amounts of mouse IgG2a (the same isotype as 12G5) were used. Both cell lines expressed significant levels of CXCR4 on their surfaces (Fig. (Fig.1),1), but only CEM-SS had measurable levels of surface CD4. This characteristic of the phenotype of J25 cells, with respect to CD4 expression, has been reported before (3). To assess binding of HIV Env to CXCR4, the following binding assay was developed. Oligomeric gp160 (ogp160) was purified from cell cultures (obtained from T. C. Van Cott (Henry M. Jackson Foundation, Rockville, Md.) infected with HIV451 (17). The cells were washed once with PBS and then incubated with ogp160 for 1 h at 37°C in RPMI medium. The cells were washed again in PBS and incubated with 10 μg of human MAb 1331A [IgG3(λ)]/ml, which is specific for the C terminus of gp120 (i.e., amino acids 510 to 516 of HIVLAI), or with a human MAb against p24 (MAb 71-31) as a control (12) for 30 min at 4°C. The secondary antibody was a goat anti-human IgG phycoerythrin labeled (Caltag). The cells were fixed in 2% paraformaldehyde, and the fluorescence intensity was determined by flow cytometry. Background was obtained by adding MAb 1331 and goat anti-human IgG, phycoerythrin labeled, to the cells in the absence of ogp160. The results of the binding assay with ogp160 from HIV451 and both cell lines are shown in Fig. Fig.2A.2A. By using the high-affinity human MAb 1331A against the C-terminal region of gp120, our assay was able to detect significant binding of the ogp160 molecule to the surfaces of both cell lines even at concentrations of only 88 nM. The very high relative affinity of MAb 1331A for the gp120 molecule appears to be critical to demonstrate this interaction, as other antibodies with lower relative affinities for gp120 were incapable of detecting this low-level binding (data not shown). The binding of ogp160 to the CD4-expressing CEM-SS cells was several orders of magnitude higher than that to the J25 cells. To prove the specificity of the binding assay for CXCR4, a synthetic form of SDF1 was produced and tested for its ability to block infection by the HIV-1 strain NL4-3 in HeLa CD4-positive long terminal repeat (LTR)-LacZ cells. These data have been published elsewhere (2). SDF1 synthesis and composition have been described previously (24). Exposure of J25 cells to SDF1 was shown to produce a dose-dependent blockage of the binding of ogp160 to the surfaces of the J25 cells (Fig. (Fig.2B),2B), indicating the specific nature of the assay. Open in a separate windowFIG. 1Phenotype analysis of CEM-SS and J25 cell lines. Thin solid line, background; thick solid line, CD4; dashed line, CXCR4.Open in a separate windowFIG. 2(A) Binding of ogp160 from HIV451 to the surfaces of CEM-SS or J25 cells. Fluorescence intensity is expressed on a logarithmic scale on the x axis, with each line representing one-half log. Concentrations of ogp160 are shown at the right of each graph. The experiments were done in duplicate to ensure consistency of results. (B) Effect of RANTES (250 nM) or increasing amounts of SDF1 (up to 250 nM) on binding of ogp160 (355 nM) to J25 cells. The results are expressed as mean channel fluorescence. Experiments were repeated twice to ensure consistency of results.To further test the fact that HIV Env binding to CXCR4 could occur independently of CD4, and to evaluate the effect of prior binding of Env to sCD4, the following experiments were performed. We preexposed CEM-SS as well as J25 cells to either the anti-CD4 antibody Leu3a (Becton Dickinson), which blocks the CD4 binding domain of HIV Env, or OKT4 (Ortho Diagnostics, Costa Mesa, Calif.), which does not block binding of HIV Env to CD4. The cells were then tested for their ability to bind ogp160 to their surfaces. As shown in Fig. Fig.3,3, OKT4 had no significant effect on the binding of ogp160 to either CEM-SS or J25 cells while Leu3a readily inhibited binding of ogp160 to CEM-SS cells but had no such effect on J25 cells. Furthermore, when ogp160 was allowed to react in advance with recombinant sCD4 produced in CHO cells (Intracel, Issaquah, Wash.) for 30 min at 4°C at a concentration of 1 μg/ml, we were able to show a clear decrease in the surface binding of ogp160 to CEM-SS cells while the opposite, an obvious enhancement in surface binding, was demonstrated for J25 cells (Fig. (Fig.3).3). Open in a separate windowFIG. 3Binding of ogp160 to CEM-SS or J25 cells after exposure of the cells to the anti-CD4 antibodies Leu3a (thin solid lines), OKT4 (dotted lines), or a combination of ogp160 with sCD4 (dashed lines). The shaded areas represent background. The thick solid lines represent binding in the absence of antibodies or sCD4. The experiments were performed in quadruplicate with similar results. Mean channel fluorescence is represented on the x axis.Taken together, these data indicate that HIV Env can bind to CXCR4 independently of CD4. On the other hand, prior interaction of HIV Env with CD4 results in a clear increase in the binding of HIV Env to CXCR4.

Relevance of the glycosylation state of HIV Env in binding to CXCR4.

The binding of HIV Env to CD4 is dependent on the appropriate conformation of the Env molecule (27), which can be significantly altered by changes in its carbohydrate content. We next tested the hypothesis that alterations in the carbohydrate moieties of Env would affect its binding to CXCR4. To do so, we used the gp120 molecule from HIVSF2, produced in CHO cells, and its counterpart, nonglycosylated HIVSF2 Env 2-3, produced in yeast strain 2150, and tested both in the binding assay with CEM-SS or J25 cells. HIVSF-2 gp120 and its nonglycosylated counterpart, Env 2-3, were obtained through the AIDS Research and Reference Reagent Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, from Kathelyn Steimer, Chiron Corp. (13, 14, 19, 26, 2931). The results are shown in Fig. Fig.4.4. As expected, nonglycosylated HIVSF2 Env 2-3 bound to the surfaces of the CEM-SS cells to a lesser extent than did HIVSF2 gp120. On the other hand, and unexpectedly, nonglycosylated HIVSF2 Env 2-3 bound much more readily to the surfaces of the J25 cells than its glycosylated counterpart, HIVSF-2 gp120, even when used at equal molar concentrations. To determine whether these findings could be generalized to other Env molecules that lacked intact carbohydrate molecules, we treated ogp160 with sodium metaperiodate. ogp160 from HIV451 at 1.25 μg/ml was treated with sodium metaperiodate (Sigma, St. Louis, Mo.) in acetate buffer for 2 h at 4°C in the dark (33). The cells to be tested had been treated previously with 1% glycine (Sigma) for 30 min at 37°C. Such treatment results in the oxidation and cleavage of the carbohydrate hydroxyl groups without affecting the structure of the polypeptide chains (33). Nonspecific binding by the resulting aldehyde groups was prevented by blocking the target cells beforehand with 1% glycine. The results are shown in Fig. Fig.4.4. Sodium metaperiodate treatment of ogp160 resulted in a marked inhibition of the binding of ogp160 to the surfaces of the CEM-SS cells. In contrast, sodium metaperiodate treatment of ogp160 resulted in a very clear increase in the binding of HIV Env to the surfaces of the J25 cells. The preexposure of CEM-SS cells to SDF1 did not significantly affect the binding of ogp160 or sodium metaperiodate-treated ogp160. On the other hand, preexposure of J25 cells to 250 nM SDF1 resulted in a marked decrease in binding of both ogp160 and sodium metaperiodate-treated ogp160. These data indicate the specificity of the interaction of the deglycosylated form of ogp160 with CXCR4. The results of these experiments suggest that the alteration in the carbohydrate content of the HIV Env molecules resulted in a better exposure of the epitopes involved in gp120 binding to CXCR4. Open in a separate windowFIG. 4Binding of HIVSF-2 gp120 or the nonglycosylated form, HIVSF-2 Env 2-3 (Non-glyc SF-2 gp120), to CEM-SS or J25 cells. The concentration was 355 nM for both. The binding of ogp160 and sodium metaperiodate-treated ogp160 (De-glyc ogp160), each at a concentration of 355 nM, to CEM-SS or J25 cells is also shown. The two right-hand bars in each graph show results for cells preexposed to SDF1 at 150 nM. The results are expressed as mean channel fluorescence. The experiments were performed in duplicate with similar results.The understanding of the underlying mechanisms by which HIV Env, CD4, and the newly discovered HIV coreceptors interact to mediate viral entry remains a very significant issue. The way that HIV Env and CD4 interact is well established (28), and some information exists about the interaction between HIV Env, CCR5, and CD4 (34). In this paper we have shown that HIV Env is able to interact in a CD4-independent manner with CXCR4. Still, the extent of such interaction was clearly lower than that of the sCD4-HIV Env complex and CXCR4. This effect of sCD4 seems to be consistent with the observation that the complexing of this molecule with HIV Env from the strains JRFL or BAL resulted in a significant increase in the affinity of HIV Env for CCR5 (34). We speculate that this interaction between sCD4 and HIV Env results in a conformational change that exposes the binding epitopes in HIV Env relevant for binding to CXCR4, as it does with other gp120 epitopes (16). A different scenario would involve a change in both molecules, resulting in a newly formed common binding epitope. This second alternative seems less likely given our data showing CD4-independent binding of HIV Env to CXCR4, as well as previous data showing the existence of HIV strains capable of CD4-independent entry into target cells (9, 15).The gp120 molecule from HIV contains 20 potential N-linked glycosylation sites, with N-linked glycans representing at least 50% of the molecular mass. Their role in CD4 binding has been studied extensively, although some of the results remain somewhat controversial. Most of the available data seem to indicate that complete lack of glycosylation completely (20), or at least partially (25), inhibits HIV Env binding to CD4. Also, enzymatic manipulation of the carbohydrate residues results in a significant decrease but not in complete abrogation of the binding of HIV Env to CD4 (11, 20, 25). It was therefore somewhat unexpected to find that the nonglycosylated form, as well as the sodium metaperiodate-treated form, of HIV Env was able to bind in such an enhanced way to CXCR4. This would appear to reinforce the concept of the existence of a binding epitope for CXCR4 within HIV Env which is different from the one for CD4. It also suggests that the changes occurring as a consequence of the manipulation of the carbohydrate residues likely result in a better exposure of the CXCR4 binding epitope(s) within the HIV Env molecule.In summary, we have shown that HIV Env can interact with CXCR4 in a CD4-independent manner. We have also shown how the interaction of CD4 with HIV Env results in a significant increase in the binding of the latter to CXCR4 and how the alterations in the carbohydrate composition of the HIV Env molecule affect its binding to CXCR4. The complete definition of these interactions may result in novel approaches to protect against cell infection by HIV.  相似文献   

18.
Immunoglobulin heavy chain-binding protein (BiP) is a member of the hsp70 family of chaperones and one of the most abundant proteins in the ER lumen. It is known to interact transiently with many nascent proteins as they enter the ER and more stably with protein subunits produced in stoichiometric excess or with mutant proteins. However, there also exists a large number of secretory pathway proteins that do not apparently interact with BiP. To begin to understand what controls the likelihood that a nascent protein entering the ER will associate with BiP, we have examined the in vivo folding of a murine λI immunoglobulin (Ig) light chain (LC). This LC is composed of two Ig domains that can fold independent of the other and that each possess multiple potential BiP-binding sequences. To detect BiP binding to the LC during folding, we used BiP ATPase mutants, which bind irreversibly to proteins, as “kinetic traps.” Although both the wild-type and mutant BiP clearly associated with the unoxidized variable region domain, we were unable to detect binding of either BiP protein to the constant region domain. A combination of in vivo and in vitro folding studies revealed that the constant domain folds rapidly and stably even in the absence of an intradomain disulfide bond. Thus, the simple presence of a BiP-binding site on a nascent chain does not ensure that BiP will bind and play a role in its folding. Instead, it appears that the rate and stability of protein folding determines whether or not a particular site is recognized, with BiP preferentially binding to proteins that fold slowly or somewhat unstably.  相似文献   

19.
P-glycoprotein (P-gp) is an ATP binding cassette transporter that effluxes a variety of structurally diverse compounds including anticancer drugs. Computational models of human P-gp in the apo- and nucleotide-bound conformation show that the adenine group of ATP forms hydrogen bonds with the conserved Asp-164 and Asp-805 in intracellular loops 1 and 3, respectively, which are located at the interface between the nucleotide binding domains and transmembrane domains. We investigated the role of Asp-164 and Asp-805 residues by substituting them with cysteine in a cysteine-less background. It was observed that the D164C/D805C mutant, when expressed in HeLa cells, led to misprocessing of P-gp, which thus failed to transport the drug substrates. The misfolded protein could be rescued to the cell surface by growing the cells at a lower temperature (27 °C) or by treatment with substrates (cyclosporine A, FK506), modulators (tariquidar), or small corrector molecules. We also show that short term (4–6 h) treatment with 15 μm cyclosporine A or FK506 rescues the pre-formed immature protein trapped in the endoplasmic reticulum in an immunophilin-independent pathway. The intracellularly trapped misprocessed protein associates more with chaperone Hsp70, and the treatment with cyclosporine A reduces the association of mutant P-gp, thus allowing it to be trafficked to the cell surface. The function of rescued cell surface mutant P-gp is similar to that of wild-type protein. These data demonstrate that the Asp-164 and Asp-805 residues are not important for ATP binding, as proposed earlier, but are critical for proper folding and maturation of a functional transporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号