首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
COBrA: a bio-ontology editor   总被引:1,自引:0,他引:1  
COBrA is a Java-based ontology editor for bio-ontologies that distinguishes itself from other editors by supporting the linking of concepts between two ontologies, and providing sophisticated analysis and verification functions. In addition to the Gene Ontology and Open Biology Ontologies formats, COBrA can import and export ontologies in the Semantic Web formats RDF, RDFS and OWL.  相似文献   

3.
4.
A system for "intelligent" semantic integration and querying of federated databases is being implemented by using three main components: A component which enables SQL access to integrated databases by database federation (MARGBench), an ontology based semantic metadatabase (SEMEDA) and an ontology based query interface (SEMEDA-query). In this publication we explain and demonstrate the principles, architecture and the use of SEMEDA. Since SEMEDA is implemented as 3 tiered web application database providers can enter all relevant semantic and technical information about their databases by themselves via a web browser. SEMEDA' s collaborative ontology editing feature is not restricted to database integration, and might also be useful for ongoing ontology developments, such as the "Gene Ontology" [2]. SEMEDA can be found at http://www-bm.cs.uni-magdeburg.de/semeda/. We explain how this ontologically structured information can be used for semantic database integration. In addition, requirements to ontologies for molecular biological database integration are discussed and relevant existing ontologies are evaluated. We further discuss how ontologies and structured knowledge sources can be used in SEMEDA and whether they can be merged supplemented or updated to meet the requirements for semantic database integration.  相似文献   

5.

Background

Semantic Web has established itself as a framework for using and sharing data across applications and database boundaries. Here, we present a web-based platform for querying biological Semantic Web databases in a graphical way.

Results

SPARQLGraph offers an intuitive drag & drop query builder, which converts the visual graph into a query and executes it on a public endpoint. The tool integrates several publicly available Semantic Web databases, including the databases of the just recently released EBI RDF platform. Furthermore, it provides several predefined template queries for answering biological questions. Users can easily create and save new query graphs, which can also be shared with other researchers.

Conclusions

This new graphical way of creating queries for biological Semantic Web databases considerably facilitates usability as it removes the requirement of knowing specific query languages and database structures. The system is freely available at http://sparqlgraph.i-med.ac.at.  相似文献   

6.
Various biological database systems including datacapture, data storage, data retrieval and other data pro-cessing methods have been developed. These systems havebecome effective tools for today’s genomics and relatedstudies. However, the highly distribu…  相似文献   

7.
Hymenoptera is an extraordinarily diverse lineage, both in terms of species numbers and morphotypes, that includes sawflies, bees, wasps, and ants. These organisms serve critical roles as herbivores, predators, parasitoids, and pollinators, with several species functioning as models for agricultural, behavioral, and genomic research. The collective anatomical knowledge of these insects, however, has been described or referred to by labels derived from numerous, partially overlapping lexicons. The resulting corpus of information--millions of statements about hymenopteran phenotypes--remains inaccessible due to language discrepancies. The Hymenoptera Anatomy Ontology (HAO) was developed to surmount this challenge and to aid future communication related to hymenopteran anatomy. The HAO was built using newly developed interfaces within mx, a Web-based, open source software package, that enables collaborators to simultaneously contribute to an ontology. Over twenty people contributed to the development of this ontology by adding terms, genus differentia, references, images, relationships, and annotations. The database interface returns an Open Biomedical Ontology (OBO) formatted version of the ontology and includes mechanisms for extracting candidate data and for publishing a searchable ontology to the Web. The application tools are subject-agnostic and may be used by others initiating and developing ontologies. The present core HAO data constitute 2,111 concepts, 6,977 terms (labels for concepts), 3,152 relations, 4,361 sensus (links between terms, concepts, and references) and over 6,000 text and graphical annotations. The HAO is rooted with the Common Anatomy Reference Ontology (CARO), in order to facilitate interoperability with and future alignment to other anatomy ontologies, and is available through the OBO Foundry ontology repository and BioPortal. The HAO provides a foundation through which connections between genomic, evolutionary developmental biology, phylogenetic, taxonomic, and morphological research can be actualized. Inherent mechanisms for feedback and content delivery demonstrate the effectiveness of remote, collaborative ontology development and facilitate future refinement of the HAO.  相似文献   

8.
9.
Context-sensitive data integration and prediction of biological networks   总被引:4,自引:0,他引:4  
MOTIVATION: Several recent methods have addressed the problem of heterogeneous data integration and network prediction by modeling the noise inherent in high-throughput genomic datasets, which can dramatically improve specificity and sensitivity and allow the robust integration of datasets with heterogeneous properties. However, experimental technologies capture different biological processes with varying degrees of success, and thus, each source of genomic data can vary in relevance depending on the biological process one is interested in predicting. Accounting for this variation can significantly improve network prediction, but to our knowledge, no previous approaches have explicitly leveraged this critical information about biological context. RESULTS: We confirm the presence of context-dependent variation in functional genomic data and propose a Bayesian approach for context-sensitive integration and query-based recovery of biological process-specific networks. By applying this method to Saccharomyces cerevisiae, we demonstrate that leveraging contextual information can significantly improve the precision of network predictions, including assignment for uncharacterized genes. We expect that this general context-sensitive approach can be applied to other organisms and prediction scenarios. AVAILABILITY: A software implementation of our approach is available on request from the authors. SUPPLEMENTARY INFORMATION: Supplementary data are available at http://avis.princeton.edu/contextPIXIE/  相似文献   

10.
Biological data integration using Semantic Web technologies   总被引:2,自引:0,他引:2  
Pasquier C 《Biochimie》2008,90(4):584-594
Current research in biology heavily depends on the availability and efficient use of information. In order to build new knowledge, various sources of biological data must often be combined. Semantic Web technologies, which provide a common framework allowing data to be shared and reused between applications, can be applied to the management of disseminated biological data. However, due to some specificities of biological data, the application of these technologies to life science constitutes a real challenge. Through a use case of biological data integration, we show in this paper that current Semantic Web technologies start to become mature and can be applied for the development of large applications. However, in order to get the best from these technologies, improvements are needed both at the level of tool performance and knowledge modeling.  相似文献   

11.
12.
13.
MOTIVATION: To clarify the semantics, and take advantage of tools and algorithms developed for the Semantic Web, a mapping from the Open Biomedical Ontologies (OBO) format to the Web Ontology Language (OWL) has been established. We present an ontology editor that allows end users to work directly with this OWL representation of OBO format ontologies. AVAILABILITY: http://www.aiai.ed.ac.uk/project/cobra-ct.  相似文献   

14.
Gramene: development and integration of trait and gene ontologies for rice   总被引:1,自引:0,他引:1  
Gramene (http://www.gramene.org/) is a comparative genome database for cereal crops and a community resource for rice. We are populating and curating Gramene with annotated rice (Oryza sativa) genomic sequence data and associated biological information including molecular markers, mutants, phenotypes, polymorphisms and Quantitative Trait Loci (QTL). In order to support queries across various data sets as well as across external databases, Gramene will employ three related controlled vocabularies. The specific goal of Gramene is, first to provide a Trait Ontology (TO) that can be used across the cereal crops to facilitate phenotypic comparisons both within and between the genera. Second, a vocabulary for plant anatomy terms, the Plant Ontology (PO) will facilitate the curation of morphological and anatomical feature information with respect to expression, localization of genes and gene products and the affected plant parts in a phenotype. The TO and PO are both in the early stages of development in collaboration with the International Rice Research Institute, TAIR and MaizeDB as part of the Plant Ontology Consortium. Finally, as part of another consortium comprising macromolecular databases from other model organisms, the Gene Ontology Consortium, we are annotating the confirmed and predicted protein entries from rice using both electronic and manual curation.  相似文献   

15.
Shi G  Peng MC  Jiang T 《PloS one》2011,6(6):e20892
The identification of orthologous genes shared by multiple genomes plays an important role in evolutionary studies and gene functional analyses. Based on a recently developed accurate tool, called MSOAR 2.0, for ortholog assignment between a pair of closely related genomes based on genome rearrangement, we present a new system MultiMSOAR 2.0, to identify ortholog groups among multiple genomes in this paper. In the system, we construct gene families for all the genomes using sequence similarity search and clustering, run MSOAR 2.0 for all pairs of genomes to obtain the pairwise orthology relationship, and partition each gene family into a set of disjoint sets of orthologous genes (called super ortholog groups or SOGs) such that each SOG contains at most one gene from each genome. For each such SOG, we label the leaves of the species tree using 1 or 0 to indicate if the SOG contains a gene from the corresponding species or not. The resulting tree is called a tree of ortholog groups (or TOGs). We then label the internal nodes of each TOG based on the parsimony principle and some biological constraints. Ortholog groups are finally identified from each fully labeled TOG. In comparison with a popular tool MultiParanoid on simulated data, MultiMSOAR 2.0 shows significantly higher prediction accuracy. It also outperforms MultiParanoid, the Roundup multi-ortholog repository and the Ensembl ortholog database in real data experiments using gene symbols as a validation tool. In addition to ortholog group identification, MultiMSOAR 2.0 also provides information about gene births, duplications and losses in evolution, which may be of independent biological interest. Our experiments on simulated data demonstrate that MultiMSOAR 2.0 is able to infer these evolutionary events much more accurately than a well-known software tool Notung. The software MultiMSOAR 2.0 is available to the public for free.  相似文献   

16.
PhosphaBase is an ontology-driven database resource containing information on the protein phosphatase family. It is the first public resource dedicated to protein phosphatases, which are enzymes that perform dephosphorylation reactions. In conjunction with the phosphorylation action of protein kinases, phosphatases are involved in important control and communication mechanisms in the cell. They have also been implicated in many human diseases, including diabetes and obesity, cancers, and neurodegenerative conditions. PhosphaBase aims to centralize the growing base of knowledge in the phosphatase research domain. The resource is built around a formal, domain-specific DAML+OIL ontology, and the data are collected from heterogeneous biological sources using Gene Ontology terms as a means of data extraction. The overall ontology-driven architecture provides a robust structure with distinct advantages for sustainability and provides the potential for the development of diagnostic tools, as well as a data repository.  相似文献   

17.
18.
19.
This article presents the design goals and features of the open-source Boca RDF server in the context of a community of cancer-tumor modeling investigators. Boca supplements the desirable data features of the Semantic Web with important enterprise and application features to power a new generation of Semantic-Web-based applications. The data features enable the integration and retrieval of tremendous quantities of diverse data. The enterprise features promote data integrity, fidelity, provenance and robustness. The application features provide for collaborative applications and dynamic user interfaces.  相似文献   

20.
Recent advances in molecular technologies have opened up unprecedented opportunities for molecular ecologists to better understand the molecular basis of traits of ecological and evolutionary importance in almost any organism. Nevertheless, reliable and systematic inference of functionally relevant information from these masses of data remains challenging. The aim of this review is to highlight how the Gene Ontology (GO) database can be of use in resolving this challenge. The GO provides a largely species-neutral source of information on the molecular function, biological role and cellular location of tens of thousands of gene products. As it is designed to be species-neutral, the GO is well suited for cross-species use, meaning that, functional annotation derived from model organisms can be transferred to inferred orthologues in newly sequenced species. In other words, the GO can provide gene annotation information for species with nonannotated genomes. In this review, we describe the GO database, how functional information is linked with genes/gene products in model organisms, and how molecular ecologists can utilize this information to annotate their own data. Then, we outline various applications of GO for enhancing the understanding of molecular basis of traits in ecologically relevant species. We also highlight potential pitfalls, provide step-by-step recommendations for conducting a sound study in nonmodel organisms, suggest avenues for future research and outline a strategy for maximizing the benefits of a more ecological and evolutionary genomics-oriented ontology by ensuring its compatibility with the GO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号