首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A prior article in skeletal form proposed an electrostatic mechanism for receptor-ligand activity. The present review provides an elaboration, including supporting evidence. The fundamental aspect entails the presence of molecular electrostatic potential associated with ions and dipoles in the ligand. The ligand can be regarded as an electrical link that joins prevalent electrostatic fields present in the surrounding protein matrix. The exact role of these fields is speculative. One possibility is to function as conduits for electrons and radicals in cell signaling. There is increasing support for important participation of these species in signal transduction. There might also be a favorable influence on energetics involving the electron transfer process. A summary of receptor biology is also provided, including receptors for acetylcholine (nicotinic and muscarinic), GABA, adrenergic, and glutamate.  相似文献   

3.
Received: 18 April 1996/Revised: 26 June 1996  相似文献   

4.
5.
Membrane flow through the cell is a highly dynamic process in which intracellular compartments communicate via tubulo-vesicular structures shuttling cargo molecules to their destinations. Transport carriers are formed at a donor compartment and navigate through the cytoplasm to the target organelle, on which they subsequently dock and fuse. Many of these events are regulated by the cooperative action of monomeric rab GTPases and their effector proteins. Research in recent years resulted in the identification of many rab effectors, providing first glimpses how the GTPase switch of individual rab proteins is utilized in discrete transport steps.  相似文献   

6.
Regulation of Biotin Transport in Saccharomyces cerevisiae   总被引:2,自引:4,他引:2       下载免费PDF全文
The metabolic control of biotin transport in Saccharomyces cerevisiae was investigated. Nonproliferating cells harvested from cultures grown in excess biotin (25 ng/ml) took up small amounts of biotin, whereas cells grown in biotin-sufficient medium (0.25 ng/ml) accumulated large amounts of the vitamin. Transport was inhibited maximally in cells grown in medium containing 9 ng (or more) of biotin per ml. When avidin was added to biotin-excess cultures, the cells developed the ability to take up large amounts of biotin. Boiled avidin was without effect, as was treatment of cells with avidin in buffer. Avidin did not relieve transport inhibition when added to biotin-excess cultures treated with cycloheximide, suggesting that protein synthesis was required for cells to develop the capacity to take up biotin after removal of extracellular vitamin by avidin. Cycloheximide did not inhibit the activity of the preformed transport system in biotin-sufficient cells. The presence of high intracellular free biotin pools did not inhibit the activity of the transport system. The characteristics of transport in biotin-excess cells (absence of temperature or pH dependence, no stimulation by glucose, absence of iodoacetate inhibition, independence of uptake on cell concentration, and nonsaturation kinetics) indicated that biotin entered these cells by diffusion. The results suggest that the synthesis of the biotin transport system in S. cerevisiae may be repressed during growth in medium containing high concentrations of biotin.  相似文献   

7.
8.
9.
The impact of bacterial chemotaxis on in situ ground-water bioremediation remains an unanswered question. Although bacteria respond to chemical gradients in aqueous environments and under no-flow conditions, it is unclear whether they can also respond in porous media with advective flow to improve overall contaminant degradation. The effect of chemotaxis is most profound in regions with sharp chemical gradients, most notably around residual nonaqueous phase liquid (NAPL) ganglia and surrounding clay lenses or aquitards with trapped contamination. The purpose of this study is to simulate bacterial transport through a two-dimensional subsurface environment, containing one region of low permeability with trapped contaminant surrounded above and below by two regions of higher permeability. Using mathematical predictions of the effect of pore size on measured bacterial transport parameters, the authors observe a 50% decrease in both motility and chemotaxis in the finer-grained, low-permeability porous medium. The authors simulate how chemotaxis affects bacterial migration to the contaminated region under various flow and initial conditions. Results indicate that bacteria traveling through a high-permeability region with advective flow can successfully migrate toward and accumulate around a contaminant diffusing from a lower permeability region.  相似文献   

10.
The impact of bacterial chemotaxis on in situ ground-water bioremediation remains an unanswered question. Although bacteria respond to chemical gradients in aqueous environments and under no-flow conditions, it is unclear whether they can also respond in porous media with advective flow to improve overall contaminant degradation. The effect of chemotaxis is most profound in regions with sharp chemical gradients, most notably around residual nonaqueous phase liquid (NAPL) ganglia and surrounding clay lenses or aquitards with trapped contamination. The purpose of this study is to simulate bacterial transport through a two-dimensional subsurface environment, containing one region of low permeability with trapped contaminant surrounded above and below by two regions of higher permeability. Using mathematical predictions of the effect of pore size on measured bacterial transport parameters, the authors observe a 50% decrease in both motility and chemotaxis in the finer-grained, low-permeability porous medium. The authors simulate how chemotaxis affects bacterial migration to the contaminated region under various flow and initial conditions. Results indicate that bacteria traveling through a high-permeability region with advective flow can successfully migrate toward and accumulate around a contaminant diffusing from a lower permeability region.  相似文献   

11.
Regulation of Glutamine Transport in Escherichia coli.   总被引:10,自引:9,他引:1       下载免费PDF全文
The formation of the high-affinity (Km equal to 0.2 muM) L-glutamine transport system of Escherichia coli strain 7 (Lin) appears to be subject to the same major control as the glutamine synthetase (EC 6.3.1.2) of this gram-negative organism. Culture of cells under nitrogen-limited conditions provides maximum derepression of both the glutamine synthetase and the glutamine transport system. Nutritional conditions providing a rich supply of ammonium salts or available sources of nitrogen, i.e., conditions which repress the formation of glutamine synthetase, provide three- and 20-fold repression, respectively, of the glutamine transport system. Culture of cells with glutamine supplements of 2 mM does not increase the repression of high-affinity glutamine transport system beyond the level observed in the absence of glutamine. A second kinetically distinct low-affinity component of glutamine. A second kinetically distinct low-affinity component of glutamine uptake is observed in cells cultured with a glutamine-depleted nutrient broth. This second component is associated with the appearance of glutaminase A (EC 3.5.1.2) and asparaginase I (EC 3.5.1.1), a periplasmic enzyme. Parallel changes were observed in the levels of the high-affinity glutamine transport system and the glutamine synthetase when cells were cultured with the carbon sources: glucose, glycerol, or succinate.  相似文献   

12.
Regulation of Taurine Transport in Rat Skeletal Muscle   总被引:1,自引:1,他引:1  
Taurine concentration of soleus muscle (SL, slow-twitch) was initially about twofold higher than that of extensor digitorum longus muscle (EDL, fast-twitch). Taurine concentration in gastrocnemius muscle (GC) was intermediate between that of EDL and SL. Four days after sciatic nerve section, taurine concentration in the EDL but not in the SL was increased by 2.5-fold. The increase was not due to the muscle atrophy and was observed 28 days after denervation. Tenotomy did not increase the total taurine content of the EDL. The increase in taurine concentration of the denervated EDL was prevented by simultaneous ingestion of guanidinoethane sulfonate, a competitive inhibitor of taurine transport. The initial and the maximal rates of [3H]taurine uptake were significantly higher in SL than in EDL. Denervation dramatically accelerated the initial and the maximal rates of the transport in EDL, whereas it significantly reduced those in SL. In contrast, the electrical stimulation of sciatic nerve accelerated the uptake of taurine by EDL and SL of the control but not of the curare-treated rats. These results suggest that transport of taurine into rat skeletal muscles is regulated differently by neural information and by muscular activity, and that the regulation is dependent on the muscle phenotype.  相似文献   

13.
高等植物蔗糖转运的分子调控   总被引:2,自引:0,他引:2  
在高等植物中,蔗糖的合成、运输与分配是一个复杂的过程。蔗糖由源到库的运输不仅与植物的生长发育相关,还受到植物体内的激素水平以及外界环境条件变化等因素的影响。蔗糖转运蛋白介导了蔗糖在植物韧皮部的装载、运输和卸载,在某些库中的蔗糖转运和库组织分配的分子调控中起有重要的生理作用。此外,简要介绍了笔者实验室在橡胶树蔗糖转运蛋白基因研究方面的最新进展。  相似文献   

14.
生长素极性运输的调控及其机制   总被引:6,自引:0,他引:6  
主要介绍了抑制剂、地球引力、矿质元素和光、温条件对生长素极性运输的调控及生长素极性运输调控机制研究的最新进展。  相似文献   

15.
The effects of different variables such as incubation time, temperature, tissue protein content, and pH on the interactions of various labelled nicotinic ligands with nicotine-like binding sites in vitro were studied in rodent brain preparations. The ligands tested were alpha-[3H]bungarotoxin (alpha-[3H]BTX), [3H]tubocurarine ([3H]TC), and [3H]nicotine ([3H]NIC). The regional distribution of the labelled nicotinic ligand binding was also studied and affinity constants and maximal binding (Bmax) values for the equilibrium [3H]NIC binding are given. Association kinetics for [3H]NIC and [3H]TC binding to brain homogenate were similar, with maximal binding within 5-10 min of incubation, followed by a continuous decrease. In contrast, the binding of alpha-[3H]BTX to brain homogenate was much slower, reaching equilibrium after 30-60 min of incubation. Scatchard analysis of equilibrium binding data for [3H]NIC in the hippocampus indicated two binding sites: a high-affinity site (Bmax, 60 pmol/g protein; KD, 6 nM) and a low-affinity site (Bmax, 230 pmol/g protein; KD, 125 nM). The data for the high-affinity [3H]NIC binding site are very similar to previously found data for the high-affinity binding site of [3H]TC and the binding site of alpha-[3H]BTX. Each ligand showed regional differences in binding, and the binding pattern also differed between the ligands.  相似文献   

16.
The Münch hypothesis of phloem transport has been significantly modified in the past 50 years and is now widely accepted. The short and therefore noncomprehensive survey remembers earlier data verifying the dependency of mass flow on metabolic control. Speed measurements and other strong arguments for the validity of the Münch hypothesis are examined, physicochemical obstacles still persist, but molecular detection and localization of sucrose transporters inside the sieve-tube system are in accordance with the mass flow mechanism. Taking into account source–sink control, the lateral sinks pose new problems, unless acceptance of a continuous control along the conduits improves the theory. A view into future research is advised: the gymnosperm sieve cell system seems to act as a super relay system consisting of a chain of micro-Münch-systems.  相似文献   

17.
Atrial natriuretic peptide (ANP), in spite of its name, is synthesizedand secreted in vertebrates by both the atria and the ventriclesand also a number of extracardiac tissues. Likewise, the listof putative targets of ANP is large and includes, in additionto the kidney and vascular smooth muscle, the ion- and water-transportingintestine. Immunohistochemical staining of the intestine ofthe euryhaline marine goby Gillichthys mirabilis demonstratesthe presence of ANP-ergic neurons in the submucosa suggestingparacrine delivery to intestinal epithelial and smooth musclecells. ANP inhibits ion absorption across the goby intestine,supportingan osmoregulatory role for ANP.  相似文献   

18.
GLUT4在胰岛素作用下的转运上膜是血糖调控的一个关键途径.其中包含了两个重要的过程-胰岛素信号转导以及GLUT4转运途径.在这两个过程中新的特异分子的发现以及它们功能特点的研究是发展有效的药物治疗糖尿病的关键因素.本文主要从GLUT4在胞内的循环途径,胰岛素调节的GLUT4的转运以及转运中的调控蛋白三个方面着手,综述了GLUT4的转运调控研究进展.  相似文献   

19.
In the vertebrate CNS, glycine acts as an inhibitory neurotransmitter and as the obligatory coagonist of glutamate at N-methyl-d-aspartate receptors. These roles depend on extracellular glycine levels, regulated by Na+/Cl-dependent transporters GLYT1, present mainly in glial cells, and GLYT2, predominantly neuronal. In Bergmann glia, GLYT1 mediates both, glycine uptake and efflux, which, in turn, influences excitatory neurotransmission at Purkinje cell synapses. The biochemical properties of GLYTs and their regulation by signaling pathways in these cells are largely unknown. We characterized Gly uptake in confluent primary cultures of Bergmann glia from chick cerebellum. Transport was found to be energy- and Na+-dependent, and was resolved into a high (Km=25 μM) and a low affinity (Km=1.1 mM) components identified as GLYT1 and transport System A, respectively. Results show that high affinity transport by GLYT1 is regulated by calcium from intracellular stores, calmodulin, and myosin light chain kinase through an actin cytoskeleton-mediated action. Special issue dedicated to Dr. Simo S. Oja  相似文献   

20.
Glucose Transport in Astrocytes: Regulation by Thyroid Hormone   总被引:7,自引:4,他引:3  
Primary cultures of astrocytes from newborn rat brain showed evidence of a substrate-saturable process for glucose transport. The system shows a relatively high affinity for the substrate, with an apparent Km of approximately 1 mM. Maintenance of the cells in medium containing thyroid-hormone-free serum for 3, 6, or 9 days resulted in significantly reduced rates of hexose transport. Addition of exogenous triiodothyronine to the transport incubation medium of these "hypothyroid" cells markedly increased the net rate of 2-deoxyglucose uptake within 60 s to values equal to or above those of control cultures (cells maintained in normal serum). These findings support a key role for thyroid hormone in the transport of glucose across plasma membranes of brain cells and demonstrate the presence of this regulatory system in astrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号