共查询到20条相似文献,搜索用时 0 毫秒
1.
A primary mode of regulating receptor tyrosine kinase (RTK) signaling is to control access of ligand to its receptor. Many RTK ligands are synthesized as transmembrane proteins. Frequently, the active ligand must be released from the membrane by proteolysis before signaling can occur. Here, we discuss RTK ligand shedding and describe the proteases that catalyze it in flies and mammals. We focus principally on the control of EGF receptor ligand shedding, but also refer to ligands of other RTKs. Two prominent themes emerge. First, control by regulated trafficking and cellular compartmentalization of the proteases and their ligand substrates plays a key role in shedding. Second, many external signals converge on the shedding proteases and their control machinery. Proteases therefore act as regulatory hubs that integrate information that the cell receives and translate it into precise outgoing signals. The activation of signaling by proteases is therefore an essential element of the cellular communication machinery.Cells must talk to one another. This principle applies throughout the tree of life: from unicellular bacteria, to the trillions of cells that coordinate to make a mammal. Communication between cells requires dedicated machinery, capable of relaying information across membranes. Transmembrane proteins are therefore essential for signaling. Understanding how this is regulated is paramount. In mammals, receptor tyrosine kinases (RTKs) and their ligands are important examples of such machinery (Schlessinger 2000), controlling many biological processes including development, immunity, tissue repair, and metabolic homeostasis (Ullrich and Schlessinger 1990). They are transmembrane proteins with an extracellular ligand-binding motif and an intracellular kinase domain. As discussed in other chapters, a common mode of RTK activation involves receptor dimerization induced by ligand binding (Lemmon and Schlessinger 2010).Regulated access of ligand to receptor, over distance and time, is key to controlling signaling. Ligands are frequently synthesized as transmembrane forms; when they remain membrane-tethered and cannot diffuse, the range over which they can operate is limited to adjacent cells (Massague and Pandiella 1993; Singh and Harris 2005). Other ligands are soluble secretory proteins. This enables paracrine and endocrine signaling—communication between nonadjacent cells. A more complex mode of signaling exploits the characteristics of both of the above. Ligand is synthesized as a transmembrane precursor, which is then shed from the cell surface by proteolysis. This adds an additional and stringent regulatory step to a signaling network (Massague and Pandiella 1993).This chapter will focus on RTK ligand cleavage and its regulation. We shall highlight how shedding is often critical for signaling, and describe the protease families that catalyze ligand release in flies and mammals. An emergent theme is that regulated trafficking and compartmentalization of ligand and protease modulate signaling. Another theme will be the range of stimuli that impinge on shedding.The epidermal growth factor receptor (EGFR) is an excellent model RTK to illustrate the regulation of ligand proteolysis because the requirement for ligand cleavage in signaling is well established, and the major physiological sheddases have been identified (Blobel 2005). Where warranted, physiological evidence for the role of ligand shedding in the regulation of other RTKs will also be discussed. Whereas we shall deal mostly with ADAM proteases (“a disintegrin and metalloprotease”), which represent the canonical mammalian RTK ligand shedding machinery, the rhomboid family of intramembrane proteases will also be discussed. 相似文献
2.
急进性肾小球肾炎根据免疫病理特征分为Ⅰ型抗GBM抗体型、Ⅱ型免疫复合物型和Ⅲ型微量免疫复合物型,代表性的动物模型分别是实验性自体免疫肾小球肾炎、肾毒血清肾炎和实验性自体免疫脉管炎。本文就这些模型的造模方法、免疫机制和应用范围进行综述,以供读者参考。 相似文献
3.
Amplification of thec-erbB2gene and overexpression of p185erbB2is found in approximately one-third of primary breast and ovarian cancers and also in some colon carcinomas. Moreover, a single point mutation inerbB2(V 664 E)confers transforming potential to erbB2 in NIH3T3 cells, even when expressed at low levels. To examine the transformation potential oferbB2orerbB2(V-E)in colon epithelial cells, we have transfected a nontumorigenic clone of SW 613-S cells with either wild-type p185erbB2or mutated p185erbB2(V-E). In contrast to p185erbB2, p185erbB2(V-E)associated constitutively with members of the Shc protein family, leading to phosphorylation of Shc and to stimulation of mitogen-activated protein kinase (MAP kinase). However, constitutive activation of MAP kinase activation in p185erbB2(V-E)expressing cells did not result in a tumorigenic phenotype. In addition, p185erbB2(V-E)expressing cells displayed a reduced ability to grow in soft agar compared to the parental cell line. In contrast these transfected cells were able to grow in three-dimensional collagen gels, whereas parental cells were not. Thus, expression oferbB2(V-E)in SW 613-S cells induced multiple changes in intracellular signaling and in growth requirement phenotype, particularly in response to the extracellular environment. 相似文献
4.
Sandra Christoph Alisa B. Lee-Sherick Susan Sather Deborah DeRyckere Douglas K. Graham 《Journal of visualized experiments : JoVE》2013,(79)
Receptor tyrosine kinases have been implicated in the development and progression of many cancers, including both leukemia and solid tumors, and are attractive druggable therapeutic targets. Here we describe an efficient four-step strategy for pre-clinical evaluation of tyrosine kinase inhibitors (TKIs) in the treatment of acute leukemia. Initially, western blot analysis is used to confirm target inhibition in cultured leukemia cells. Functional activity is then evaluated using clonogenic assays in methylcellulose or soft agar cultures. Experimental compounds that demonstrate activity in cell culture assays are evaluated in vivo using NOD-SCID-gamma (NSG) mice transplanted orthotopically with human leukemia cell lines. Initial in vivo pharmacodynamic studies evaluate target inhibition in leukemic blasts isolated from the bone marrow. This approach is used to determine the dose and schedule of administration required for effective target inhibition. Subsequent studies evaluate the efficacy of the TKIs in vivo using luciferase expressing leukemia cells, thereby allowing for non-invasive bioluminescent monitoring of leukemia burden and assessment of therapeutic response using an in vivo bioluminescence imaging system. This strategy has been effective for evaluation of TKIs in vitro and in vivo and can be applied for identification of molecularly-targeted agents with therapeutic potential or for direct comparison and prioritization of multiple compounds. 相似文献
5.
The Src family kinases possess two sites of tyrosine phosphorylation that are critical to the regulation of kinase activity. Autophosphorylation on an activation loop tyrosine residue (Tyr 416 in commonly used chicken c-Src numbering) increases catalytic activity, while phosphorylation of a C-terminal tyrosine (Tyr 527 in c-Src) inhibits activity. The latter modification is achieved by the tyrosine kinase Csk (C-terminal Src Kinase), but the complete inactivation of the Src family kinases also requires the dephosphorylation of the activation loop tyrosine. The SH3 domain of Csk recruits the tyrosine phosphatase PEP, allowing for the coordinated inhibition of Src family kinase activity. We have discovered that Csk forms homodimers through interactions mediated by the SH3 domain in a manner that buries the recognition surface for SH3 ligands. The formation of this dimer would therefore block the recruitment of tyrosine phosphatases and may have important implications for the regulation of Src kinase activity. 相似文献
6.
Stefan Hausmann Evelyn Brandt Carolin K?chel Hermann Einsele Ralf C. Bargou Ruth Seggewiss-Bernhardt Thorsten Stühmer 《PloS one》2015,10(4)
Multiple myeloma (MM) is a generally fatal plasma cell cancer that often shows activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway. Targeted pharmacologic therapies, however, have not yet progressed beyond the clinical trial stage, and given the complexity of the PI3K/Akt signalling system (e.g. multiple protein isoforms, diverse feedback regulation mechanisms, strong variability between patients) it is mandatory to characterise its ramifications in order to better guide informed decisions about the best therapeutic approaches. Here we explore whether serum and glucocorticoid-regulated kinase 3 (SGK3), a potential downstream effector of PI3K, plays a role in oncogenic signalling in MM cells—either in concert with or independent of Akt. SGK3 was expressed in all MM cell lines and in all primary MM samples tested. Four MM cell lines representing a broad range of intrinsic Akt activation (very strong: MM.1s, moderate: L 363 and JJN-3, absent: AMO-1) were chosen to test the effects of transient SGK3 knockdown alone and in combination with pharmacological inhibition of Akt, PI3K-p110α, or in the context of serum starvation. Although the electroporation protocol led to strong SGK3 depletion for at least 5 days its absence had no substantial effect on the activation status of potential downstream substrates, or on the survival, viability or proliferation of MM cells in all experimental contexts tested. We conclude that it is unlikely that SGK3 plays a significant role for oncogenic signalling in multiple myeloma. 相似文献
7.
SUMMARY: X-linked Hyper IgM Syndrome (HIM) is a rare congenital immunodeficiency recently demonstrated to be caused by a mutation in the gene encoding CO40 ligand. These patients are susceptible to Pneumocystis carinii pneumonia, which implies an important role for CD40L in host defense against P. carinii. In this study we undertook to investigate whether treatment of P. carinii infected scid mice with murine recombinant CD40 ligand trimer (muCD40L) for 21 days would facilitate clearance of the organisms. We found no significant difference in organism burden in treated compared to control animals. Therefore in this model treatment with muCD40L alone is ineffective in clearing P. carinii infection. 相似文献
8.
Valérie Bernard Justine Bouilly Piet Kramer Nadège Carré Martin Schlumberger Jenny A. Visser Jacques Young Nadine Binart 《PloS one》2016,11(4)
The aim of the study was to evaluate ovarian toxicity of tyrosine kinase inhibitor (TKI) sunitinib, since only scarce data are available on gonadal function after this treatment. Six-week-old female mice received orally, once daily, vehicle or sunitinib (50 mg/kg/d) during 5 weeks. Fertility parameters were analyzed from ovulation to litter assessment. Sunitinib exposure significantly reduced (i) corpora lutea number per ovary (1.1 ± 0.38 in sunitinib group versus 4 ± 0.79 in control group, p<0.01) and (ii) serum Anti Müllerian hormone (AMH) levels in sunitinib treated mice (12.01 ± 1.16) compared to control mice (14.33 ± 0.87 ng/ml, p< 0.05). However, primordial and growing follicles numbers per ovary were not different in both groups. After treatment withdrawal, female mice in both groups were able to obtain litters. These data could be helpful to counsel clinicians and patients, when fertility preservation methods are discussed, before TKI treatment in girls and young women. 相似文献
9.
Mara P. Steinkamp Shalini T. Low-Nam Shujie Yang Keith A. Lidke Diane S. Lidke Bridget S. Wilson 《Molecular and cellular biology》2014,34(6):965-977
Often considered to be a “dead” kinase, erbB3 is implicated in escape from erbB-targeted cancer therapies. Here, heregulin stimulation is shown to markedly upregulate kinase activity in erbB3 immunoprecipitates. Intact, activated erbB3 phosphorylates tyrosine sites in an exogenous peptide substrate, and this activity is abolished by mutagenesis of lysine 723 in the catalytic domain. Enhanced erbB3 kinase activity is linked to heterointeractions with catalytically active erbB2, since it is largely blocked in cells pretreated with lapatinib or pertuzumab. erbB2 activation of erbB3 is not dependent on equal surface levels of these receptors, since it occurs even in erbB3-transfected CHO cells with disproportionally small amounts of erbB2. We tested a model in which transient erbB3/erbB2 heterointeractions set the stage for erbB3 homodimers to be signaling competent. erbB3 homo- and heterodimerization events were captured in real time on live cells using single-particle tracking of quantum dot probes bound to ligand or hemagglutinin tags on recombinant receptors. 相似文献
10.
Sara Ferluga Roy Hantgan Yehuda Goldgur Juha P. Himanen Dimitar B. Nikolov Waldemar Debinski 《The Journal of biological chemistry》2013,288(25):18448-18457
The EphA2 receptor tyrosine kinase is overexpressed in a number of malignancies and is activated by ephrin ligands, most commonly by ephrin-A1. The crystal structure of the ligand-receptor complex revealed a glycosylation on the Asn-26 of ephrin-A1. Here we report for the first time the significance of the glycosylation in the biology of EphA2 and ephrin-A1. Ephrin-A1 was enzymatically deglycosylated, and its activity was evaluated in several assays using glioblastoma (GBM) cells and recombinant EphA2. We found that deglycosylated ephrin-A1 does not efficiently induce EphA2 receptor internalization and degradation, and does not activate the downstream signaling pathways involved in cell migration and proliferation. Data obtained by surface plasmon resonance confirms that deglycosylated ephrin-A1 does not bind EphA2 with high affinity. Mutations in the glycosylation site on ephrin-A1 result in protein aggregation and mislocalization. Analysis of Eph/ephrin crystal structures reveals an interaction between the ligand''s carbohydrates and two residues of EphA2: Asp-78 and Lys-136. These findings suggest that the glycosylation on ephrin-A1 plays a critical role in the binding and activation of the EphA2 receptor. 相似文献
11.
Nienke Roescher Jelle L. Vosters Zhenan Lai Toshimitsu Uede Paul P. Tak John A. Chiorini 《PloS one》2012,7(12)
Objective
CD40–CD154 (CD40 ligand) interaction in the co-stimulatory pathway is involved in many (auto)immune processes and both molecules are upregulated in salivary glands of Sjögren’s syndrome (SS) patients. Interference within the CD40 pathway has ameliorated (auto)inflammation in a number of disease models. To test the potential role of the CD40 pathway in loss of gland function and inflammation in SS, an inhibitor of CD40-CD154 interaction was overexpressed in the salivary glands (SGs) of a spontaneous murine model of SS; the Non-Obese Diabetic (NOD) mouse.Materials and Methods
At different disease stages an adeno associated viral vector encoding CD40 coupled to a human Fc domain (CD40:Fc) was injected locally into the SGs of NOD mice. Delivery was confirmed by PCR. The overall effect on local inflammation was determined by assessment of the focus score (FS), quantification of infiltrating cell types, immunoglobulin levels, and microarray analysis. The effect on SG function was determined by measuring stimulated salivary flow.Results
CD40:Fc was stably expressed in the SG of NOD mice, and the protein was secreted into the blood stream. Microarray analysis revealed that expression of CD40:Fc affected the expression of many genes involved in regulation of the immune response. However, FS, infiltrating cell types, immunoglobulin levels, and salivary gland output were similar for treated and control mice.Discussion
Although endogenous CD40 is expressed in SG inflammatory foci in the SG of NOD mice, the expression of soluble CD40:Fc did not lead to reduced overall inflammation and/or improved salivary gland function. These data indicate possible redundancy of the CD40 pathway in the SG and suggests that targeting CD40 alone may not be sufficient to alter the disease phenotype. 相似文献12.
13.
Albert Wong Yuan-Wei Zhang Grace R. Jeschke Benjamin E. Turk Gary Rudnick 《The Journal of biological chemistry》2012,287(43):36051-36058
The serotonin transporter (SERT) is responsible for reuptake of serotonin (5-hydroxytryptamine) after its exocytotic release from neurons. It is the primary target for antidepressants and stimulants, including “ecstasy” (3,4-methylenedioxymethamphetamine). SERT is regulated by several processes, including a cyclic GMP signaling pathway involving nitric oxide synthase, guanylyl cyclase, and cGMP-dependent protein kinase (PKG). Here, we show that SERT was phosphorylated in a PKG Iα-dependent manner in vitro, but that SERT was not a direct substrate of PKG. We generated an analog-sensitive gatekeeper residue mutant of PKG Iα (M438G) that efficiently used the ATP analog N6-benzyl-ATP. This mutant, but not the wild type (WT) kinase, used the ATP analog to phosphorylate both a model peptide substrate as well as an established protein substrate of PKG (vasodilator-stimulated phosphoprotein). PKG Iα M438G effectively substituted for the WT kinase in stimulating SERT-mediated 5-hydroxytryptamine transport in cultured cells. Addition of either WT or mutant PKG Iα M438G to membranes containing SERT in vitro led to radiolabel incorporation from [γ-33P]ATP but not from similarly labeled N6-benzyl-ATP, indicating that SERT was phosphorylated by another kinase that could not utilize the ATP analog. These results are consistent with the proposed SERT phosphorylation site, Thr-276, being highly divergent from the consensus PKG phosphorylation site sequence, which we verified through peptide library screening. Another proposed SERT kinase, the p38 mitogen-activated protein kinase, could not substitute for PKG in this assay, and p38 inhibitors did not block PKG-dependent phosphorylation of SERT. The results suggest that PKG initiates a kinase cascade that leads to phosphorylation of SERT by an as yet unidentified protein kinase. 相似文献
14.
Matthew B. Lipner Raoud Marayati Yangmei Deng Xianxi Wang Laura Raftery Bert H. O’Neil Jen Jen Yeh 《PloS one》2016,11(1)
There is currently tremendous interest in developing anti-cancer therapeutics targeting cell signaling pathways important for both cancer cell metabolism and growth. Several epidemiological studies have shown that diabetic patients taking metformin have a decreased incidence of pancreatic cancer. This has prompted efforts to evaluate metformin, a drug with negligible toxicity, as a therapeutic modality in pancreatic cancer. Preclinical studies in cell line xenografts and one study in patient-derived xenograft (PDX) models were promising, while recently published clinical trials showed no benefit to adding metformin to combination therapy regimens for locally advanced and metastatic pancreatic cancer. PDX models in which patient tumors are directly engrafted into immunocompromised mice have been shown to be excellent preclinical models for biomarker discovery and therapeutic development. We evaluated the response of four PDX tumor lines to metformin treatment and found that all four of our PDX lines were resistant to metformin. We found that the mechanisms of resistance may occur through lack of sustained activation of adenosine monophosphate-activated protein kinase (AMPK) or downstream reactivation of the mammalian target of rapamycin (mTOR). Moreover, combined treatment with metformin and mTOR inhibitors failed to improve responses in cell lines, which further indicates that metformin alone or in combination with mTOR inhibitors will be ineffective in patients, and that resistance to metformin may occur through multiple pathways. Further studies are required to better understand these mechanisms of resistance and inform potential combination therapies with metformin and existing or novel therapeutics. 相似文献
15.
Flt3配体增强HCV核心-包膜E2融合基因DNA疫苗诱导的细胞免疫应答 总被引:3,自引:0,他引:3
建立一种可高效诱导细胞免疫应答 ,对丙型肝炎病毒 (HCV)感染可能起预防和治疗作用的DNA疫苗。将小鼠Flt3配体 (FL)信号肽和胞外段cDNA插入结构优化的HCV核心 包膜E2融合抗原DNA疫苗pST CE2t,构建成pST CE2t FL。将pST CE2t FL转染COS7细胞 ,Westernblot和ELISA检测表明该重组质粒能表达HCV核心 包膜E2融合抗原和可溶性小鼠FL。分别将pST CE2t、pST CE2t FL和空载体pCI neo肌肉注射接种BALB c小鼠 ,检测小鼠的体液和细胞免疫应答。结果表明两种DNA结构均能在小鼠体内诱生细胞和体液免疫应答 ,但pST CE2t诱导的体液免疫应答强于pST CE2t FL ,而后者诱导的细胞免疫应答明显强于前者。FL能明显增强HCV核心 包膜E2融合抗原DNA疫苗诱导的细胞免疫应答 ,对于发展HCV预防和治疗性疫苗有潜在的应用价值。 相似文献
16.
17.
It has been reported that HIV-1 Vpu mediates the degradation of interferon regulatory factor 3 (IRF-3) to avoid innate immune sensing. Here, we show that Vpu does not deplete IRF-3 from transfected cell lines or HIV-1-infected primary cells. Furthermore, the Vpu-dependent suppression of beta interferon expression described in previous studies could be ascribed to inhibition of NF-κB activation. Thus, Vpu suppresses innate immune activation through inhibition of NF-κB rather than degradation of IRF-3. 相似文献
18.
Eva Hartlieb Vera R?tzer Mariya Radeva Volker Spindler Jens Waschke 《The Journal of biological chemistry》2014,289(24):17043-17053
Desmosomal cadherins are transmembrane adhesion molecules that provide cell adhesion by interacting in the intercellular space of adjacent cells. In keratinocytes, several desmoglein (Dsg1–4) and desmocollin (Dsc1–3) isoforms are coexpressed. We have shown previously that Dsg2 is less important for keratinocyte cohesion compared with Dsg3 and that the latter forms a complex with p38 MAPK. In this study, we compared the involvement of Dsg2 and Dsg3 in the p38 MAPK-dependent regulation of keratinocyte cohesion. We show that loss of cell adhesion and keratin filament retraction induced by Dsg3 depletion is ameliorated by specific p38 MAPK inhibition. Furthermore, in contrast to depletion of Dsg2, siRNA-mediated silencing of Dsg3 induced p38 MAPK activation, which is in line with immunoprecipitation experiments demonstrating the interaction of activated p38 MAPK with Dsg3 but not with Dsg2. Cell fractionation into a cytoskeleton-unbound and a cytoskeleton-anchored desmosome-containing pool revealed that Dsg3, in contrast to Dsg2, is present in relevant amounts in the unbound pool in which activated p38 MAPK is predominantly detectable. Moreover, because loss of cell adhesion by Dsg3 depletion was partially rescued by p38 MAPK inhibition, we conclude that, besides its function as an adhesion molecule, Dsg3 is strengthening cell cohesion via modulation of p38 MAPK-dependent keratin filament reorganization. Nevertheless, because subsequent targeting of Dsg3 in Dsg2-depleted cells led to drastically enhanced keratinocyte dissociation and Dsg2 was enhanced at the membrane in Dsg3 knockout cells, we conclude that Dsg2 compensates for Dsg3 loss of function. 相似文献
19.
Transformation Suppression by Protein Tyrosine Phosphatase 1B Requires a Functional SH3 Ligand 总被引:3,自引:2,他引:3
下载免费PDF全文

We have recently shown that protein tyrosine phosphatase 1B (PTP1B) associates with the docking protein p130Cas in 3Y1 rat fibroblasts. This interaction is mediated by a proline-rich sequence on PTP1B and the SH3 domain on p130Cas. Expression of wild-type PTP1B (WT-PTP1B), but not a catalytically competent, proline-to-alanine point mutant that cannot bind p130Cas (PA-PTP1B), causes substantial tyrosine dephosphorylation of p130Cas (F. Liu, D. E. Hill, and J. Chernoff, J. Biol. Chem. 271:31290–31295, 1996). Here we demonstrate that WT-, but not PA-PTP1B, inhibits transformation of rat 3Y1 fibroblasts by v-crk, -src, and -ras, but not by v-raf. These effects on transformation correlate with the phosphorylation status of p130Cas and two proteins that are associated with p130Cas, Paxillin and Fak. Expression of WT-PTP1B reduces formation of p130Cas-Crk complexes and inhibits mitogen-activated protein kinase activation by Src and Crk. These data show that transformation suppression by PTP1B requires a functional SH3 ligand and suggest that p130Cas may represent an important physiological target of PTP1B in cells. 相似文献
20.
Marlous L. Grijsen Ferdinand W. N. M. Wit Suzanne Jurriaans Frank P. Kroon Emile F. Schippers Peter Koopmans Luuk Gras Joep M. A. Lange Jan M. Prins 《PloS one》2014,9(4)
Temporary cART during primary HIV-infection (PHI) did not select for drug resistance mutations after treatment interruption and did not affect the subsequent virological response to long-term cART. Our data demonstrate that fear of drug resistance development is not a valid argument to refrain from temporary early treatment during PHI. 相似文献