首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The aim of this study was to test seven previously published image-input methods in state-of-the-art high resolution PET brain images. Images were obtained with a High Resolution Research Tomograph plus a resolution-recovery reconstruction algorithm using two different radioligands with different radiometabolite fractions. Three of the methods required arterial blood samples to scale the image-input, and four were blood-free methods.

Methods

All seven methods were tested on twelve scans with [11C](R)-rolipram, which has a low radiometabolite fraction, and on nineteen scans with [11C]PBR28 (high radiometabolite fraction). Logan V T values for both blood and image inputs were calculated using the metabolite-corrected input functions. The agreement of image-derived Logan V T values with the reference blood-derived Logan V T values was quantified using a scoring system. Using the image input methods that gave the most accurate results with Logan analysis, we also performed kinetic modelling with a two-tissue compartment model.

Results

For both radioligands the highest scores were obtained with two blood-based methods, while the blood-free methods generally performed poorly. All methods gave higher scores with [11C](R)-rolipram, which has a lower metabolite fraction. Compartment modeling gave less reliable results, especially for the estimation of individual rate constants.

Conclusion

Our study shows that: 1) Image input methods that are validated for a specific tracer and a specific machine may not perform equally well in a different setting; 2) despite the use of high resolution PET images, blood samples are still necessary to obtain a reliable image input function; 3) the accuracy of image input may also vary between radioligands depending on the magnitude of the radiometabolite fraction: the higher the metabolite fraction of a given tracer (e.g., [11C]PBR28), the more difficult it is to obtain a reliable image-derived input function; and 4) in association with image inputs, graphical analyses should be preferred over compartmental modelling.  相似文献   

2.
Molecular imaging of the 18 kD Translocator protein (TSPO) with positron emission tomography (PET) is of great value for studying neuroinflammation in rodents longitudinally. Quantification of the TSPO in rodents is, however, quite challenging. There is no suitable reference region and the use of plasma-derived input is not an option for longitudinal studies. The aim of this study was therefore to evaluate the use of the standardized uptake value (SUV) as an outcome measure for TSPO imaging in rodent brain PET studies, using [11C]PBR28. In the first part of the study, healthy male Wistar rats (n = 4) were used to determine the correlation between the distribution volume (VT, calculated with Logan graphical analysis) and the SUV. In the second part, healthy male Wistar rats (n = 4) and healthy male C57BL/6J mice (n = 4), were used to determine the test-retest variability of the SUV, with a 7-day interval between measurements. Dynamic PET scans of 63 minutes were acquired with a nanoScan PET/MRI and nanoScan PET/CT. An MRI scan was made for anatomical reference with each measurement. The whole brain VT of [11C]PBR28 in rats was 42.9 ± 1.7. A statistically significant correlation (r2 = 0.96; p < 0.01) was found between the VT and the SUV. The test-retest variability in 8 brain region ranged from 8 to 20% in rats and from 7 to 23% in mice. The interclass correlation coefficient (ICC) was acceptable to excellent for rats, but poor to acceptable for mice. In conclusion: The SUV of [11C]PBR28 showed a high correlation with VT as well as good test-retest variability. For future longitudinal small animal PET studies the SUV can thus be used to describe [11C]PBR28 uptake in healthy brain tissue. Based on the present observations, further studies are needed to explore the applicability of this approach in small animal disease models, with special regard to neuroinflammatory models.  相似文献   

3.
This first-in-dog study evaluates the use of the PET-radioligand [11C]DASB to image the density and availability of the serotonin transporter (SERT) in the canine brain. Imaging the serotonergic system could improve diagnosis and therapy of multiple canine behavioural disorders. Furthermore, as many similarities are reported between several human neuropsychiatric conditions and naturally occurring canine behavioural disorders, making this tracer available for use in dogs also provide researchers an interesting non-primate animal model to investigate human disorders. Five adult beagles underwent a 90 minutes dynamic PET scan and arterial whole blood was sampled throughout the scan. For each ROI, the distribution volume (VT), obtained via the one- and two- tissue compartment model (1-TC, 2-TC) and the Logan Plot, was calculated and the goodness-of-fit was evaluated by the Akaike Information Criterion (AIC). For the preferred compartmental model BPND values were estimated and compared with those derived by four reference tissue models: 4-parameter RTM, SRTM2, MRTM2 and the Logan reference tissue model. The 2-TC model indicated in 61% of the ROIs a better fit compared to the 1-TC model. The Logan plot produced almost identical VT values and can be used as an alternative. Compared with the 2-TC model, all investigated reference tissue models showed high correlations but small underestimations of the BPND-parameter. The highest correlation was achieved with the Logan reference tissue model (Y = 0.9266 x + 0.0257; R2 = 0.9722). Therefore, this model can be put forward as a non-invasive standard model for future PET-experiments with [11C]DASB in dogs.  相似文献   

4.
In [18F]-FEPPA positron emission topography (PET) imaging, automatic blood sampling system (ABSS) is currently the gold standard to obtain the blood time activity curve (TAC) required to extract the input function (IF). Here, we compare the performance of two image-based methods of IF extraction to the ABSS gold standard method for the quantification of translocator protein (TSPO) in the human brain. The IFs were obtained from a direct delineation of the internal carotid signal (CS) and a new concept of independent component analysis (ICA). PET scans were obtained from 18 healthy volunteers. The estimated total distribution volume (VT) by CS-IF and ICA-IF were compared to the reference VT obtained by ABSS-IF in the frontal and temporal cortex, cerebellum, striatum and thalamus regions. The VT values estimated using ICA-IF were more reliable than CS-IF for all brain regions. Specifically, the slope regression in the frontal cortex with ICA-IF was r2 = 0.91 (p<0.05), and r2 = 0.71 (p<0.05) using CS-IF.  相似文献   

5.
《PloS one》2016,11(3)
Amyloid imaging plays an important role in the research and diagnosis of dementing disorders. Substantial variation in quantitative methods to measure brain amyloid burden exists in the field. The aim of this work is to investigate the impact of methodological variations to the quantification of amyloid burden using data from the Dominantly Inherited Alzheimer’s Network (DIAN), an autosomal dominant Alzheimer’s disease population. Cross-sectional and longitudinal [11C]-Pittsburgh Compound B (PiB) PET imaging data from the DIAN study were analyzed. Four candidate reference regions were investigated for estimation of brain amyloid burden. A regional spread function based technique was also investigated for the correction of partial volume effects. Cerebellar cortex, brain-stem, and white matter regions all had stable tracer retention during the course of disease. Partial volume correction consistently improves sensitivity to group differences and longitudinal changes over time. White matter referencing improved statistical power in the detecting longitudinal changes in relative tracer retention; however, the reason for this improvement is unclear and requires further investigation. Full dynamic acquisition and kinetic modeling improved statistical power although it may add cost and time. Several technical variations to amyloid burden quantification were examined in this study. Partial volume correction emerged as the strategy that most consistently improved statistical power for the detection of both longitudinal changes and across-group differences. For the autosomal dominant Alzheimer’s disease population with PiB imaging, utilizing brainstem as a reference region with partial volume correction may be optimal for current interventional trials. Further investigation of technical issues in quantitative amyloid imaging in different study populations using different amyloid imaging tracers is warranted.  相似文献   

6.

Background  

Kinetic modeling using reference Logan is commonly used to analyze data obtained from dynamic Positron Emission Tomography (PET) studies on patients with Alzheimer's disease (AD) and healthy volunteers (HVs) using amyloid imaging agent N-methyl [11C]2-(4'-methylaminophenyl)-6-hydroxy-benzothiazole, [11C]-PIB. The aim of the present study was to explore whether results obtained using the newly introduced method, Masked Volume Wise Principal Component Analysis, MVW-PCA, were similar to the results obtained using reference Logan.  相似文献   

7.

Background

Population-based input function (PBIF) may be a valid alternative to full blood sampling for quantitative PET imaging. PBIF is typically validated by comparing its quantification results with those obtained via arterial sampling. However, for PBIF to be employed in actual clinical research studies, its ability to faithfully capture the whole spectrum of results must be assessed. The present study validated a PBIF for [18F]FMPEP-d 2, a cannabinoid CB1 receptor radioligand, in healthy volunteers, and also attempted to utilize PBIF to replicate three previously published clinical studies in which the input function was acquired with arterial sampling.

Methods

The PBIF was first created and validated with data from 42 healthy volunteers. This PBIF was used to assess the retest variability of [18F]FMPEP-d 2, and then to quantify CB1 receptors in alcoholic patients (n = 18) and chronic daily cannabis smokers (n = 29). Both groups were scanned at baseline and after 2–4 weeks of monitored drug abstinence.

Results

PBIF yielded accurate results in the 42 healthy subjects (average Logan-distribution volume (V T) was 13.3±3.8 mL/cm3 for full sampling and 13.2±3.8 mL/cm3 for PBIF; R2 = 0.8765, p<0.0001) and test-retest results were comparable to those obtained with full sampling (variability: 16%; intraclass correlation coefficient: 0.89). PBIF accurately replicated the alcoholism study, showing a widespread ∼20% reduction of CB1 receptors in alcoholic subjects, without significant change after abstinence. However, a small PBIF-V T bias of −9% was unexpectedly observed in cannabis smokers. This bias led to substantial errors, including a V T decrease in regions that had shown no downregulation in the full input function. Simulated data showed that the original findings could only have been replicated with a PBIF bias between −6% and +4%.

Conclusions

Despite being initially well validated in healthy subjects, PBIF may misrepresent clinical protocol results and be a source of variability between different studies and institutions.  相似文献   

8.
This study investigated whether the second-generation translocator protein 18kDa (TSPO) radioligand, [18F]-FEPPA, could be used in neurodegenerative parkinsonian disorders as a biomarker for detecting neuroinflammation in the striatum. Neuroinflammation has been implicated as a potential mechanism for the progression of Parkinson’s disease (PD). Positron Emission Tomography (PET) radioligand targeting for TSPO allows for the quantification of neuroinflammation in vivo. Based on genotype of the rs6791 polymorphism in the TSPO gene, 16 mixed-affinity binders (MABs) (8 PD and age-matched 8 healthy controls (HCs)), 16 high-affinity binders (HABs) (8 PD and age-matched 8 HCs) and 4 low-affinity binders (LABs) (3 PD and 1 HCs) were identified. Total distribution volume (VT) values in the striatum were derived from a two-tissue compartment model with arterial plasma as an input function. There was a significant main effect of genotype on [18F]-FEPPA VT values in the caudate nucleus (p = 0.001) and putamen (p < 0.001), but no main effect of disease or disease x genotype interaction in either ROI. In the HAB group, the percentage difference between PD and HC was 16% in both caudate nucleus and putamen; in the MAB group, it was -8% and 3%, respectively. While this PET study showed no evidence of increased striatal TSPO expression in PD patients, the current findings provide some insights on the possible interactions between rs6791 polymorphism and neuroinflammation in PD.  相似文献   

9.

Background

β-amyloid (Aβ) plaques in brain''s grey matter (GM) are one of the pathological hallmarks of Alzheimer''s disease (AD), and can be imaged in vivo using Positron Emission Tomography (PET) with 11C or 18F radiotracers. Estimating Aβ burden in cortical GM has been shown to improve diagnosis and monitoring of AD. However, lacking structural information in PET images requires such assessments to be performed with anatomical MRI scans, which may not be available at different clinical settings or being contraindicated for particular reasons. This study aimed to develop an MR-less Aβ imaging quantification method that requires only PET images for reliable Aβ burden estimations.

Materials and Methods

The proposed method has been developed using a multi-atlas based approach on 11C-PiB scans from 143 subjects (75 PiB+ and 68 PiB- subjects) in AIBL study. A subset of 20 subjects (PET and MRI) were used as atlases: 1) MRI images were co-registered with tissue segmentation; 2) 3D surface at the GM-WM interfacing was extracted and registered to a canonical space; 3) Mean PiB retention within GM was estimated and mapped to the surface. For other participants, each atlas PET image (and surface) was registered to the subject''s PET image for PiB estimation within GM. The results are combined by subject-specific atlas selection and Bayesian fusion to generate estimated surface values.

Results

All PiB+ subjects (N = 75) were highly correlated between the MR-dependent and the PET-only methods with Intraclass Correlation (ICC) of 0.94, and an average relative difference error of 13% (or 0.23 SUVR) per surface vertex. All PiB- subjects (N = 68) revealed visually akin patterns with a relative difference error of 16% (or 0.19 SUVR) per surface vertex.

Conclusion

The demonstrated accuracy suggests that the proposed method could be an effective clinical inspection tool for Aβ imaging scans when MRI images are unavailable.  相似文献   

10.
Changes in brain amyloid burden have been shown to relate to Alzheimer''s disease pathology, and are believed to precede the development of cognitive decline. There is thus a need for inexpensive and non-invasive screening methods that are able to accurately estimate brain amyloid burden as a marker of Alzheimer''s disease. One potential method would involve using demographic information and measurements on plasma samples to establish biomarkers of brain amyloid burden; in this study data from the Alzheimer''s Disease Neuroimaging Initiative was used to explore this possibility. Sixteen of the analytes on the Rules Based Medicine Human Discovery Multi-Analyte Profile 1.0 panel were found to associate with [11C]-PiB PET measurements. Some of these markers of brain amyloid burden were also found to associate with other AD related phenotypes. Thirteen of these markers of brain amyloid burden – c-peptide, fibrinogen, alpha-1-antitrypsin, pancreatic polypeptide, complement C3, vitronectin, cortisol, AXL receptor kinase, interleukin-3, interleukin-13, matrix metalloproteinase-9 total, apolipoprotein E and immunoglobulin E – were used along with co-variates in multiple linear regression, and were shown by cross-validation to explain >30% of the variance of brain amyloid burden. When a threshold was used to classify subjects as PiB positive, the regression model was found to predict actual PiB positive individuals with a sensitivity of 0.918 and a specificity of 0.545. The number of APOE ϵ 4 alleles and plasma apolipoprotein E level were found to contribute most to this model, and the relationship between these variables and brain amyloid burden was explored.  相似文献   

11.
Overexpression of Cyclooxygenase-2 (COX-2) enzyme is associated with the pathogenesis of inflammation, cancers, stroke, arthritis, and neurological disorders. Because of the involvement of COX-2 in these diseases, quantification of COX-2 expression using Positron Emission Tomography (PET) may be a biological marker for early diagnosis, monitoring of disease progression, and an indicator of effective treatment. At present there is no target-specific or validated PET tracer available for in vivo quantification of COX-2. The objective of this study is to evaluate [11C]TMI, a selective COX-2 inhibitor (Ki?≤?1?nM) in nonhuman primates using PET imaging. PET imaging in baboons showed that [11C]TMI penetrates the blood brain barrier (BBB) and accumulates in brain in a somewhat heterogeneous pattern. Metabolite analyses indicated that [11C]TMI undergoes no significant metabolism of parent tracer in the plasma for baseline scans, however a relative faster metabolism was found for blocking scan. All the tested quantification approaches provide comparable tracer total distribution volume (VT) estimates in the range of 3.2–7?(mL/cm3). We observed about 25% lower VT values in blocking studies with meloxicam, a nonselective COX-2 inhibitor, compared to baseline [11C]TMI binding. Our findings indicate that [11C]TMI may be a suitable PET tracer for the quantification of COX-2 in vivo. Further experiments are needed to confirm the potential of this tracer in COX-2 overexpressing models for brain diseases.  相似文献   

12.

Objectives

Simultaneous Non-contrast Angiography and intraPlaque hemorrhage (SNAP) technique was recently proposed for joint MRA and intraplaque hemorrhage (IPH) imaging. The purpose of this study is to validate SNAP’s MRA performance in patients with suspected intracranial artery disease.

Methods

SNAP and time-of-flight (TOF) techniques with matched field of view and resolution were applied on 15 patients with suspected intracranial artery disease. Both techniques were evaluated based on their detection of luminal stenosis of bilateral middle cerebral arteries (MCA) and the delineation of smallest visible branches (SVB) of the MCA. Statistical analysis was conducted on the artery level.

Results

The SNAP MRA was found to provide similar stenosis detection performance when compared with TOF (Cohen’s κ 0.79; 95% Confidence Interval: 0.56–0.99). For the SVB comparison, SNAP was found to provide significantly better small artery delineation than TOF (p = 0.017). Inter-reader reproducibility for both measurements on SNAP was over 0.7. SNAP also detected IPH lesions on 13% of the patients.

Conclusions

The SNAP technique’s MRA performance was optimized and compared against TOF for intracranial artery atherosclerosis imaging and was found to provide comparable stenosis detection accuracy. Along with its IPH detection capability, SNAP holds the potential to become a first-line screening tool for high risk intracranial atherosclerosis disease evaluation.  相似文献   

13.
Concentration-time courses measured by dynamic contrast-enhanced (DCE) imaging can be described by a convolution of the arterial input with an impulse response function, QT(t), characterizing tissue microcirculation. Data analysis is based on two different approaches: computation of QT(t) by algebraic deconvolution (AD) and subsequent evaluation according to the indicator dilution theory (IDT) or parameterization of QT(t) by analytical expressions derived by compartmental modeling. Pitfalls of both strategies will be addressed in this study.Tissue data acquired by DCE-CT in patients with head-and-neck cancer and simulated by a reference model (MMID4) were analyzed by a two-compartment model (TCM), a permeability-limited two-compartment model (PL-TCM) and AD. Additionally, MMID4 was used to compute the ‘true’ response function that corresponds to the simulated tumor data.TCM and AD yielded accurate fits, whereas PL-TCM performed worse. Nevertheless, the corresponding response functions diverge markedly. The response curves obtained by TCM decrease exponentially in the early perfusion phase and overestimate the tissue perfusion, QT(0). AD also resulted in response curves starting with a negative slope and not – as the ‘true’ response function in accordance with the IDT – with a horizontal plateau. They are thus not valid responses in the sense of the IDT that can be used unconditionally for parameter estimation.Response functions differing considerably in shape can result in virtually identical tissue curves. This non-uniqueness makes a strong argument not to use algebraic but rather analytical deconvolution to reduce the class of solutions to representatives that are in accordance with a-priori knowledge. To avoid misinterpretations and systematic errors, users must be aware of the pitfalls inherent to the different concepts.  相似文献   

14.

Background

Severe impairment of the major respiratory muscles resulting from tetraplegia reduces respiratory function, causing many people with tetraplegia to require mechanical ventilation during the acute stage of injury. Abdominal Functional Electrical Stimulation (AFES) can improve respiratory function in non-ventilated patients with sub-acute and chronic tetraplegia. The aim of this study was to investigate the clinical feasibility of using an AFES training program to improve respiratory function and assist ventilator weaning in acute tetraplegia.

Methods

AFES was applied for between 20 and 40 minutes per day, five times per week on four alternate weeks, with 10 acute ventilator dependent tetraplegic participants. Each participant was matched retrospectively with a ventilator dependent tetraplegic control, based on injury level, age and sex. Tidal Volume (VT) and Vital Capacity (VC) were measured weekly, with weaning progress compared to the controls.

Results

Compliance to training sessions was 96.7%. Stimulated VT was significantly greater than unstimulated VT. VT and VC increased throughout the study, with mean VC increasing significantly (VT: 6.2 mL/kg to 7.8 mL/kg VC: 12.6 mL/kg to 18.7 mL/kg). Intervention participants weaned from mechanical ventilation on average 11 (sd: ± 23) days faster than their matched controls.

Conclusion

The results of this study indicate that AFES is a clinically feasible technique for acute ventilator dependent tetraplegic patients and that this intervention may improve respiratory function and enable faster weaning from mechanical ventilation.

Trial Registration

ClinicalTrials.gov NCT02200393  相似文献   

15.

Purpose

To prospectively evaluate 7 Tesla time-of-flight (TOF) magnetic resonance angiography (MRA) in comparison to 1.5 Tesla TOF MRA and 7 Tesla non-contrast enhanced magnetization-prepared rapid acquisition gradient-echo (MPRAGE) for delineation of unruptured intracranial aneurysms (UIA).

Material and Methods

Sixteen neurosurgical patients (male n = 5, female n = 11) with single or multiple UIA were enrolled in this trial. All patients were accordingly examined at 7 Tesla and 1.5 Tesla MRI utilizing dedicated head coils. The following sequences were obtained: 7 Tesla TOF MRA, 1.5 Tesla TOF MRA and 7 Tesla non-contrast enhanced MPRAGE. Image analysis was performed by two radiologists with regard to delineation of aneurysm features (dome, neck, parent vessel), presence of artifacts, vessel-tissue-contrast and overall image quality. Interobserver accordance and intermethod comparisons were calculated by kappa coefficient and Lin''s concordance correlation coefficient.

Results

A total of 20 intracranial aneurysms were detected in 16 patients, with two patients showing multiple aneurysms (n = 2, n = 4). Out of 20 intracranial aneurysms, 14 aneurysms were located in the anterior circulation and 6 aneurysms in the posterior circulation. 7 Tesla MPRAGE imaging was superior over 1.5 and 7 Tesla TOF MRA in the assessment of all considered aneurysm and image quality features (e.g. image quality: mean MPRAGE7T: 5.0; mean TOF7T: 4.3; mean TOF1.5T: 4.3). Ratings for 7 Tesla TOF MRA were equal or higher over 1.5 Tesla TOF MRA for all assessed features except for artifact delineation (mean TOF7T: 4.3; mean TOF1.5T 4.4). Interobserver accordance was good to excellent for most ratings.

Conclusion

7 Tesla MPRAGE imaging demonstrated its superiority in the detection and assessment of UIA as well as overall imaging features, offering excellent interobserver accordance and highest scores for all ratings. Hence, it may bear the potential to serve as a high-quality diagnostic tool for pretherapeutic assessment and follow-up of untreated UIA.  相似文献   

16.
New experimental data on the implosion of plasma of nested kapron?tungsten arrays are obtained at the Angara-5-1 facility. The mode of plasma implosion is implemented in which a shock wave region forms in the space between the inner and outer arrays where a transition from the super-Alfvénic (V r > V A ) to sub-Alfvénic (V r < V A ) plasma flow takes place. Specific features of the formation and decay of the shock region are studied using laser shadow imaging and X-ray frame photography. The plasma density in the transition region is estimated. By comparing the experimental data with the results of simulations of quasi-steady implosion of a nested array with allowance for extended plasma production, the physical conditions are determined at which the implosion mode with the formation the shock region takes place. Stable compression of the plasma of the inner array was observed during the implosion of combined nested arrays with a fiber outer array and tungsten inner array. Suppression of magnetic Rayleigh-Taylor instability during the compression of the inner array plasma results in the formation of a compact radiating Z-pinch and generation of a soft X-ray pulse with a peak power of 4 TW and duration of about 5 ns.  相似文献   

17.
Metabotropic glutamate receptor subtype 1 (mGluR1) is a crucial target in the development of new medications to treat central nervous system (CNS) disorders. Recently, we developed N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-4-[11C]methoxy-N-methyl-benzamide ([11C]ITMM) as a useful positron emission tomography (PET) probe for mGluR1 in clinical studies. Here, we aimed to improve visualization and threshold of specific binding for mGluR1 using [11C]ITMM with ultra-high specific activity (SA) of > 3,500 GBq/μmol in rat brains. A two-tissue compartment model indicated large differences between the two SAs in the constants k3 and k4, representing binding ability for mGluR1, while constants K 1 and k2 showed no differences. The total distribution volume (VT) values of conventional and ultra-high SA were 9.1 and 11.2 in the thalamus, 7.7 and 9.7 in the striatum, and 6.4 and 8.5 mL/cm3 in the substantia nigra, respectively. The specific binding of [11C]ITMM with ultra-high SA was significantly higher than the conventional SA, especially in the basal ganglia. Parametric PET images scaled with VT of the ultra-high SA clearly identified regional differences in the rat brain. In conclusion, PET studies using [11C]ITMM with ultra-high SA could sufficiently improve visualization and specific binding for mGluR1, which could help further understanding for mGluR1 functions in CNS disorders.  相似文献   

18.

Purpose

To explore the value of a new simple lyophilized kit for labeling PRGD2 peptide (18F-ALF-NOTA-PRGD2, denoted as 18F-alfatide) in the determination of metabolic tumor volume (MTV) with micro-PET in lewis lung carcinoma (LLC) tumor-bearing C57BL/6 mice verified by pathologic examination and compared with those using 18F-fluorodeoxyglucose (FDG) PET.

Methods

All LLC tumor-bearing C57BL/6 mice underwent two attenuation-corrected whole-body micro-PET scans with the radiotracers 18F-alfatide and 18F-FDG within two days. 18F-alfatide metabolic tumor volume (VRGD) and 18F-FDG metabolic tumor volume (VFDG) were manually delineated slice by slice on PET images. Pathologic tumor volume (VPath) was measured in vitro after the xenografts were removed.

Results

A total of 37 mice with NSCLC xenografts were enrolled and 33 of them underwent 18F-alfatide PET, and 35 of them underwent 18F-FDG PET and all underwent pathological examination. The mean ± standard deviation of VPath, VRGD, and VFDG were 0.59±0.32 cm3 (range,0.13~1.64 cm3), 0.61±0.37 cm3 (range,0.15~1.86 cm3), and 1.24±0.53 cm3 (range,0.17~2.20 cm3), respectively. VPath vs. VRGD, VPath vs. VFDG, and VRGD vs. VFDG comparisons were t = -0.145, P = 0.885, t = -6.239, P<0.001, and t = -5.661, P<0.001, respectively. No significant difference was found between VPath and VRGD. VFDG was much larger than VRGD and VPath. VRGD seemed more approximate to the pathologic gross tumor volume. Furthermore, VPath was more strongly correlated with VRGD (R = 0.964,P<0.001) than with VFDG (R = 0.584,P<0.001).

Conclusions

18F-alfatide PET provided a better estimation of gross tumor volume than 18F-FDG PET in LLC tumor-bearing C57BL/6 mice.  相似文献   

19.
In vivo decay rates of a nitroxyl contrast agent were estimated by a MR redox imaging (MRRI) technique and compared with the decay rates obtained by the electron paramagnetic resonance spectroscopy (EPRS) and imaging (EPRI). MRRI is a dynamic imaging technique employing T1-weighted pulse sequence, which can visualise a nitroxyl-induced enhancement of signal intensity by T1-weighted contrast. EPR techniques can directly measure the paramagnetic nitroxyl radical. Both the squamous cell carcinoma (SCC) tumour-bearing and normal legs of a female C3H mouse were scanned by T1-weighted SPGR sequence at 4.7 T with the nitroxyl radical, carbamoyl-proxyl (CmP), as the contrast agent. Similarly, the time course of CmP in normal muscle and tumour tissues was obtained using a 700-MHz EPR spectrometer with a surface coil. The time course imaging of CmP was also performed by 300?MHz CW EPR imager. EPRS and EPRI gave slower decay rates of CmP compared to the MRRI. Relatively slow decay rate at peripheral region of the tumour tissues, which was found in the image obtained by MRRI, may contribute to the slower decay rates observed by EPRS and/or the EPRI measurements. To reliably determine the tissue redox status from the reduction rates of nitroxyls such as CmP, heterogenic structure in the tumour tissue must be considered. The high spatial and temporal resolution of T1-weighted MRI and the T1-enhancing capabilities of nitroxyls support the use of this method to map tissue redox status which can be a useful biomarker to guide appropriate treatments based on the tumour microenvironment.  相似文献   

20.
We measured resting metabolic rate (RMR), tidal volume (VT), breathing frequency (fR), respiratory flow, and end-expired gases in rough-toothed dolphins (Steno bredanensis) housed in managed care after an overnight fast and 1–2 hr following a meal. The measured average (± standard deviation) VT (4.0 ± 1.3 L) and fR (1.9 ± 1.0 breaths/min) were higher and lower, respectively, as compared with estimated values from both terrestrial and aquatic mammals, and the average VT was 43% of the estimated total lung capacity. The end-expired gas levels suggested that this species keep alveolar O2 (10.6% or 80 mmHg) and CO2 (7.6% or 57 mmHg), and likely arterial gas tensions, low and high, respectively, to maximize efficiency of gas exchange. We show that following an overnight fast, the RMR (566 ± 158 ml O2/min) was 1.8 times the estimated value predicted by Kleiber for terrestrial mammals of the same size. We also show that between 1 and 2 hr after ingestion of a meal, the metabolic rate increases an average of 29% (709 ± 126 ml O2/min). Both body mass (Mb) and fR significantly altered the measured RMR and we propose that both these variables should be measured when estimating energy use in cetaceans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号