首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fixation of mutant alleles has been studied with models assuming various spatial population structures. In these models, the structure of the metapopulation that we call the “landscape” (number, size and connectivity of subpopulations) is often static. However, natural populations are subject to repetitive population size variations, fragmentation and secondary contacts at different spatiotemporal scales due to geological, climatic and ecological processes. In this paper, we examine how such dynamic landscapes can alter mutant fixation probability and time to fixation. We consider three stochastic landscape dynamics: (i) the population is subject to repetitive bottlenecks, (ii) to the repeated alternation of fragmentation and fusion of demes with a constant population carrying capacity, (iii) idem with a variable carrying capacity. We show by deriving a variance, a coalescent and a harmonic mean population effective size, and with simulations that these landscape dynamics generate repetitive founder effects which counteract selection, thereby decreasing the fixation probability of an advantageous mutant but accelerate fixation when it occurs. For models (ii) and (iii), we also highlight an antagonistic “refuge effect” which can strongly delay mutant fixation. The predominance of either founder effects or refuge effects determines the time to fixation and mainly depends on the characteristic time scales of the landscape dynamics.  相似文献   

2.
During early human immunodeficiency virus (HIV) infection multiple CD8+ T cell responses are elicited almost simultaneously. These responses exert strong selective pressures on different parts of HIV’s genome, and select for mutations that escape recognition and are thus beneficial to the virus. Some studies reveal that the later these escape mutations emerge, the more slowly they go to fixation. This pattern of escape rate decrease(ERD) can arise by distinct mechanisms. In particular, in large populations with high beneficial mutation rates interference among different escape strains –an effect that can emerge in evolution with asexual reproduction and results in delayed fixation times of beneficial mutations compared to sexual reproduction– could significantly impact the escape rates of mutations. In this paper, we investigated how interference between these concurrent escape mutations affects their escape rates in systems with multiple epitopes, and whether it could be a source of the ERD pattern. To address these issues, we developed a multilocus Wright-Fisher model of HIV dynamics with selection, mutation and recombination, serving as a null-model for interference. We also derived an interference-free null model assuming initial neutral evolution before immune response elicitation. We found that interference between several equally selectively advantageous mutations can generate the observed ERD pattern. We also found that the number of loci, as well as recombination rates substantially affect ERD. These effects can be explained by the underexponential decline of escape rates over time. Lastly, we found that the observed ERD pattern in HIV infected individuals is consistent with both independent, interference-free mutations as well as interference effects. Our results confirm that interference effects should be considered when analyzing HIV escape mutations. The challenge in estimating escape rates and mutation-associated selective coefficients posed by interference effects cannot simply be overcome by improved sampling frequencies or sizes. This problem is a consequence of the fundamental shortcomings of current estimation techniques under interference regimes. Hence, accounting for the stochastic nature of competition between mutations demands novel estimation methodologies based on the analysis of HIV strains, rather than mutation frequencies.  相似文献   

3.
Cancer initiation, progression, and the emergence of drug resistance are driven by specific genetic and/or epigenetic alterations such as point mutations, structural alterations, DNA methylation and histone modification changes. These alterations may confer advantageous, deleterious or neutral effects to mutated cells. Previous studies showed that cells harboring two particular alterations may arise in a fixed-size population even in the absence of an intermediate state in which cells harboring only the first alteration take over the population; this phenomenon is called stochastic tunneling. Here, we investigated a stochastic Moran model in which two alterations emerge in a cell population of fixed size. We developed a novel approach to comprehensively describe the evolutionary dynamics of stochastic tunneling of two mutations. We considered the scenarios of large mutation rates and various fitness values and validated the accuracy of the mathematical predictions with exact stochastic computer simulations. Our theory is applicable to situations in which two alterations are accumulated in a fixed-size population of binary dividing cells.  相似文献   

4.
Several groups have recently modeled evolutionary transitions from an ancestral allele to a beneficial allele separated by one or more intervening mutants. The beneficial allele can become fixed if a succession of intermediate mutants are fixed or alternatively if successive mutants arise while the previous intermediate mutant is still segregating. This latter process has been termed stochastic tunneling. Previous work has focused on the Moran model of population genetics. I use elementary methods of analyzing stochastic processes to derive the probability of tunneling in the limit of large population size for both Moran and Wright-Fisher populations. I also show how to efficiently obtain numerical results for finite populations. These results show that the probability of stochastic tunneling is twice as large under the Wright-Fisher model as it is under the Moran model.  相似文献   

5.
The multistage carcinogenesis hypothesis has been formulated by a number of authors as a stochastic process. However, most previous models assumed “perfect mixing” in the population of cells, and included no information about spatial locations. In this work, we studied the role of spatial dynamics in carcinogenesis. We formulated a 1D spatial generalization of a constant population (Moran) birth–death process, and described the dynamics analytically. We found that in the spatial model, the probability of fixation of advantageous and disadvantageous mutants is lower, and the rate of generation of double-hit mutants (the so-called tunneling rate) is higher, compared to those for the space-free model. This means that the results previously obtained for space-free models give an underestimation for rates of cancer initiation in the case where the first event is the generation of a double-hit mutant, e.g. the inactivation of a tumor-suppressor gene.  相似文献   

6.
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), together with associated genes (cas), form the CRISPR–cas adaptive immune system, which can provide resistance to viruses and plasmids in bacteria and archaea. Here, we use mathematical models, population dynamic experiments, and DNA sequence analyses to investigate the host–phage interactions in a model CRISPR–cas system, Streptococcus thermophilus DGCC7710 and its virulent phage 2972. At the molecular level, the bacteriophage-immune mutant bacteria (BIMs) and CRISPR–escape mutant phage (CEMs) obtained in this study are consistent with those anticipated from an iterative model of this adaptive immune system: resistance by the addition of novel spacers and phage evasion of resistance by mutation in matching sequences or flanking motifs. While CRISPR BIMs were readily isolated and CEMs generated at high rates (frequencies in excess of 10−6), our population studies indicate that there is more to the dynamics of phage–host interactions and the establishment of a BIM–CEM arms race than predicted from existing assumptions about phage infection and CRISPR–cas immunity. Among the unanticipated observations are: (i) the invasion of phage into populations of BIMs resistant by the acquisition of one (but not two) spacers, (ii) the survival of sensitive bacteria despite the presence of high densities of phage, and (iii) the maintenance of phage-limited communities due to the failure of even two-spacer BIMs to become established in populations with wild-type bacteria and phage. We attribute (i) to incomplete resistance of single-spacer BIMs. Based on the results of additional modeling and experiments, we postulate that (ii) and (iii) can be attributed to the phage infection-associated production of enzymes or other compounds that induce phenotypic phage resistance in sensitive bacteria and kill resistant BIMs. We present evidence in support of these hypotheses and discuss the implications of these results for the ecology and (co)evolution of bacteria and phage.  相似文献   

7.
Ecological factors exert a range of effects on the dynamics of the evolutionary process. A particularly marked effect comes from population structure, which can affect the probability that new mutations reach fixation. Our interest is in population structures, such as those depicted by ‘star graphs’, that amplify the effects of selection by further increasing the fixation probability of advantageous mutants and decreasing the fixation probability of disadvantageous mutants. The fact that star graphs increase the fixation probability of beneficial mutations has lead to the conclusion that evolution proceeds more rapidly in star-structured populations, compared with mixed (unstructured) populations. Here, we show that the effects of population structure on the rate of evolution are more complex and subtle than previously recognized and draw attention to the importance of fixation time. By comparing population structures that amplify selection with other population structures, both analytically and numerically, we show that evolution can slow down substantially even in populations where selection is amplified.  相似文献   

8.
Fitness interactions between loci in the genome, or epistasis, can result in mutations that are individually deleterious but jointly beneficial. Such epistasis gives rise to multiple peaks on the genotypic fitness landscape. The problem of evolutionary escape from such local peaks has been a central problem of evolutionary genetics for at least 75 years. Much attention has focused on models of small populations, in which the sequential fixation of valley genotypes carrying individually deleterious mutations operates most quickly owing to genetic drift. However, valley genotypes can also be subject to mutation while transiently segregating, giving rise to copies of the high fitness escape genotype carrying the jointly beneficial mutations. In the absence of genetic recombination, these mutations may then fix simultaneously. The time for this process declines sharply with increasing population size, and it eventually comes to dominate evolutionary behavior. Here we develop an analytic expression for N(crit), the critical population size that defines the boundary between these regimes, which shows that both are likely to operate in nature. Frequent recombination may disrupt high-fitness escape genotypes produced in populations larger than N(crit) before they reach fixation, defining a third regime whose rate again slows with increasing population size. We develop a novel expression for this critical recombination rate, which shows that in large populations the simultaneous fixation of mutations that are beneficial only jointly is unlikely to be disrupted by genetic recombination if their map distance is on the order of the size of single genes. Thus, counterintuitively, mass selection alone offers a biologically realistic resolution to the problem of evolutionary escape from local fitness peaks in natural populations.  相似文献   

9.
During an infection, HIV experiences strong selection by immune system T cells. Recent experimental work has shown that MHC escape mutations form an important pathway for HIV to avoid such selection. In this paper, we study a model of MHC escape mutation. The model is a predator–prey model with two prey, composed of two HIV variants, and one predator, the immune system CD8 cells. We assume that one HIV variant is visible to CD8 cells and one is not. The model takes the form of a system of stochastic differential equations. Motivated by well-known results concerning the short life-cycle of HIV intrahost, we assume that HIV population dynamics occur on a faster time scale then CD8 population dynamics. This separation of time scales allows us to analyze our model using an asymptotic approach. Using this model we study the impact of an MHC escape mutation on the population dynamics and genetic evolution of the intrahost HIV population. From the perspective of population dynamics, we show that the competition between the visible and invisible HIV variants can reach steady states in which either a single variant exists or in which coexistence occurs depending on the parameter regime. We show that in some parameter regimes the end state of the system is stochastic. From a genetics perspective, we study the impact of the population dynamics on the lineages of an HIV sample taken after an escape mutation occurs. We show that the lineages go through severe bottlenecks and that in certain parameter regimes the lineage distribution can be characterized by a Kingman coalescent. Our results depend on methods from diffusion theory and coalescent theory.  相似文献   

10.
The evolution of natural organisms is ultimately driven by the invasion and possible fixation of mutant alleles. The invasion process is highly stochastic, however, and the probability of success is generally low, even for advantageous alleles. Additionally, all organisms live in a stochastic environment, which may have a large influence on what alleles are favorable, but also contributes to the uncertainty of the invasion process. We calculate the invasion probability of a beneficial, mutant allele in a monomorphic, large population subject to stochastic environmental fluctuations, taking into account density‐ and frequency‐dependent selection, stochastic population dynamics and temporal autocorrelation of the environment. We treat both discrete and continuous time population dynamics, and allow for overlapping generations in the continuous time case. The results can be generalized to diploid, sexually reproducing organisms embedded in communities of interacting species. We further use these results to derive an extended canonical equation of adaptive dynamics, predicting the rate of evolutionary change of a heritable trait on long evolutionary time scales.  相似文献   

11.
 We consider a simple model of a one-locus, two-allele population inhibiting a two-patch system and experiencing spatially heterogeneous viability selection. The populaton size is finite. We use a diffusion approximation and singular perturbation techniques to find the probability of fixation of a mutant allele. We focus on situations in which each allele is advantageous in one patch and deleterious in the other patch. Our theoretical results support the previous conclusions that, under certain conditions, small populations respond faster to selection than do large populations. We emphasize that knowledge of the dependence of migration rates on population size is crucial in evaluating the effects of population size on the rate of evolution.  相似文献   

12.
Despite a long history of disturbance–recovery research, we still lack a generalizable understanding of the attributes that drive community recovery potential in seafloor ecosystems. Marine soft‐sediment ecosystems encompass a range of heterogeneity from simple low‐diversity habitats with limited biogenic structure, to species‐rich systems with complex biogenic habitat structure. These differences in biological heterogeneity are a product of natural conditions and disturbance regimes. To search for unifying attributes, we explore whether a set of simple traits can characterize community disturbance–recovery potential using seafloor patch‐disturbance experiments conducted in two different soft‐sediment landscapes. The two landscapes represent two ends of a spectrum of landscape biotic heterogeneity in order to consider multi‐scale disturbance–recovery processes. We consider traits at different levels of biological organization, from the biological traits of individual species, to the traits of species at the landscape scale associated with their occurrence across the landscape and their ability to be dominant. We show that in a biotically heterogeneous landscape (Kawau Bay, New Zealand), seafloor community recovery is stochastic, there is high species turnover, and the landscape‐scale traits are good predictors of recovery. In contrast, in a biotically homogeneous landscape (Baltic Sea), the options for recovery are constrained, the recovery pathway is thus more deterministic and the scale of recovery traits important for determining recovery switches to the individual species biological traits within the disturbed patch. Our results imply that these simple, yet sophisticated, traits can be effectively used to characterize community recovery potential and highlight the role of landscapes in providing resilience to patch‐scale disturbances.  相似文献   

13.
Continuum limits in the form of stochastic differential equations are typically used in theoretical population genetics to account for genetic drift or more generally, inherent randomness of the model. In evolutionary game theory and theoretical ecology, however, this method is used less frequently to study demographic stochasticity. Here, we review the use of continuum limits in ecology and evolution. Starting with an individual‐based model, we derive a large population size limit, a (stochastic) differential equation which is called continuum limit. By example of the Wright–Fisher diffusion, we outline how to compute the stationary distribution, the fixation probability of a certain type, and the mean extinction time using the continuum limit. In the context of the logistic growth equation, we approximate the quasi‐stationary distribution in a finite population.  相似文献   

14.
Iwasa Y  Michor F  Nowak MA 《Genetics》2004,166(3):1571-1579
We study a situation that arises in the somatic evolution of cancer. Consider a finite population of replicating cells and a sequence of mutations: type 0 can mutate to type 1, which can mutate to type 2. There is no back mutation. We start with a homogeneous population of type 0. Mutants of type 1 emerge and either become extinct or reach fixation. In both cases, they can generate type 2, which also can become extinct or reach fixation. If mutation rates are small compared to the inverse of the population size, then the stochastic dynamics can be described by transitions between homogeneous populations. A "stochastic tunnel" arises, when the population moves from all 0 to all 2 without ever being all 1. We calculate the exact rate of stochastic tunneling for the case when type 1 is as fit as type 0 or less fit. Type 2 has the highest fitness. We discuss implications for the elimination of tumor suppressor genes and the activation of genetic instability. Although our theory is developed for cancer genetics, stochastic tunnels are general phenomena that could arise in many circumstances.  相似文献   

15.
Monitoring the demographics and genetics of reintroduced populations is critical to evaluating reintroduction success, but species ecology and the landscapes that they inhabit often present challenges for accurate assessments. If suitable habitats are restricted to hierarchical dendritic networks, such as river systems, animal movements are typically constrained and may violate assumptions of methods commonly used to estimate demographic parameters. Using genetic detection data collected via fecal sampling at latrines, we demonstrate applicability of the spatial capture–recapture (SCR) network distance function for estimating the size and density of a recently reintroduced North American river otter (Lontra canadensis) population in the Upper Rio Grande River dendritic network in the southwestern United States, and we also evaluated the genetic outcomes of using a small founder group (n = 33 otters) for reintroduction. Estimated population density was 0.23–0.28 otter/km, or 1 otter/3.57–4.35 km, with weak evidence of density increasing with northerly latitude (β = 0.33). Estimated population size was 83–104 total otters in 359 km of riverine dendritic network, which corresponded to average annual exponential population growth of 1.12–1.15/year since reintroduction. Growth was ≥40% lower than most reintroduced river otter populations and strong evidence of a founder effect existed 8–10 years post‐reintroduction, including 13–21% genetic diversity loss, 84%–87% genetic effective population size decline, and rapid divergence from the source population (F ST accumulation = 0.06/generation). Consequently, genetic restoration via translocation of additional otters from other populations may be necessary to mitigate deleterious genetic effects in this small, isolated population. Combined with non‐invasive genetic sampling, the SCR network distance approach is likely widely applicable to demogenetic assessments of both reintroduced and established populations of multiple mustelid species that inhabit aquatic dendritic networks, many of which are regionally or globally imperiled and may warrant reintroduction or augmentation efforts.  相似文献   

16.
Cherry JL 《Genetics》2003,164(2):789-795
In a subdivided population, local extinction and subsequent recolonization affect the fate of alleles. Of particular interest is the interaction of this force with natural selection. The effect of selection can be weakened by this additional source of stochastic change in allele frequency. The behavior of a selected allele in such a population is shown to be equivalent to that of an allele with a different selection coefficient in an unstructured population with a different size. This equivalence allows use of established results for panmictic populations to predict such quantities as fixation probabilities and mean times to fixation. The magnitude of the quantity N(e)s(e), which determines fixation probability, is decreased by extinction and recolonization. Thus deleterious alleles are more likely to fix, and advantageous alleles less likely to do so, in the presence of extinction and recolonization. Computer simulations confirm that the theoretical predictions of both fixation probabilities and mean times to fixation are good approximations.  相似文献   

17.
Mathematical models in ecology and epidemiology often consider populations “at equilibrium”, where in-flows, such as births, equal out-flows, such as death. For stochastic models, what is meant by equilibrium is less clear – should the population size be fixed or growing and shrinking with equal probability? Two different mechanisms to implement a stochastic steady state are considered. Under these mechanisms, both a predator-prey model and an epidemic model have vastly different outcomes, including the median population values for both predators and prey and the median levels of infection within a hospital (P < 0.001 for all comparisons). These results suggest that the question of how a stochastic steady state is modeled, and what it implies for the dynamics of the system, should be carefully considered.  相似文献   

18.
The fragmentation of mediterranean climate landscapes where fire is an important landscape process may lead to unsuitable fire regimes for many species, particularly rare species that occur as small isolated populations. We investigate the influence of fire interval on the persistence of population fragments of the endangered shrub Verticordia fimbrilepis Turcz. subsp. fimbrilepis in mediterranean climate south-west of Western Australia. We studied the population biology of the species over 5 years. While the species does recruit sporadically without fire this occurs only in years with above average rainfall, so fire seems to be the main environmental factor producing extensive recruitment. Transition matrix models were constructed to describe the shrub’s population dynamics. As the species is killed by fire and relies on a seed bank stimulated to germinate by smoke, stochastic simulations to compare different fire frequencies on population viability were completed. Extinction risk increased with increasing average fire interval. Initial population size was also important, with the lowest extinction risk in the largest population. For populations in small reserves where fire is generally excluded, inevitable plant senescence will lead to local extirpation unless fires of suitable frequency can be used to stimulate regeneration. While a suitable fire regime reduces extinction risk small populations are still prone to extinction due to stochastic influences, and this will be exacerbated by a projected drying climate increasing rates of adult mortality and also seedling mortality in the post-fire environment.  相似文献   

19.
We present here a self-contained analytic review of the role of stochastic factors acting on a virus population. We develop a simple one-locus, two-allele model of a haploid population of constant size including the factors of random drift, purifying selection, and random mutation. We consider different virological experiments: accumulation and reversion of deleterious mutations, competition between mutant and wild-type viruses, gene fixation, mutation frequencies at the steady state, divergence of two populations split from one population, and genetic turnover within a single population. In the first part of the review, we present all principal results in qualitative terms and illustrate them with examples obtained by computer simulation. In the second part, we derive the results formally from a diffusion equation of the Wright-Fisher type and boundary conditions, all derived from the first principles for the virus population model. We show that the leading factors and observable behavior of evolution differ significantly in three broad intervals of population size, N. The “neutral limit” is reached when N is smaller than the inverse selection coefficient. When N is larger than the inverse mutation rate per base, selection dominates and evolution is “almost” deterministic. If the selection coefficient is much larger than the mutation rate, there exists a broad interval of population sizes, in which weakly diverse populations are almost neutral while highly diverse populations are controlled by selection pressure. We discuss in detail the application of our results to human immunodeficiency virus population in vivo, sampling effects, and limitations of the model.  相似文献   

20.
Fixation processes in evolutionary game dynamics in finite diploid populations are investigated. Traditionally, frequency dependent evolutionary dynamics is modeled as deterministic replicator dynamics. This implies that the infinite size of the population is assumed implicitly. In nature, however, population sizes are finite. Recently, stochastic processes in finite populations have been introduced in order to study finite size effects in evolutionary game dynamics. One of the most significant studies on evolutionary dynamics in finite populations was carried out by Nowak et al. which describes “one-third law” [Nowak, et al., 2004. Emergence of cooperation and evolutionary stability in finite populations. Nature 428, 646-650]. It states that under weak selection, if the fitness of strategy α is greater than that of strategy β when α has a frequency , strategy α fixates in a β-population with selective advantage. In their study, it is assumed that the inheritance of strategies is asexual, i.e. the population is haploid. In this study, we apply their framework to a diploid population that plays a two-strategy game with two ESSs (a bistable game). The fixation probability of a mutant allele in this diploid population is derived. A “three-tenth law” for a completely recessive mutant allele and a “two-fifth law” for a completely dominant mutant allele are found; other cases are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号