首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of eosinophilopoiesis in a murine model of asthma   总被引:5,自引:0,他引:5  
Eosinophilic inflammation plays a key role in tissue damage that characterizes asthma. Eosinophils are produced in bone marrow and recent observations in both mice and humans suggest that allergen exposure results in increased output of eosinophils from hemopoietic tissue in individuals with asthma. However, specific mechanisms that alter eosinophilopoiesis in this disease are poorly understood. The current study used a well-characterized murine animal model of asthma to evaluate alterations of eosinophil and eosinophil progenitor cells (CFU-eo) in mice during initial sensitization to allergen and to determine whether observed changes in either cell population were regulated by T lymphocytes. Following the first intranasal installation of OVA, we observed sequential temporal elevation of eosinophils in bone marrow, blood, and lung. In immunocompetent BALB/c mice, elevation of bone marrow eosinophils was accompanied by transient depletion of CFU-eo in that tissue. CFU-eo rebounded to elevated numbers before returning to normal baseline values following intranasal OVA exposure. In T cell-deficient BALB/c nude (BALB/c(nu/nu)) mice, CFU-eo were markedly elevated following allergen sensitization, in the absence of bone marrow or peripheral blood eosinophilia. These data suggest that eosinophilia of asthma results from alterations in two distinct hemopoietic regulatory mechanisms. Elevation of eosinophil progenitor cells in the bone marrow is T cell independent and likely results from altered bone marrow stromal cell function. Differentiation of eosinophil progenitor cells and phenotypic eosinophilia is T cell dependent and does not occur in athymic nude mice exposed to intranasal allergen.  相似文献   

2.
We have previously reported that interleukin 1 (IL-1) administration 20 hr before irradiation protects mice from lethal effects of radiation. The recovery of total nucleated bone marrow cells and of hematopoietic progenitor cells was enhanced in IL-1 treated, as compared to untreated, irradiated mice. This suggested that IL-1 administration may affect the cells in the bone marrow of normal mice. Intraperitoneal administration of recombinant IL-1 resulted in bone marrow cell enlargement and increased cycling of these enlarged cells. In addition, the capacity of bone marrow cells from IL-1 treated mice to proliferate in response to granulocyte macrophage-colony-stimulating factor (GM-CSF) in cell suspension cultures was enhanced. The above effects were not genetically restricted as C57BL/6, B6D2F1, C3H/HeN, and C3H/HeJ mice showed similar responses. A comparative study showed that 100 ng of IL-1 was much more effective in stimulating bone marrow cells by the above criteria than 5 micrograms GM-CSF. Since IL-1, unlike CSF, can not be demonstrated to have a direct in vitro stimulatory effect on bone marrow cells, the aforementioned in vivo effects of IL-1 are presumably mediated by other hematopoietic growth factors. We have previously shown that IL-1 induces the appearance of high titers of CSF in the serum. Consequently hematopoietic growth factors that are generated at local sites following IL-1 administration may mediate the observed cell cycling effect.  相似文献   

3.
Our recent data suggested that tissue eosinophils may be relatively insensitive to anti-IL-5 treatment. We examined cross-regulation and functional consequences of modulation of eosinophil cytokine receptor expression by IL-3, IL-5 GM-CSF, and eotaxin. Incubation of eosinophils with IL-3, IL-5, or GM-CSF led to reduced expression of IL-5R alpha, which was sustained for up to 5 days. Eosinophils incubated with IL-5 or IL-3 showed diminished respiratory burst and mitogen-activated protein kinase kinase phosphorylation in response to further IL-5 stimulation. In contrast to these findings, eosinophil expression of IL-3R alpha was increased by IL-3, IL-5, and GM-CSF, whereas GM-CSF receptor alpha was down-regulated by GM-CSF, but was not affected by IL-3 or IL-5. CCR3 expression was down-regulated by IL-3 and was transiently reduced by IL-5 and GM-CSF, but rapidly returned toward baseline. Eotaxin had no effect on receptor expression for IL-3, IL-5, or GM-CSF. Up-regulation of IL-3R alpha by cytokines was prevented by a phosphoinositol 3-kinase inhibitor, whereas this and other signaling inhibitors had no effect on IL-5R alpha down-regulation. These data suggest dynamic and differential regulation of eosinophil receptors for IL-3, IL-5, and GM-CSF by the cytokine ligands. Since these cytokines are thought to be involved in eosinophil development and mobilization from the bone marrow and are present at sites of allergic inflammation, tissue eosinophils may have reduced IL-5R expression and responsiveness, and this may explain the disappointing effect of anti-IL-5 therapy in reducing airway eosinophilia in asthma.  相似文献   

4.
Allergic inflammation is characterized by elevated eosinophil numbers and by the increased production of the cytokines IL-5 and GM-CSF, which control several eosinophil functions, including the suppression of apoptosis. The JAK/STAT pathway is important for several functions in hemopoietic cells, including the suppression of apoptosis. We report in this study that STAT3, STAT5a, and STAT5b are expressed in human eosinophils and that their signaling pathways are active following IL-5 or GM-CSF treatment. However, in airway eosinophils, the phosphorylation of STAT5 by IL-5 is reduced, an event that may be related to the reduced expression of the IL-5Ralpha on airway eosinophils. Furthermore, IL-5 and GM-CSF induced the protein expression of cyclin D3 and the kinase Pim-1, both of which are regulated by STAT-dependent processes in some cell systems. Pim-1 is more abundantly expressed in airway eosinophils than in blood eosinophils. Because Pim-1 reportedly has a role in the modulation of apoptosis, these results suggest that Pim-1 action is linked to the suppression of eosinophil apoptosis by these cytokines. Although cyclin D3 is known to be critical for cell cycle progression, eosinophils are terminally differentiated cells that do not proceed through the cell cycle. Thus, this apparent cytokine regulation of cyclin D3 suggests that there is an alternative role(s) for cyclin D3 in eosinophil biology.  相似文献   

5.
Human interleukin (IL)-5 receptors were characterized by means of binding studies using bioactive 125I-labeled IL-5. Of purified primary myeloid cells, eosinophils and basophils but not neutrophils or monocytes expressed surface receptors for IL-5. Binding studies showed that eosinophils expressed a single class of high affinity receptors (Ka = 1.2 x 10(10) M-1) with the number of receptors being small (less than 1000 receptors/cell) and varying between individuals. Among several cell lines examined only HL-60 cells showed detectable IL-5 receptors which were small in numbers (200 receptors/cell) and also bound 125I-IL-5 with high affinity. The binding of IL-5 was rapid at 37 degrees C while requiring several hours to reach equilibrium at 4 degrees C. Specificity studies revealed that the two other human eosinophilopoietic cytokines IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF) inhibited the binding of 125I-IL-5 to eosinophils. No competition was observed by other eosinophil activating or nonactivating cytokines. The inhibition of 125I-IL-5 binding by IL-3 and GM-CSF was partial up to a concentration of competitor of 10(-7) M with GM-CSF consistently being the stronger competitor. Converse experiments using IL-5 as a competitor revealed that this cytokine inhibited the binding of 125I-IL-3 and of 125I-GM-CSF in some but not all the individuals tested, perhaps reflecting eosinophil heterogeneity in vivo. Cross-linking experiments on HL-60 cells demonstrated two IL-5-containing complexes of Mr 150,000 and Mr 80,000 both of which were inhibited by GM-CSF. The competition between IL-5, IL-3, and GM-CSF on the surface of mature eosinophils may represent a unifying mechanism that may help explain the common biological effects of these three eosinophilopoietic cytokines on eosinophil function. This unique pattern of competition may also be beneficial to the host by preventing excessive eosinophil stimulation.  相似文献   

6.
Bone marrow cells from mice infected with Fasciola hepatica, from mice injected with F. hepatica excretory/secretory (ES) antigens, and from uninfected or uninjected control animals were cultured in the presence of F. hepatica ES antigens or the eosinophil differentiation cytokine IL-5. Eosinophil maturation in cultures was assessed quantitatively by measuring eosinophil peroxidase (EPO) activity and qualitatively by visual appraisal in stained preparations over a week. It was found that the presence in all cultures (including those from control animals) of either ES antigens at an optimal concentration of 100 μml−1 (established in preliminary trials) or IL-5 at 500 units ml−1 led to enhanced EPO activity. EPO activity in cultures without IL-5 or ES antigens remained static or fell over the culture period. At day 3 in all cultures containing IL-5 or ES antigens, there was maintenance of, or only a slight decline in, the number of eosinophils that were present when cultures were initiated, and more of them were mature than at day 0 as evidenced by their EPO activity. However, there was a marked fall in eosinophil numbers in all cultures in the absence of IL-5 or ES antigens. The results indicate that F. hepatica ES antigens, like IL-5, stimulate eosinophil maturation in bone marrow with a consequent rise in EPO activity in the cells. Whether the antigen(s) acts directly or indirectly on the eosinophils or their precursors has yet to be established. Nevertheless, it seems clear that F. hepatica produces a molecule with a functionally similar effect to that of IL-5.  相似文献   

7.
The addition of recombinant rat interleukin-5 (IL-5), which was purified from the hemolymph of silkworm Bombyx mori larvae infected with IL-5-expressing recombinant virus, to cultures of rat bone marrow cells resulted in an increase in the number of Luxol-fast-blue staining eosinophils in a time- and concentration-dependent manner. After 6 days culture with 100 pM recombinant rat IL-5, more than 90% of the bone marrow cells were eosinophil. The contents of major basic protein (MBP) in the bone marrow cells determined by Western blot analysis using a polyclonal antibody to rat MBP were also increased by recombinant rat IL-5 (100 pM). Furthermore, intravenous injections of recombinant rat IL-5 twice a day for six consecutive days increased the population of eosinophils in peripheral blood cells and in bone marrow cells. These findings indicate that rat IL-5 induces terminal differentiation and proliferation of progenitor cells to mature eosinophils in rats.  相似文献   

8.
To characterize interleukin (IL)-5-induced eosinophils, we examined the expression of CD44, very late antigen (VLA)-4, and the IL-5 receptor alpha chain, as well as the levels of eosinophil peroxidase and the generation of superoxide. Eosinophils were prepared from IL-5-transgenic mice, then characterized using electron microscopy to determine their responses to stimuli. Whereas CD44 densities remained almost constant, the level of VLA-4 increased in parallel with eosinophil maturation. Although a subset of IL-5-induced eosinophils with high side scatter recovered from bone marrow and rare ones found in blood recognized hyaluronic acid (HA), most did not have this property. Bone marrow eosinophils with high side scatter and lower density contained eosinophil peroxidase, not only in granules, but also in membranous structures for 30% of this population. This population developed HA-binding ability in response to IL-3, IL-4, IL-5, granulocyte-macrophage colony-stimulating factor, macrophage inflammatory protein (MIP)-2, monocyte chemotactic protein (MCP)-1, eotaxin, nerve growth factor (NGF), and opsonized zymosan (OZ). Peripheral blood eosinophils acquired HA-binding ability in response to the same stimuli, but their responses were less than those of bone marrow eosinophils with high levels of side scatter. However, splenic eosinophils did not respond to these stimuli. Although peripheral blood eosinophils did not proliferate when stimulated by IL-5, these were the only cells that released eosinophil peroxidase in response to IL-4, MIP-2, MCP-1, eotaxin, NGF, and OZ. With the exception of a subset of bone marrow eosinophils, the ability to acquire HA binding, but not the ability to generate superoxide, correlated with eosinophil peroxidase activity and major basic protein accumulation in the granules of maturing cells.  相似文献   

9.
Recent evidence confirms that cytokines such as IL-1, IL-4, IL-5, and GM-CSF may enhance or inhibit eosinophil function. Functions that are susceptible to modulation include eosinophil-mediated antibody-dependent damage of helminthic parasites, oxidative metabolism and degranulation. We have employed IgG and IgE-coated Sepharose beads to investigate selective modulation of IgG and IgE-mediated enzyme release by IL-1 beta. Both IgG and IgE-coated beads induced release of granular enzymes beta-glucuronidase and arylsulfatase. Enzyme release from IgG-stimulated eosinophils was inhibited by preincubation with IL-1 beta (100 pg/ml, P less than or equal to 0.05). In contrast, enzyme release by IgE-stimulated eosinophils was enhanced by IL-1 beta (100 pg/ml, P less than or equal to 0.05). These studies support the hypothesis that IL-1 beta has specific selective actions on eosinophil function. Furthermore, these actions on particle-stimulated enzyme release suggest that IgG and IgE mediated processes in eosinophils are differentially regulated.  相似文献   

10.
GM-CSF plays an important role in inflammation by promoting the production, activation, and survival of granulocytes and macrophages. In this study, GM-CSF knockout (GM-CSF(-/-)) mice were used to investigate the role of GM-CSF in a model of allergic airway inflammation. In allergic GM-CSF(-/-) mice, eosinophil recruitment to the airways showed a striking pattern, with eosinophils present in perivascular areas, but almost completely absent in peribronchial areas, whereas in wild-type mice, eosinophil infiltration appeared in both areas. In the GM-CSF(-/-) mice, mucus production in the airways was also reduced, and eosinophil numbers were markedly reduced in the bronchoalveolar lavage (BAL)(3) fluid. IL-5 production was reduced in the lung tissue and BAL fluid of GM-CSF(-/-) mice, but IL-4 and IL-13 production, airway hyperresponsiveness, and serum IgE levels were not affected. The presence of eosinophils in perivascular but not peribronchial regions was suggestive of a cell migration defect in the airways of GM-CSF(-/-) mice. The CCR3 agonists CCL5 (RANTES) and CCL11 (eotaxin-1) were expressed at similar levels in GM-CSF(-/-) and wild-type mice. However, IFN-gamma mRNA and protein were increased in the lung tissue and BAL fluid in GM-CSF(-/-) mice, as were mRNA levels of the IFN-gamma-inducible chemokines CXCL9 (Mig), CXCL10 (IP-10), and CXCL11 (I-Tac). Interestingly, these IFN-gamma-inducible chemokines are natural antagonists of CCR3, suggesting that their overproduction in GM-CSF(-/-) mice contributes to the lack of airway eosinophils. These findings demonstrate distinctive abnormalities to a model of allergic asthma in the absence of GM-CSF.  相似文献   

11.
12.
Human eosinophils were cultured for up to 7 days in enriched medium in the absence or presence of recombinant human interleukin (IL) 3, mouse IL 5, or recombinant human granulocyte/macrophage colony stimulating factor (GM-CSF) and then were radiolabeled with [35S]sulfate to characterize their cell-associated proteoglycans. Freshly isolated eosinophils that were not exposed to any of these cytokines synthesized Mr approximately 80,000 Pronase-resistant 35S-labeled proteoglycans which contained Mr approximately 80,000 glycosaminoglycans. RNA blot analysis of total eosinophil RNA, probed with a cDNA that encodes a proteoglycan peptide core of the promyelocytic leukemia HL-60 cell, revealed that the mRNA which encodes the analogous molecule in eosinophils was approximately 1.3 kilobases, like that in HL-60 cells. When eosinophils were cultured for 1 day or longer in the presence of 10 pM IL 3, 1 pM IL 5, or 10 pM GM-CSF, the rates of [35S]sulfate incorporation were increased approximately 2-fold, and the cells synthesized Mr approximately 300,000 Pronase-resistant 35S-labeled proteoglycans which contained Mr approximately 30,000 35S-labeled glycosaminoglycans. Approximately 93% of the 35S-labeled glycosaminoglycans bound to the proteoglycans synthesized by noncytokine- and cytokine-treated eosinophils were susceptible to degradation by chondroitinase ABC. As assessed by high performance liquid chromatography, 6-16% of these chondroitinase ABC-generated 35S-labeled disaccharides were disulfated disaccharides derived from chondroitin sulfate E; the remainder were monosulfated disaccharides derived from chondroitin sulfate A. Utilizing GM-CSF as a model of the cytokines, it was demonstrated that the GM-CSF-treated cells synthesized larger glycosaminoglycans onto beta-D-xyloside than the noncytokine-treated cells. Thus, IL 3, IL 5, and GM-CSF induce human eosinophils to augment proteoglycan biosynthesis by increasing the size of the newly synthesized proteoglycans and their individual chondroitin sulfate chains.  相似文献   

13.
Human bone marrow cells expressing CD34 but not HLA-DR were isolated by immunofluorescence flow cytometric cell sorting. These cells contained a hematopoietic cell (CFU-B1) capable of producing, in an in vitro semisolid culture system, blast-cell-containing colonies, which possessed the capacity for self-renewal and commitment to multipotential differentiation. In addition, CD34+ HLA-DR- marrow cells contained primitive megakaryocyte progenitor cells, the burst-forming unit-megakaryocyte (BFU-MK). A subset of CD34+ HLA-DR- marrow cells lacking the expression of CD15 and CD71 was obtained by flow cytometric cell sorting and was capable of sustaining in vitro hematopoiesis in suspension culture for up to 8 weeks in the absence of a preestablished adherent marrow cell layer. The combination of IL-3 + IL-1 alpha and IL-3 + IL-6 sustained proliferation of these cells for 8 weeks, induced maximal cellular expansion, and increased the numbers of assayable progenitor cells. These studies demonstrate that human CD34+ HLA-DR- marrow cells and their subsets contain primitive multipotential hematopoietic cells capable of self-renewal and of differentiation into multiple hematopoietic lineages.  相似文献   

14.
The eosinophil is a central effector cell in allergic asthma. Differentiation and function of eosinophils are regulated by the CD4 Th2 cytokines IL-3, IL-5, and GM-CSF, which all signal through a common beta receptor subunit (betac). Recent therapeutic approaches targeting IL-5 alone have not ablated tissue accumulation of eosinophils and have had limited effects on disease progression, suggesting important roles for IL-3 and GM-CSF. By using a mouse model of allergic airways inflammation, we show that allergen-induced expansion and accumulation of eosinophils in the lung are abolished in betac-deficient (betac-/-) mice. Moreover, betac deficiency resulted in inhibition of hallmark features of asthma, including airways hypersensitivity, mucus hypersecretion, and production of Ag-specific IgE. Surprisingly, we also identified a critical role for this receptor in regulating type 2 immunity. Th2 cells in the lung of allergen-challenged betac-/- mice were limited in their ability to proliferate, produce cytokines, and migrate to effector sites, which was attributed to reduced numbers of myeloid dendritic cells in the lung compartment. Thus, the betac plays a critical role in allergen-induced eosinophil expansion and infiltration and is pivotal in regulating molecules that promote both early and late phases of allergic inflammation, representing a novel target for therapy.  相似文献   

15.
本研究探讨了重组人IL-6与大鼠IL-3和/或小鼠GM-CSF结合对正常BN大鼠粒单系体外造血的调控效应。结果表明,IL-6在1000-4000U/ml呈剂量依赖性刺激粒系造血祖细胞集落形成及骨髓细胞的DNA合成,集落以GM型为主,其刺激活性低于IL-3或CM-CSF。lL-6与IL-3和/或GM-CSF的结合对粒单系集落形成及DNA合成无协同或相加作用,甚至出现拮抗效应,但却显著增大集落。提示IL-6可能具有双向调控作用,促进早期造血细胞的增殖,拮抗其它因子对晚期粒单系造血的刺激作用;具有重叠生物效应的这3种细胞因子在调控造血时,它们之间的相互作用应是顺序的而不是同时的。  相似文献   

16.
IL-5 plays a pivotal role in growth and differentiation of eosinophils. The signal transduction mechanism of IL-5Ralpha is largely unknown. We have demonstrated that IL-5 induces tyrosine phosphorylation of IL-5Ralpha in eosinophils. To identify IL-5Ralpha-associated tyrosine kinases, we have examined the expression of Src family tyrosine kinases in eosinophils. Among the Src family members, Lyn, Hck, Fgr, and Lck are present in eosinophils, and, among these four kinases, only Lyn is associated with the IL-5Ralpha under basal conditions. We also confirm the association of Janus kinase (Jak)2 with IL-5Ralpha. Lyn kinase phosphorylates both IL-5Ralpha and betacR in vitro. The importance of Lyn kinase for eosinophil differentiation was studied using antisense oligodeoxynucleotides. Lyn antisense oligodeoxynucleotide blocks eosinophil differentiation from stem cells in a dose-dependent manner. The Jak2 inhibitor tyrphostin AG490 also inhibits eosinophil differentiation. The importance of Lyn for eosinophil differentiation was further studied using Lyn knockout mice. The IL-5-stimulated eosinophil differentiation from bone marrow cells is significantly inhibited in Lyn(-/-) mice as compared with that in control mice. We conclude that both Lyn and Jak2 play an essential role in IL-5Ralpha signaling, leading to eosinophil differentiation. The effect of Lyn appears to be relatively specific for the eosinophilic lineage.  相似文献   

17.
Interleukin 1 alpha (IL-1 alpha), tumor necrosis factor alpha (TNF alpha), granulocyte-colony-stimulating factor (G-CSF), and granulocyte-macrophage colony-stimulating factor (GM-CSF) are molecularly distinct cytokines acting on separate receptors. The release of these cytokines can be concomitantly induced by the same signal and from the same cellular source, suggesting that they may cooperate. Administered alone, human recombinant (hr)IL-1 alpha and hrTNF alpha protect lethally irradiated mice from death, whereas murine recombinant GM-CSF and hrG-CSF do not confer similar protection. On a dose basis, IL-1 alpha is a more efficient radioprotector than TNF alpha. At optimal doses, IL-1 alpha is a more radioprotective cytokine than TNF alpha in C57BL/6 and B6D2F1 mice and less effective than TNF alpha in C3H/HeN mice, suggesting that the relative effectiveness of TNF alpha and IL-1 alpha depends on the genetic makeup of the host. Administration of the two cytokines in combination results in additive radioprotection in all three strains. This suggests that the two cytokines act through different radioprotective pathways and argues against their apparent redundancy. Suboptimal, nonradioprotective doses of IL-1 alpha also synergize with GM-CSF or G-CSF to confer optimal radioprotection, suggesting that such an interaction may be necessary for radioprotection of hemopoietic progenitor cells.  相似文献   

18.
Adenosine A(3) receptor agonist N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) has been tested from the point of view of potentiating the effects of hematopoietic growth factors interleukin-3 (IL-3), stem cell factor (SCF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and granulocyte colony-stimulating factor (G-CSF) on the growth of hematopoietic progenitor cells for granulocytes and macrophages (GM-CFC) in suspension of normal mouse bone marrow cells in vitro. IB-MECA alone induced no GM-CFC growth. Significant elevation of numbers of GM-CFC evoked by the combinations of IB-MECA with IL-3, SCF, or GM-CSF as compared with these growth factors alone has been noted. Combination of IB-MECA with G-CSF did not induce significantly higher numbers of GM-CFC in comparison with G-CSF alone. Joint action of three drugs, namely of IB-MECA + IL-3 + GM-CSF, produced significantly higher numbers of GM-CFC in comparison with the combinations of IB-MECA + IL-3, IB-MECA + GM-CSF, or IL-3 + GM-CSF. These results give evidence of a significant role of selective activation of adenosine A(3) receptors in stimulation of the growth of granulocyte/ macrophage hematopoietic progenitor cells.  相似文献   

19.
The ability of murine Steel factor to promote the in vitro production of granulocyte-macrophage progenitor cells (CFU-GM) was examined in short-term liquid cultures. Bone marrow from C57BL/6J or Sl/Sld mice was placed in culture for seven days with either Steel factor alone or in the presence of IL-3. CFU-GM responsive to GM-CSF, IL-3, and CSF-1 were measured in the input population and again after 3 or 7 days in culture. Steel factor alone increased the number of all CFU-GM types as early as 3 days after culture initiation, with further increases at day 7. This effect was potentiated by the addition of IL-3. Production of CFU-GM by C57BL/6J or Sl/Sld marrow was comparable except for enhanced production of CSF-1 responsive progenitors by Sl/Sld marrow. A recombinant Sld protein was also shown to be equivalent to the wild-type protein in its capacity to promote CFU-GM production from normal bone marrow.  相似文献   

20.
Regulatory effect of cytokines on eosinophil degranulation   总被引:17,自引:0,他引:17  
We tested the effects of different cytokines on IgA- and IgG-induced eosinophil degranulation in vitro to determine the potential interaction between eosinophils and mononuclear cells. Purified normodense eosinophils were incubated with cytokines (including rIL-1, rIL-2, rIL-3, rIL-4, rIL-5, rIL-6, IFN-gamma, granulocyte-macrophage CSF stimulating factor (GM-CSF), and TNF) for 1 to 3 h after which Ig-coupled Sepharose 4B beads were added as targets and the mixtures were incubated with the eosinophils at 37 degrees C for 4 h. The Ig used were secretory IgA (sIgA), serum IgA and IgG, and myeloma IgA and IgG. The release of eosinophil-derived neurotoxin (EDN) was measured by RIA as an index of degranulation. rIL-5 was the most potent enhancer of Ig-induced degranulation and increased EDN release by 48% for sIgA and 136% for IgG. The effect of rIL-5 appeared as quickly as 15 min after incubation of eosinophils, sIgA beads and IL-5. GM-CSF and rIL-3 also enhanced Ig-induced EDN release but less potently than rIL-5. GM-CSF and rIL-5 by themselves induced a small but significant release of EDN from eosinophils in the absence of Ig-coated beads; rIL-3 did not. However, IFN-gamma suppressed sIgA-induced EDN release by 23%. The other cytokines did not have any effect on eosinophil degranulation. These results suggest that cytokines which induce eosinophil differentiation and proliferation during hematopoiesis also enhance the effector function of mature eosinophils and that IFN-gamma partially down-regulates eosinophil degranulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号