首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Buckling A  Brockhurst MA 《Heredity》2008,100(5):484-488
Social interactions between conspecific parasites are partly dependent on the relatedness of interacting parasites (kin selection), which, in turn, is predicted to affect the extent of damage they cause their hosts (virulence). High relatedness is generally assumed to favour less competitive interactions, but the relationship between relatedness and virulence is crucially dependent on the social behaviour in question. Here, we discuss the rather limited body of experimental work that addresses how kin-selected social behaviours affect virulence. First, if prudent use of host resources (a form of cooperation) maximizes the transmission success of the parasite population, decreased relatedness is predicted to result in increased host exploitation and virulence. Experimental support for this well-established theoretical result is surprisingly limited. Second, if parasite within-host growth rate is a positive function of cooperation (that is, when individuals need to donate public goods, such as extracellular enzymes), virulence is predicted to increase with increasing relatedness. The limited studies testing this hypothesis are broadly consistent with this prediction. Finally, there is some empirical evidence supporting theory that suggests that spiteful behaviours are maximized at intermediate degrees of relatedness, which, in turn, leads to minimal virulence because of the reduced growth rate of the infecting population. We highlight the need for further thorough experimentation on the role of kin selection in the evolution of virulence and identify additional biological complexities to these simple frameworks.  相似文献   

2.
Cooperation,virulence and siderophore production in bacterial parasites   总被引:6,自引:0,他引:6  
Kin selection theory predicts that the damage to a host resulting from parasite infection (parasite virulence) will be negatively correlated to the relatedness between parasites within the host. This occurs because a lower relatedness leads to greater competition for host resources, which favours rapid growth to achieve greater relative success within the host, and that higher parasite growth rate leads to higher virulence. We show that a biological feature of bacterial infections can lead to the opposite prediction: a positive correlation between relatedness and virulence. This occurs because a high relatedness can favour greater (cooperative) production of molecules that scavenge iron (siderophores), which results in higher growth rates and virulence. More generally, the same underlying idea can predict a positive relationship between relatedness and virulence in any case where parasites can cooperate to increase their growth rate; other examples include immune suppression and the production of biofilms to aid colonization.  相似文献   

3.
Theoretical models predict that parasite relatedness affects the outcome of competition between parasites, and the evolution of parasite virulence. We examined whether parasite relatedness affects competition between parasitic plants (Cuscuta europaea) that share common host plants (Urtica dioica). We infected hosts with two parasitic plants that were either half-siblings or nonrelated. Relative size asymmetry between the competing parasites was significantly higher in the nonrelated infections compared to infections with siblings. This higher asymmetry was caused by the fact that the performance of some parasite genotypes decreased and that of others increased when grown in multiple infections with nonrelated parasites. This result agrees with the predictions of theories on the evolution of parasite virulence: to enhance parasite transmission, selection may favour reduced competition with genetically related parasites in hosts infected by several genotypes. However, in contrast to the most common predictions, nonrelated infections were not more virulent than the sibling infections.  相似文献   

4.
Intraspecific competition between co-infecting parasites can influence the amount of virulence, or damage, they do to their host. Kin selection theory dictates that infections with related parasite individuals should have lower virulence than infections with unrelated individuals, because they benefit from inclusive fitness and increased host longevity. These predictions have been tested in a variety of microparasite systems, and in larval stage macroparasites within intermediate hosts, but the influence of adult macroparasite relatedness on virulence has not been investigated in definitive hosts. This study used the human parasite Schistosoma mansoni to determine whether definitive hosts infected with related parasites experience lower virulence than hosts infected with unrelated parasites, and to compare the results from intermediate host studies in this system. The presence of unrelated parasites in an infection decreased parasite infectivity, the ability of a parasite to infect a definitive host, and total worm establishment in hosts, impacting the less virulent parasite strain more severely. Unrelated parasite co-infections had similar virulence to the more virulent of the two parasite strains. We combine these findings with complementary studies of the intermediate snail host and describe trade-offs in virulence and selection within the life cycle. Damage to the host by the dominant strain was muted by the presence of a competitor in the intermediate host, but was largely unaffected in the definitive host. Our results in this host–parasite system suggest that unrelated infections may select for higher virulence in definitive hosts while selecting for lower virulence in intermediate hosts.  相似文献   

5.
What stops parasites becoming ever more virulent? Conventional wisdom and most parasite-centred models of the evolution of virulence suppose that risk of host (and, hence, parasite) death imposes selection against more virulent strains. Here we selected for high and low virulence within each of two clones of the rodent malaria parasite Plasmodium chabaudi on the basis of between-host differences in a surrogate measure of virulence--loss of live weight post-infection. Despite imposing strong selection for low virulence which mimicked 50-75% host mortality, the low virulence lines increased in virulence as much as the high virulence lines. Thus, artificial selection on between-host differences in virulence was unable to counteract natural selection for increased virulence caused by within-host selection processes. The parasite''s asexual replication rate and number of sexual transmission forms also increased in all lines, consistent with evolutionary models explaining high virulence. An upper bound to virulence, though not the asexual replication rate, was apparent, but this bound was not imposed by host mortality. Thus, we found evidence of the factors assumed to drive evolution of increased virulence, but not those thought to counter this selection.  相似文献   

6.
There are a number of ways in which a host can respond in evolutionary time to reductions in survival and reproduction due to a virulent parasite. These include evolving physiological morphological, or behavioural mechanisms of resistance to infection (or to proliferation, once infection has occurred). But a more unexpected tactic is also possible. This is for hosts to reproduce (slightly) sooner when in the presence of a virulent parasite as compared to when the parasite is less virulent or absent. As such, hosts which reproduce younger may be at a selective advantage, since they can both evade parasitism in time and, even when parasitised, can reduce the likely impact of the parasite on survival and reproductive success. We employ a simple mathematical model to propose that parasites and pathogens can act as important agents in the evolution of the timing of reproduction and associated life-history characters (e.g. body size). Once established in a semelparous host population, evolutionary increases in parasite virulence should result in the evolution of shorter lived hosts; whereas the evolution of less virulent forms of the parasite should be accompanied by the evolution of longer lived hosts. We argue that in the presence of a sufficiently virulent parasite the evolution of longer pre-reproductive life-spans should require the previous or concomitant evolution of morphological, behavioural or physiological resistance to parasitic infection and proliferation.  相似文献   

7.
Immunity promotes virulence evolution in a malaria model   总被引:2,自引:1,他引:1       下载免费PDF全文
Evolutionary models predict that host immunity will shape the evolution of parasite virulence. While some assumptions of these models have been tested, the actual evolutionary outcome of immune selection on virulence has not. Using the mouse malaria model, Plasmodium chabaudi, we experimentally tested whether immune pressure promotes the evolution of more virulent pathogens by evolving parasite lines in immunized and nonimmunized (“naïve”) mice using serial passage. We found that parasite lines evolved in immunized mice became more virulent to both naïve and immune mice than lines evolved in naïve mice. When these evolved lines were transmitted through mosquitoes, there was a general reduction in virulence across all lines. However, the immune-selected lines remained more virulent to naïve mice than the naïve-selected lines, though not to immunized mice. Thus, immune selection accelerated the rate of virulence evolution, rendering parasites more dangerous to naïve hosts. These results argue for further consideration of the evolutionary consequences for pathogen virulence of vaccination.  相似文献   

8.
The coinfection of a host by several parasite strains is known to affect selective pressures on parasite strategies of host exploitation. I present a general model of coinfections that ties together kin selection models of virulence evolution and epidemiological models of multiple infections. I derive an analytical expression for the invasion fitness of a rare mutant in a population with an arbitrary distribution of the multiplicity of infection (MOI) across hosts. When a single mutation affects parasite strategies in all MOI classes, I show that the evolutionarily stable level of virulence depends on a demographic average of within‐host relatedness across all host classes. This generalization of previous kin selection results requires that within‐host parasite densities do not vary between hosts. When host exploitation strategies are allowed to vary across classes, I show that the strategy of host exploitation in a focal MOI class depends on the relative magnitudes of parasite reproductive values in the focal class and in the next. Thus, in contrast to previous findings, lower within‐host relatedness in competitive parasite interactions can potentially correspond to either higher or lower levels of virulence.  相似文献   

9.
This study introduces an individual-based model on a host-parasite assemblage to investigate whether hosts are necessarily selected for obstructing the transmission of virulent parasites to conspecifics. Contrary to the widespread notion, a host's ability to influence parasite transmission within the host population is a neutral character provided that parasite transmission routes are random, with no reference to genetic relatedness. Due to a lack of selection pressure under such circumstances, hosts may fail to evolve counteradaptations against manipulations by parasites to enhance transmission. However, vertically biased transmission (biased toward kin) selects hosts for a decrease of parasite transmission, while it is also known to select parasites to decrease virulence. Horizontally biased transmission routes (biased toward nonrelated conspecifics) select hosts to increase parasite transmission. In this case, their interests coincide with that of their virulent parasites in enhancing transmission to conspecifics. This finding yields the predictions that hosts infected by virulent pathogens, but unable to recover from disease, should be prone to emigrate from their natal territories and also to enhance transmission at a distance from their natal ranges. These results may considerably improve our understanding of the epidemiology of contagious pathogens and the evolution of social and sexual behavior in host species.  相似文献   

10.
Genotype x environment interactions can facilitate coexistence of locally adapted specialists. Interactions evolve if adaptation to one environment trades off with performance in others. We investigated whether evolution on one host genotype traded off with performance on others in long-term experimental populations of different genotypes of the protozoan Paramecium caudatum, infected with the bacterial parasite Holospora undulata. A total of nine parasite selection lines evolving on three host genotypes and the ancestral parasite were tested in a cross-infection experiment. We found that evolved parasites produced more infections than did the ancestral parasites, both on host genotypes they had evolved on (positive direct response to selection) and on genotypes they had not evolved on (positive correlated response to selection). On two host genotypes, a negative relationship between direct and correlated responses indicated pleiotropic costs of adaptation. On the third, a positive relationship suggested cost-free adaptation. Nonetheless, on all three hosts, resident parasites tended to be superior to the average nonresident parasite. Thus genotype specificity (i.e., patterns of local adaptation) may evolve without costs of adaptation, as long as direct responses to selection exceed correlated responses.  相似文献   

11.
For over 25 years, many evolutionary ecologists have believed that sexual reproduction occurs because it allows hosts to change genotypes each generation and thereby evade their coevolving parasites. However, recent influential theoretical analyses suggest that, though parasites can select for sex under some conditions, they often select against it. These models assume that encounters between hosts and parasites are completely random. Because of this assumption, the fitness of a host depends only on its own genotype (“genotypic selection”). If a host is even slightly more likely to encounter a parasite transmitted by its mother than expected by random chance, then the fitness of a host also depends on its genetic similarity to its mother (“similarity selection”). A population genetic model is presented here that includes both genotypic and similarity selection, allowing them to be directly compared in the same framework. It is shown that similarity selection is a much more potent force with respect to the evolution of sex than is genotypic selection. Consequently, similarity selection can drive the evolution of sex even if it is much weaker than genotypic selection with respect to fitness. Examination of explicit coevolutionary models reveals that even a small degree of mother–offspring parasite transmission can cause parasites to favor sex rather than oppose it. In contrast to previous predictions, the model shows that weakly virulent parasites are more likely to favor sex than are highly virulent ones. Parasites have figured prominently in discussions of the evolution of sex, but recent models suggest that parasites often select against sex rather than for it. With the inclusion of small and realistic exposure biases, parasites are much more likely to favor sex. Though parasites alone may not provide a complete explanation for sex, the results presented here expand the potential for parasites to contribute to the maintenance of sex rather than act against it.  相似文献   

12.
In fungi, horizontal transmission of deleterious cytoplasmic elements is reduced by the vegetative incompatibility system. This self/non-self recognition system may select for greater diversity of fungal incompatibility phenotypes in a frequency-dependent manner but the link between the diversity of fungal phenotypes and the virulence of cytoplasmic parasites has been poorly studied. We used an epidemiological model to show that even when transmission between incompatibility types is permitted, parasite pressure can lead to high levels of polymorphism for vegetative incompatibility systems. Moreover, high levels of polymorphism in host populations can select for less virulent cytoplasmic parasites. This feedback mechanism between parasite virulence and vegetative incompatibility system polymorphism of host populations may account for the general avirulence of most known mycoviruses. Furthermore, this mechanism provides a new perspective on the particular ecology and evolution of the host/parasite interactions acting between fungi and their cytoplasmic parasites.  相似文献   

13.
The costs and benefits of parasite virulence are analysed in an evolutionarily stable strategy (ESS) model. Increased host mortality caused by disease (virulence) reduces a parasite's fitness by damaging its food supply. The fitness costs of high virulence may be offset by the benefits of increased transmission or ability to withstand the host's defences. It has been suggested that multiple infections lead to higher virulence because of competition among parasite strains within a host. A quantitative prediction is given for the ESS virulence rate as a function of the coefficient of relatedness among co-infecting strains. The prediction depends on the quantitative relation between the costs of virulence and the benefits of transmission or avoidance of host defences. The particular mechanisms by which parasites can increase their transmission or avoid host defences also have a key role in the evolution of virulence when there are multiple infections.  相似文献   

14.
Is the virulence of parasites an outcome of optimized infection? Virulence has often been considered an inevitable consequence of parasite reproduction when the cost incurred by the parasite in reducing the fitness of its current host is offset by increased infection of new hosts. More recent models have focused on how competition occurring between parasites during co-infection might effect selection of virulence. For example, if co-infection was common, parasites with higher intrinsic growth rates might be selected, even at the expense of being optimally adapted to infect new hosts. If growth rate is positively correlated with virulence, then competition would select increased virulence. We tested these models using a plasmid-encoded virulence determinant. The virulence determinant did not contribute to the plasmid's reproduction within or between hosts. Despite this, virulent plasmids were more successful than avirulent derivatives during selection in an environment allowing within-host competition. To explain these findings we propose and test a model in which virulent parasites are selected by reducing the reproduction of competitors.  相似文献   

15.
Although molecular biology has illustrated the phenotypic heterogeneity of Plasmodium falciparum, there are still no specific markers of virulence. As parasite virulence is an important determinant of severe malaria, the choice of comparison groups in the study of host factors influencing severity is a delicate issue. Ignoring parasite factors in the selection of controls potentially leads to biased comparisons between a majority of cases with virulent parasites and a majority of controls with non-virulent parasites. This article discusses how to avoid this virulence bias in the absence of specific markers of virulence.  相似文献   

16.
Understanding the processes that shape the evolution of parasites is a key challenge for evolutionary biology. It is well understood that different parasites may often infect the same host and that this may have important implications to the evolutionary behavior. Here we examine the evolutionary implications of the conflict that arises when two parasite species, one vertically transmitted and the other horizontally transmitted, infect the same host. We show that the presence of a vertically transmitted parasite (VTP) often leads to the evolution of higher virulence in horizontally transmitted parasites (HTPs), particularly if the VTPs are feminizing. The high virulence in some HTPs may therefore result from coinfection with cryptic VTPs. The impact of an HTP on a VTP evolution depends crucially on the nature of the life‐history trade‐offs. Fast virulent HTPs select for intermediate feminization and virulence in VTPs. Coevolutionary models show similar insights, but emphasize the importance of host life span to the outcome, with higher virulence in both types of parasite in short‐lived hosts. Overall, our models emphasize the interplay of host and parasite characteristics in the evolutionary outcome and point the way for further empirical study.  相似文献   

17.
Standard epidemiological theory predicts that parasites, which continuously release propagules during infection, face a trade‐off between virulence and transmission. However, little is known how host resistance and parasite virulence change during coevolution with obligate killers. To address this question we have set up a coevolution experiment evolving Nosema whitei on eight distinct lines of Tribolium castaneum. After 11 generations we conducted a time‐shift experiment infecting both the coevolved and the replicate control host lines with the original parasite source, and coevolved parasites from generation 8 and 11. We found higher survival in the coevolved host lines than in the matching control lines. In the parasite populations, virulence measured as host mortality decreased during coevolution, while sporeload stayed constant. Both patterns are compatible with adaptive evolution by selection for resistance in the host and by trade‐offs between virulence and transmission potential in the parasite.  相似文献   

18.
We demonstrate a correlated response of the virulence and the mode of transmission of the microsporidian parasite Edhazardia aedis to selection on the age at pupation of its host, the mosquito Aedes aegypti. We selected three lines of mosquitoes each for early or late pupation and exposed the larvae after zero, two and four generations of selection to a low and a high concentration of the parasite’s spores. Before selection the parasites induced a similar level of mortality in the six lines; after four generations of selection mortality was higher in the mosquitoes selected for late pupation than in those selected for early pupation. Overall, parasite-induced mortality was positively correlated with the mean age at pupation of the matching uninfected line. When they died, mosquitoes selected for early pupation harboured mostly binucleate spores, which are responsible for vertical transmission. Mosquitoes selected for late pupation were more likely to harbour uninucleate spores, which are responsible for horizontal transmission. The parasite enhanced this tendency for horizontal transmission by prolonging the larval period in the lines selected for late pupation, but not in the ones selected for early pupation. These results suggest that the genetic basis of the mosquito’s age at pupation helps to determine the parasite’s mode of transmission: parasites in rapidly developing mosquitoes are benign and transmit vertically, while parasites in slowly developing mosquitoes are virulent and transmit horizontally. Thus, as the host’s life history evolves, the parasite’s performance changes, because the host’s evolution changes the environment in which the parasite develops.  相似文献   

19.
An increasing number of scientists have recently raised concerns about the threat posed by human intervention on the evolution of parasites and disease agents. New parasites (including pathogens) keep emerging and parasites which previously were considered to be 'under control' are re-emerging, sometimes in highly virulent forms. This re-emergence may be parasite evolution, driven by human activity, including ecological changes related to modern agricultural practices. Intensive farming creates conditions for parasite growth and transmission drastically different from what parasites experience in wild host populations and may therefore alter selection on various traits, such as life-history traits and virulence. Although recent epidemic outbreaks highlight the risks associated with intensive farming practices, most work has focused on reducing the short-term economic losses imposed by parasites, such as application of chemotherapy. Most of the research on parasite evolution has been conducted using laboratory model systems, often unrelated to economically important systems. Here, we review the possible evolutionary consequences of intensive farming by relating current knowledge of the evolution of parasite life-history and virulence with specific conditions experienced by parasites on farms. We show that intensive farming practices are likely to select for fast-growing, early-transmitted, and hence probably more virulent parasites. As an illustration, we consider the case of the fish farming industry, a branch of intensive farming which has dramatically expanded recently and present evidence that supports the idea that intensive farming conditions increase parasite virulence. We suggest that more studies should focus on the impact of intensive farming on parasite evolution in order to build currently lacking, but necessary bridges between academia and decision-makers.  相似文献   

20.

Background  

Evolutionary theory suggests that the selection pressure on parasites to maximize their transmission determines their optimal host exploitation strategies and thus their virulence. Establishing the adaptive basis to parasite life history traits has important consequences for predicting parasite responses to public health interventions. In this study we examine the extent to which malaria parasites conform to the predicted adaptive trade-off between transmission and virulence, as defined by mortality. The majority of natural infections, however, result in sub-lethal virulent effects (e.g. anaemia) and are often composed of many strains. Both sub-lethal effects and pathogen population structure have been theoretically shown to have important consequences for virulence evolution. Thus, we additionally examine the relationship between anaemia and transmission in single and mixed clone infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号