首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rhythmic activity in cardiac Purkinje fibers can be analyzed by using the voltage clamp technique to study pacemaker currents. In normally polarized preparations, pacemaker activity can be generated by two distinct ionic mechanisms. The standard pacemaker potential (phase 4 depolarization) involves a slow potassium current, IK2. Following action potential repolarization, the IK2 channels slowly deactivate and thus unmask a steady background inward current. The resulting net inward current causes the slow pacemaker depolarization. Epinephrine accelerates the diastolic depolarization by promoting more complete and more rapid deactivation of IK2 over the pacemaker range of potentials. The catecholamine acts rather selectively on the voltage dependence of the gating mechanism, without altering the basic character of the pacemaker process. The nature of the pacemaker depolarization is altered by intoxication with high concentrations of cardiac glycosides or aglycones. These compounds promote spontaneous impulses in Purkinje fibers by a mechanism that supersedes the ordinary IK2 pacemaker. The digitalis-induced depolarization is generated by a transient inward current that is either absent or very small in untreated preparations. The transient inward current is largely carried by sodium ions. Its unusual time course probably reflects an underlying subcellular event, the oscillatory release of calcium ions from intracellular stores.  相似文献   

2.
Rhythmic activity in Purkinje fibers of sheep and in fibers of the rabbit sinus can be produced or enhanced when a constant depolarizing current is applied. When extracellular calcium is reduced successively, the required current strength is less, and eventually spontaneous beating occurs. These effects are believed due to an increase in steady-state sodium conductance. A significant hyperpolarization occurs in fibers of the rabbit sinus bathed in a sodium-free medium, suggesting an appreciable sodium conductance of the "resting" membrane. During diastole, there occurs a voltage-dependent and, to a smaller extent, time-dependent reduction in potassium conductance, and a pacemaker potential occurs as a result of a large resting sodium conductance. It is postulated that the mechanism underlying the spontaneous heart beat is a high resting sodium current in pacemaker tissue which acts as the generator of the heart beat when, after a regenerative repolarization, the decrease in potassium conductance during diastole reestablishes the condition of threshold.  相似文献   

3.
Ionic currents of enzymatically dispersed type I and type II cells of the carotid body have been studied using the whole cell variant of the patch-clamp technique. Type II cells only have a tiny, slowly activating outward potassium current. By contrast, in every type I chemoreceptor cell studied we found (a) sodium, (b) calcium, and (c) potassium currents. (a) The sodium current has a fast activation time course and an activation threshold at approximately -40 mV. At all voltages inactivation follows a single exponential time course. The time constant of inactivation is 0.67 ms at 0 mV. Half steady state inactivation occurs at a membrane potential of approximately -50 mV. (b) The calcium current is almost totally abolished when most of the external calcium is replaced by magnesium. The activation threshold of this current is at approximately -40 mV and at 0 mV it reaches a peak amplitude in 6-8 ms. The calcium current inactivates very slowly and only decreases to 27% of the maximal value at the end of 300-ms pulses to 40 mV. The calcium current was about two times larger when barium ions were used as charge carriers instead of calcium ions. Barium ions also shifted 15-20 mV toward negative voltages the conductance vs. voltage curve. Deactivation kinetics of the calcium current follows a biphasic time course well fitted by the sum of two exponentials. At -80 mV the slow component has a time constant of 1.3 +/- 0.4 ms whereas the fast component, with an amplitude about 20 times larger than the slow component, has a time constant of 0.16 +/- 0.03 ms. These results suggest that type I cells have predominantly fast deactivating calcium channels. The slow component of the tails may represent the activity of a small population of slowly deactivating calcium channels, although other possibilities are considered. (c) Potassium current seems to be mainly due to the activity of voltage-dependent potassium channels, but a small percentage of calcium-activated channels may also exist. This current activates slowly, reaches a peak amplitude in 5-10 ms, and thereafter slowly inactivates. Inactivation is almost complete in 250-300 ms. The potassium current is reversibly blocked by tetraethylammonium. Under current-clamp conditions type I cells can spontaneously fire large action potentials. These results indicate that type I cells are excitable and have a variety of ionic conductances. We suggest a possible participation of these conductances in chemoreception.  相似文献   

4.
Summary This paper describes experiments carried out in the absence of sodium and calcium in the external solution. Frog atrial trabeculae were stimulated in current clamp with the double sucrose gap technique. The voltage responses looked like slow action potentials with a clear threshold. These responses were not suppressed in the presence of EGTA, in the presence of sodium or calcium channel blockers, or when sulfate ions replaced chloride. Guinea pig isolated ventricular myocytes were studied in whole cell clamp mode with a pathch pipette. Under current clamp, they displayed also voltage responses with a threshold. These responses were resistant to cadmium (5mm), and were suppressed by barium (0.5mm). A negative slope conductance is required to take into account these results. The membrane current in current clamp can be estimated by plotting the response in the phase plane. This analysis shows that on both types of preparations, the current responsible for the negative slope is not time dependent. This current is suppressed by barium. It can be concluded that it is the outward current flowing through the inward rectifying potassium channels. To confirm this hypothesis, data obtained in voltage clamp on the same preparations were introduced into a computer model to predict the response in current clamp. The results were in agreement with the experiments. Similar responses could be recorded and analyzed on skeletal muscle in isotonic potassium solution. These results show that the inward rectifier can induce by itself properties looking like excitability on different preparations. The physiological significance of this effect in normal conditions is discussed. The voltage responses described in this paper look similar to the slow action potentials on heart, which are sensitive to modifications of the calcium channels, but also of the potassium channels. Some implications in cardiac pharmacology are discussed.  相似文献   

5.
S N A?rapetian 《Biofizika》1975,20(3):462-466
Depolarization current decreases and hyperpolarization current increases the amplitude of tracing hyperpolarization of the neuron action potential. Calcium-defficient solution supresses the tracing depolarization, and turns the rhythmical activity of the neuron into the flashlike one. An increase of outer concentration of potassium ions decreases the tracing depolarization. The latter is suppressed completely when the membrane behaves as a potassium electrode. The suppressing effect of the increase of potassium outer concentration on tracing hyperpolarization decreases with a decrease of calcium ions content in the medium. When an active release of sodium ions from the cell is inhibited with DNP and substitution of sodium ions by lithium ions the tracing hyperpolarization of the action potential is suppressed. The tracing hyperpolarization is also suppressed during the shunting of the electrogenic effect of potassium pump with the outcoming current of chlorine ions. It is suggested that the tracing hyperpolarization of the single action potential is due to the calcium-dependent fraction of electrogenic release of sodium ions from the cell.  相似文献   

6.
7.
“缺血”引起的绵羊浦肯野纤维跨膜电位与离子流变化   总被引:11,自引:2,他引:9  
张照 《生理学报》1992,44(5):487-495
以低氧、高钾、低pH、无能量供应的模拟缺血溶液灌流离体绵羊心脏浦肯野纤维,观察“缺血”对心肌跨膜电位和离子流的影响。实验共24例。跨膜电位的变化过程如下:模拟缺血液灌流后2-3min,首先出现最大舒张电位(MDP)轻度除极,4期舒张除极速率减慢,随后动作电位时程(APD)缩短(n=13)或先缩短、后延长、再缩短的变化(n=11),平台逐渐消失,最后MDP进一步除极,动作电位波幅(APA)减小,兴奋性逐渐降低,以致不能引出动作电位(AP)。其中6例即使MDP高于-60mV时AP已不能引出。以上变化过程历时长短不等,在不同标本为30-160min。跨膜离子流方面,当APD缩短时,在所有膜电位水平即时外向电流都明显增加。稳态电流-电压关系曲线由正常的S形变成直线,内向整流现象消失。慢内向离子流由“缺血”前的6.74±4.48nA减少到0.86±1.39nA,(M±SD,P<0.01,n=8),在多数测试电位水平都有显著减少,其电流-电压关系曲线向较负电位方向移位。以上结果提示:心肌“缺血”时浦肯野细胞起搏功能受抑制,细胞内大量K~+外流,Ca~(2+)内流减少,心肌细胞除极,以上多种变化可能为心肌缺血时心律失常发生的原因。  相似文献   

8.
A single sucrose gap techniques has been used to study action potentials and phase plane trajectories of them in atrial trabeculae of the rabbit. Using polynomial representations of current-voltage relationships a model of membrane action potential of atrial myocardial fibres is described and allows an interpretation of recording data from the phase plane trajectories. Our findings show: 1. Increasing extracellular calcium concentration increases a potassium conductivity of the atrial membrane. 2. An anomalous rectification concerning repolarizing currents in atrial fibres decreases with increasing extracellular calcium. 3. Acetylcholine (3.10(-4) g.cm-3) abolishes the anomalous rectification. These results are discussed in relation to previous electrophysiological studies of negative electrotropic effects of acetylcholine in cardiac muscle.  相似文献   

9.
The connection between an interneuron initiating pacemaker activity in the bursting RPa1 neuron and the bursting neuron itself (Pin and Gola, 1983) has been analyzed in the snail Helix pomatia. Prolonged depolarization of the interneuronal membrane produced in it a series of action potentials as well as a parallel initiation or enhancement of bursting activity in the RPa1 neuron. If the discharge in the interneuron was evoked by short current pulses of threshold amplitude, no bursting activity was seen in the RPa1 neuron. However, short stimuli delivered on the background of subthreshold depolarization of the interneuronal membrane produced bursting activity in the RPa1 neuron. Under voltage-clamp conditions a slow inward current could be recorded in the RPa1 neuronal membrane after stimulation of the interneuron with a latency of about 2 sec. Short shifts of the holding potential in the hyperpolarizing direction at the maximum of this current produced a transient outward current. Replacement of extracellular Ca2+ by Mg2+ ions, as well as addition of 1 mM CdCl2 to the external solution, prevented the response to the interneuronal stimulation in the RPa1 neuron. Electron microscopic investigation of the interneuron has shown the abundance of Golgi complexes in its cytoplasm with electron-dense granules in their vicinity. It is concluded that the connection between the interneuron and the bursting neuron is of chemical origin, based on secretion by the former of some substances which activate at least two types of ionic channels in the membrane of the RPa1 neuron.  相似文献   

10.
We have used the two-microelectrode voltage-clamp technique to investigate the components of membrane current that contribute to the formation of the early part of the plateau phase of the action potential of calf cardiac Purkinje fibers. 3,4-Diaminopyridine (50 microM) reduced the net transient outward current elicited by depolarizations to potentials positive to -30 mV but had no consistent effect on contraction. We attribute this effect to the blockade of a voltage-activated transient potassium current component. Ryanodine (1 microM), an inhibitor of sarcoplasmic reticulum calcium release and intracellular calcium oscillations in Purkinje fibers (Sutko, J.L., and J.L. Kenyon. 1983. Journal of General Physiology. 82:385-404), had complex effects on membrane currents as it abolished phasic contractions. At early times during a depolarization (5-30 ms), ryanodine reduced the net outward current. We attribute this effect to the loss of a component of calcium-activated potassium current caused by the inhibition of sarcoplasmic reticulum calcium release and the intracellular calcium transient. At later times during a depolarization (50-200 ms), ryanodine increased the net outward current. This effect was not seen in low-sodium solutions and we could not observe a reversal potential over a voltage range of -100 to +75 mV. These data suggest that the effect of ryanodine on the late membrane current is attributable to the loss of sodium-calcium exchange current caused by the inhibition of sarcoplasmic reticulum calcium release and the intracellular calcium transient. Neither effect of ryanodine was dependent on chloride ions, which suggests that chloride ions do not carry the ryanodine-sensitive current components. Strontium (2.7 mM replacing calcium) and caffeine (10 mM), two other treatments that interfere with sarcoplasmic reticulum function, had effects in common with ryanodine. This supports the hypothesis that the effects of ryanodine may be attributed to the inhibition of sarcoplasmic reticulum calcium release.  相似文献   

11.
Pacemaker Current in Frog Atrium   总被引:1,自引:0,他引:1  
PACEMAKER currents have been investigated by voltage clamp studies in Purkinje fibres1,2 but not in tissues from those regions of the heart where the natural pacemaker lies: the amphibian sinus and mammalian sino-atrial node. Repetitive activity can often be induced in normally quiescent frog atrial trabeculae by application of small depolarizing constant current pulses3. These currents impose on the atrial cells the low membrane potential characteristic of sinus muscle4, Moreover, the potential changes involved are very similar to those which may be recorded from spontaneously active sinus, successive action potentials being separated by phases of slow diastolic depolarization4 (Fig. 1a). It seems likely therefore that the membrane current controlling this diastolic depolarization in atrium will closely resemble that which generates the natural sinus pacemaker.  相似文献   

12.
Electric organ discharge (EOD) frequency in the brown ghost knifefish (Apteronotus leptorhynchus) is sexually dimorphic, steroid-regulated, and determined by the discharge rates of neurons in the medullary pacemaker nucleus (Pn). We pharmacologically characterized ionic currents that regulate the firing frequency of Pn neurons to determine which currents contribute to spontaneous oscillations of these neurons and to identify putative targets of steroid action in regulating sexually dimorphic EOD frequency. Tetrodotoxin (TTX) initially reduced spike frequency, and then reduced spike amplitude and stopped pacemaker activity. The sodium channel blocker muO-conotoxin MrVIA also reduced spike frequency, but did not affect spike amplitude or production. Two potassium channel blockers, 4-aminopyridine (4AP) and kappaA-conotoxin SIVA, increased pacemaker firing rates by approximately 20% and then stopped pacemaker firing. Other potassium channel blockers (tetraethylammonium, cesium, alpha-dendrotoxin, and agitoxin-2) did not affect the pacemaker rhythm. The nonspecific calcium channel blockers nickel and cadmium reduced pacemaker firing rates by approximately 15-20%. Specific blockers of L-, N-, P-, and Q-type calcium currents, however, were ineffective. These results indicate that at least three ionic currents-a TTX- and muO-conotoxin MrVIA-sensitive sodium current; a 4AP- and kappaA-conotoxin SIVA-sensitive potassium current; and a T- or R-type calcium current-contribute to the pacemaker rhythm. The pharmacological profiles of these currents are similar to those of currents that are known to regulate firing rates in other spontaneously oscillating neural circuits.  相似文献   

13.
Changes in the characteristics of activity of sodium, calcium, and potassium channels in the surface membrane during variation of the calcium ion concentration in the extracellular and intracellular medium were investigated by the voltage clamp method during intracellular dialysis of isolated neurons of the mollusksLimnea stagnalis andHelix pomatia. Besides their direct role in passage of the current through the membrane, calcium ions were shown to have two actions, differing in their mechanism, on the functional properties of this membrane. The first was caused by the electrostatic action of calcium ions on the outer surface of the membrane and was manifested as a shift of the potential-dependent characteristics of the ion transport channels along the potential axis; the second is determined by closer interaction of calcium ions with the specific structures of the channels. During the action of calcium-chelating agents EGTA and EDTA on the inner side of the membrane the conductivity of the potassium channels is substantially reduced. With an increase in the intracellular free calcium concentration the conductivity is partially restored. The action of EGTA and EDTA on the outer side of the membrane causes a substantial decrease in the ion selectivity of the calcium channels and changes the kinetics of the portal mechanism. These changes are easily abolished by rinsing off the chelating agents or by returning calcium ions to the external medium. A specific blocking action of an increase in the intracellular free calcium concentration on conductivity of the calcium channels was found.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 1, pp. 69–77, January–February, 1977.  相似文献   

14.
The effects of diazepam on potassium contractures, contraction threshold, and resting tension have been examined in rat soleus muscle fibres. Two actions of the drug were defined that could not be attributed to changes in the resting membrane potential or depolarization in high potassium solutions. The major effect was an increase in the amplitude of submaximal tension during either twitches or potassium contractures and an increase in resting tension. At 400 microM diazepam, there was (a) a fourfold increase in 40 mM potassium contracture tension, (b) a negative shift of 8 mV in the membrane potential for half maximum tension estimated from the best fit of a Boltzmann-type equation to average potassium contracture data, (c) a negative shift of 8 mV in the threshold for contraction measured under voltage clamp conditions, and (d) a contracture of variable amplitude to a level that was occasionally equivalent to maximum tetanic tension. These potentiating actions of diazepam depended on drug concentration within the range of 100-800 microM. In contrast, the second effect of diazepam, depression of maximum tension by 10-15%, was independent of drug concentration between 100 and 400 microM. The results support the idea that diazepam produces an increase in resting myoplasmic calcium concentrations.  相似文献   

15.
The mechanism underlying the voltage-dependent action of 4-aminopyridine (4-AP) is investigated in experiments on amphibian myelinated nerve fibres (Rana ridibunda Pallas) by way of extracellular recording of electrical activity and using activators of potassium current (potassium-free solution and nitric oxide NO) and inhibitors of sodium current (tetrodotoxin). Measurement of action potential (AP) areas was used to evaluate the extent of general membrane depolarization during the activity of nerve fibres. Tetrodotoxin-induced decrease in general membrane depolarization (when the action potential amplitude was reduced by less than 20%) leads to an increase in the duration of depolarizing after-potential (DAP). This supports the dependence of time course of DAP in the presence of 4-AP on ratio of fast and slow potassium channels. In the absence of 4-AP, potassium-free solution and NO increase the potassium current through fast potassium channels (decreasing AP duration, reducing DAP and sometimes producing fast hyperpolarizing after-potential (HAP) after shortened AP), and in the presence of 4-AP these activators increase potassium current through unblocked slow potassium channels (making the development of slow HAP induced by 4-AP more rapid). The increase of slow HAP induced by 4-AP under the influence of potassium-free solution with NO supports the idea that slow HAP is due to activation of slow potassium channels and argues against the notion of removal of block of fast potassium channels. All analyzed phenomena of voltage-dependent action of 4-AP in amphibian myelinated nerve fibers can be accounted for by the activation of slow potassium current produced by membrane depolarization and a decrease of the amount of fast potassium channels involved in the membrane repolarization.  相似文献   

16.
An endplate potential due to potassium released by the motor nerve impulse   总被引:4,自引:0,他引:4  
A small endplate potential can be recorded in frog muscle fibres, after all acetylcholine-mediated transmission has been eliminated by pre- or postsynaptic blocking agents (botulinum toxin, calcium lack, manganese, curare, alpha-bungarotoxin). It is usually necessary to hyperpolarize the muscle membrane to detect this 'non-cholinergic' endplate potential. Below--100 mV little or no response is seen; a maximum is reached at about--140 mV, when the amplitude can be as large as 100 microV (endplate current up to about 1 nA). Other characteristic features are: the response shows no quantal fluctuations; its amplitude is not facilitated by repetitive impulses; its size and time course are not noticeably affected by prostigmine, curare or alpha-bungarotoxin; the half-time of decline of the endplate current is approximately 1.7 ms at 20 degrees C, and is lengthened by lowering the temperature with a Q10 of about 1.3; the response is abolished by barium. When iontophoretic pulses of potassium are applied to the endplate, local depolarization is recorded whose amplitude varies with membrane potential similarly to that of the nerve-evoked response. These observations strongly indicate that this 'non-cholinergic', 'non-quantal' endplate potential arises from a rapid synaptic transfer of potassium ions, released by the active nerve terminal into the synaptic cleft and entering the muscle fibre through 'anomalous rectifier' channels in the endplate membrane.  相似文献   

17.
The action of a raised intracellular pH (pHi) on transmembrane ionic currents was investigated on isolated unidentified neurons ofHelix pomatia under intracellular dialysis and membrane voltage clamping conditions. With a rise in pHi from 7.3 to 9.0 and in the simultaneous presence of an inward calcium current, the outward potassium current was considerably reduced and the current-voltage characteristic curve was shifted toward more positive membrane potential values. The inward calcium current was practically unchanged in this case. If, however, the calcium current was inhibited by the action of cadmium ions, no decrease in the outward current was observed, only a shift of the IK(V) curve toward more positive values of membrane potential. It is suggested that an increase in pHi selectively blocks the Ca-dependent component of the outward potassium current.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 4, pp. 426–430, July–August, 1982.  相似文献   

18.
Previous histological studies showed that in addition to a sinus node, an atrioventricular (AV) node, an AV bundle, left and right bundle branches, birds also possess a right AV‐Purkinje ring that is located in the atrial sheet of the right muscular AV‐valve along all its base length. The functionality of the AV‐Purkinje ring is unknown. In this work, we studied the topology of pacemaker myocytes in the atrial side of the isolated chicken spontaneously contracting right muscular AV‐valve using the method of microelectrode mapping of action potentials. We show that AV‐cells having the ability to show pacemaking reside in the right muscular AV‐valve. Pacemaker action potentials were exclusively recorded close to the base of the valve along its whole length from dorsal to the ventral attachment to the interventricular septum. These action potentials have much slower rate of depolarization, lower amplitude, and higher diastolic depolarization than action potentials of Purkinje (conducting) cells. We conclude the right AV‐valve has a ring bundle of pacemaker cells (but not Purkinje cells) in the adult chicken heart. J. Morphol. 277:363–369, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
During prolonged activity the action potentials of skeletal muscle fibres change their shape. A model study was made as to whether potassium accumulation and removal in the tubular space is important with respect to those variations. Classical Hodgkin-Huxley type sodium and (potassium) delayed rectifier currents were used to determine the sarcolemmal and tubular action potentials. The resting membrane potential was described with a chloride conductance, a potassium conductance (inward rather than outward rectifier) and a sodium conductance (minor influence) in both sarcolemmal and tubular membranes. The two potassium conductances, the Na-K pump and the potassium diffusion between tubular compartments and to the external medium contributed to the settlement of the potassium concentration in the tubular space. This space was divided into 20 coupled concentric compartments. In the longitudinal direction the fibre was a cable series of 56 short segments. All the results are concerned with one of the middle segments. During action potentials, potassium accumulates in the tubular space by outward current through both the delayed and inward rectifier potassium conductances. In between the action potentials the potassium concentration decreases in all compartments owing to potassium removal processes. In the outer tubular compartment the diffusion-driven potassium export to the bathing solution is the main process. In the inner tubular compartment, potassium removal is mainly effected by re-uptake into the sarcoplasm by means of the inward rectifier and the Na-K pump. This inward transport of potassium strongly reduces the positive shift of the tubular resting membrane potential and the consequent decrease of the action potential amplitude caused by inactivation of the sodium channels. Therefore, both potassium removal processes maintain excitability of the tubular membrane in the centre of the fibre, promote excitation-contraction coupling and contribute to the prevention of fatigue. Received: 5 May 1998 / Revised version: 27 October 1998 / Accepted: 19 January 1999  相似文献   

20.
Summary We have investigated the pacemaker properties of aggregates of cells dissociated from the atria and ventricles of 10 to 14-day-old chick embryonic hearts using a two-microelectrode current and voltage-clamp technique. These preparations usually beat spontaneously and rhythmically in tissue culture medium containing 1.3mm potassium with a beat rate typically in the range of 15–60 beats per minute. The beat rate results show considerable variability, which precludes any statistically significant comparison between the spontaneous activity of atrial and ventricular cell preparations at 10–14 days of development. However, the shapes of pacemaker voltage changes do exhibit differences characteristic of cell type. Spontaneous atrial preparations rapidly depolarize from maximum diastolic potential (–90 mV) to a plateau range of pacemaker potentials (–80 to –75 mV). The membrane subsequently depolarizes more gradually until threshold (–65 mV) is reached. In contrast, spontaneously beating ventricular cell preparations slowly hyperpolarize after maximum diastolic potential to the –100 to –95 mV range before gradually depolarizing toward threshold. Voltage-clamp analysis reveals a virtual lack of any time-dependent pacemaker current in atrial preparations. These preparations are characterized by an approximately linear background current (I bg) having a slope resistance of 100 K cm2. Ventricular preparations have a potassium ion pacemaker current with slow kinetics (I K 2), and a second time-dependent component (I x) which is activated at potentials positive to –65 mV. The background current of these preparations displays inward rectification. Computer simulations of pacemaking reveal that the initial rapid phase of pacemaker depolarization in atrial cells is determined by the membrane time constant, which is the product of membrane capacitance and the slope resistance ofI bg. The hyperpolarization after maximum diastolic potential of ventricular cells is caused byI K 2. The final slow phase of depolarization in both cell types is caused in part by the steady-state amplitude of the fast inward sodium current (I Na). This component has negative slope conductance which effectively increases the slope resistance in the vicinity of threshold compared to TTX-treated preparations. This mechanism is sufficient to produce interbeat intervals several seconds in duration, even in the absence of time-dependent pacemaker current, provided that the background current is at the appropriate level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号