首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uptake of 22Na+ by liver plasma membrane vesicles, reflecting Na+ transport by (Na+, K+)ATPase or Na+/H+ exchange was studied. Membrane vesicles were isolated from rat liver homogenates or from freshly prepared rat hepatocytes incubated in the presence of [Arg8]vasopressin or pervanadate and insulin. The ATP dependence of (Na+, K+)ATPase-mediated transport was determined from initial velocities of vanadate-sensitive uptake of 22Na+, the Na(+)-dependence of Na+/H+ exchange from initial velocities of amiloride-sensitive uptake. By studying vanadate-sensitive Na+ transport, high-affinity binding sites for ATP with an apparent Km(ATP) of 15 +/- 1 microM were observed at low concentrations of Na+ (1 mM) and K+ (1mM). At 90 mM Na+ and 60 mM K+ the apparent Km(ATP) was 103 +/- 25 microM. Vesiculation of membranes and loading of the vesicles prepared from liver homogenates in the presence of vasopressin increased the maximal velocities of vanadate-sensitive transport by 3.8-fold and 1.9-fold in the presence of low and high concentrations of Na+ and K+, respectively. The apparent Km(ATP) was shifted to 62 +/- 7 microM and 76 +/- 10 microM by vasopressin at low and high ion concentrations, respectively, indicating that the hormone reduced the influence of Na+ and K+ on ATP binding. In vesicles isolated from hepatocytes preincubated with 10 nM vasopression the hormone effect was conserved. Initial velocities of Na+ uptake (at high ion concentrations and 1 mM ATP) were increased 1.6-1.7-fold above control, after incubation of the cells with vasopressin or by affinity labelling of the cells with a photoreactive analogue of the hormone. The velocity of amiloride-sensitive Na+ transport was enhanced by incubating hepatocytes in the presence of 10 nM insulin (1.6-fold) or 0.3 mM pervanadate generated by mixing vanadate plus H2O2 (13-fold). The apparent Km(Na+) of Na+/H+ exchange was increased by pervanadate from 5.9 mM to 17.2 mM. Vesiculation and incubation of isolated membranes in the presence of pervanadate had no effect on the velocity of amiloride-sensitive Na+ transport. The results show that hormone receptor-mediated effects on (Na+, K+)ATPase and Na+/H+ exchange are conserved during the isolation of liver plasma membrane vesicles. Stable modifications of the transport systems or their membrane environment rather than ionic or metabolic responses requiring cell integrity appear to be involved in this regulation.  相似文献   

2.
The short-term regulation of multidrug resistance-associated protein 3 (Mrp3/MRP3) by cAMP and PKC was investigated in sandwich-cultured rat and human hepatocytes and isolated perfused rat livers. The modulator glucagon (500 nM) and the phorbol ester PMA (0.1 muM) were utilized to increase intracellular cAMP and PKC levels, respectively. In glucagon-treated rat hepatocytes, efflux of the Mrp3 substrate 5-(6)-carboxy-2',7'-dichlorofluorescein (CDF) increased approximately 1.5-fold, even in hepatocytes treated with the organic anion transporter (Oatp) inhibitor sulfobromophthalein (BSP). Confocal microscopy revealed more concentrated Mrp3 fluorescence in the basolateral membrane (less diffuse staining pattern) with glucagon treatment. PMA had no effect on Mrp3 activity or localization in sandwich-cultured rat hepatocytes. Glucagon and PMA treatment in isolated perfused rat livers resulted in a threefold increase (14 +/- 4.6 mul.min(-1).g liver(-1)) and a fourfold decrease (1.3 +/- 0.3 mul.min(-1).g liver(-1)) in CDF basolateral clearance compared with control livers (4.7 +/- 2.3 mul.min(-1).g liver(-1)), whereas CDF biliary clearance was not statistically different. In sandwich-cultured human hepatocytes, glucagon treatment resulted in a 1.3-fold increase in CDF efflux and a concomitant increase in MRP3 fluorescence in the basolateral membrane. In summary, cAMP and PKC appear to be involved in the short-term regulation of Mrp3/MRP3, as demonstrated by alterations in activity and localization in rat and human hepatocytes.  相似文献   

3.
Non-transferrin-bound iron is efficiently cleared from serum by the liver and may be primarily responsible for the hepatic damage seen in iron-overload states. We tested the hypothesis that transport of ionic iron is driven by the negative electrical potential difference across the liver cell membrane. Extraction of 55Fe-labeled ferrous iron (1 microM) from Krebs bicarbonate buffer by the perfused rat liver was continuously monitored as the transmembrane potential difference (measured using conventional microelectrodes) was altered over the physiologic range by isosmotic ion substitution. Resting membrane potential in Krebs bicarbonate buffer was -28 +/- 1 mV. Perfusion with 1 microM ferrous iron caused a reversible 3 +/- 1 mV depolarization, and higher concentrations of iron caused even greater depolarization. Conversely, depolarization of the liver cells consistently reduced iron extraction. Replacement of sodium with potassium (70 mM) or choline (131 mM) depolarized the hepatocytes to -15 and -20 mV and decreased iron extraction by 28 and 31%, respectively. Perfusion with bicarbonate-free solutions containing tricine buffer (10 mM) reduced the membrane potential to -23 mV and reduced iron extraction by 18%. In contrast, the high basal extraction of iron (91.1 +/- 1.4%) was not further increased by substitution of nitrate for chloride (-46 mV) or infusion of glucagon (-34 mV). All effects were reversible, suggesting that perfusion with 1 microM iron produced little toxicity. These findings are consistent with an electrogenic transport mechanism for uptake of non-transferrin-bound iron that is driven by the transmembrane potential difference.  相似文献   

4.
While numerous effects of gut peptides on gastric, pancreatic, and intestinal secretion have been described, there has been little investigation of the influence of these peptides on hepatic function. In the present studies, effects of vasoactive intestinal peptide (VIP), somatostatin, thyrotropin-releasing hormone (TRH), and bombesin on taurocholate transport by isolated rat hepatocytes have been examined. Somatostatin, TRH, and bombesin in incubation media produced no change from control incubations with regard to either uptake of taurocholate by hepatocytes or efflux of bile acid from preloaded cells. However, incubation of hepatocytes with VIP produced a significant decrease in taurocholate uptake (1.34 +/- 0.13 versus 1.73 +/- 0.16 nmole.min-1.10(6) cells-1, P less than 0.001). Studies with verapamil, a calcium-channel blocking agent, and theophylline, an inhibitor of cAMP catabolism, failed to provide evidence for transmembrane Ca2+ flux or alteration in intracellular levels of cAMP, respectively, as mechanisms for the observed inhibition of hepatocyte taurocholate uptake by VIP. These data, coupled with both clinical and other basic observations, suggest that VIP may play a significant role in the regulation of hepatic bile secretion.  相似文献   

5.
Isolated rat liver perfusion system has been extensively used for metabolic and functional studies. Results derived from the application of this system may reflect true biochemical changes but they may also be associated with some structural changes. This study was undertaken to correlate the cytological changes and functional integrity of isolated rat liver perfused in vitro at normal physiological temperature (37 degrees C) and 30 degrees C, using a non-recirculating system. The livers were perfused for 3 hours with modified Ham's F10 culture medium supplemented with thyroxine hormone (T4). The hepatocyte structural integrity was studied by light microscopy, transmission and scanning electron microscopy. The triiodothyronine (T3) and T4 hormones in the perfusion medium and the effluent fractions were assessed by radioimmunoassay. The livers perfused at 30 degrees C remained morphologically intact at the ultrastructural level for 3 hours whilst at 37 degrees C, hepatocytes in the centrilobular zone exhibited marked structural alterations. The percentage of T4 uptake was significantly higher (P less than 0.01) in livers perfused at 30 degrees C (50.8 +/- 7.7% vs 38 +/- 7.7%, 37 degrees C), but the net T3 output (3.16 +/- 1.04 micrograms) and the conversion of T4 to T3 (4 +/- 0.62%) were significantly higher (P less than 0.001) in livers perfused at 37 degrees C in comparison to livers perfused at 30 degrees C (1.61 +/- 0.84 micrograms and 1.68 +/- 0.76%, respectively). In conclusion, at 30 degrees C the hepatic T4 uptake is not inhibited, but the rate of T4 to T3 conversion has decreased, additionally the livers remain morphologically well preserved throughout the experimental period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The influence of the hypoglycemic agent glipizide (0-100 microM) on the rate of gluconeogenesis from lactate, as well as on the levels of fructose 2,6-bisphosphate, has been investigated in hepatocytes isolated from genetically obese (fa/fa) Zucker rats and from their corresponding lean (Fa/-) littermates. As compared to lean rat hepatocytes, liver cells isolated from obese animals showed a lower rate of basal gluconeogenesis (0.9 +/- 0.2 vs 5.4 +/- 0.5 micromol of lactate converted to glucose/g cell x 30 min, n=4) and higher levels of fructose 2,6-bisphosphate (11.5 +/- 1.0 vs 5.9 +/- 0.4 nmol/g cell, n=8-9). In lean rat hepatocytes, the presence of glipizide in the incubation medium caused a dose-dependent inhibition of the rate of lactate conversion to glucose (maximal inhibition=46%; EC50 value=26 microM), and simultaneously raised the cellular content of fructose-2,6-bisphosphate (maximal increment=40%; EC50 value=10 microM). In contrast, in hepatocytes isolated from obese rats, the inhibition of gluconeogenesis and the increment in fructose-2,6-bisphosphate levels elicited by glipizide were significantly reduced (maximal effects of 22 and 13%, respectively). Similarly, the activation of glycogen phosphorylase and the increase in hexose 6-phosphate levels in response to glipizide were less marked in obese rat hepatocytes than in liver cells isolated from lean animals. These results demonstrate that the efficacy of sulfonylureas as inhibitors of hepatic gluconeogenesis is reduced in the genetically obese (fa/fa) Zucker rat.  相似文献   

7.
The aim of this study was to determine the mechanism of transport of 3-deazaguanine in the rat heart. We used single-pass, paired-tracer dilution method on isolated and retrogradely perfused rat hearts. The maximal cellular uptake (Umax) and total cellular uptake (Utot) of 3-deazaguanine were determined under control conditions and under influence of possible modifiers. Both Umax and Utot were significantly reduced in the presence of unlabeled 3-deazaguanine (from 19.57 +/- 2.02% to 8.14 +/- 1.19% and from 16.49 +/- 3.65% to 4.70 +/- 1.96%, n=6, respectively). The presence of pyrimidine nucleoside thymidine caused the reduction of both Umax and Utot (from 20.03 +/- 3.76% to 13.58 +/- 3.16% and from 16.43 +/- 3.58% to 11.94 +/- 3.13%, n=6, respectively). Also, we tested the effect of the absence of sodium ions in perfusion solution (both Umax and Utot, significantly reduced from 17.95 +/- 2.73% to 16.67 +/- 2.16% and from 16.68 +/- 2.97% to 14.81 +/- 3.04%, n=6, respectively) and the effect of dinitrophenol (both Umax and Utot significantly reduced from 19.09 +/- 3.68% to 10.58 +/- 3.14% and from 16.86 +/- 3.84% to 7.10 +/- 3.11%, n=6, respectively). The results of self- and cross-inhibition studies show that the transport of 3-deazaguanine is saturable, energy- and sodium-dependent and that 3-deazaguanine uses endogenous transport systems for thymidine and adenosine for its own transport.  相似文献   

8.
Isolated perfused rat livers have been used for various studies, but detailed investigation into the structural integrity of hepatocytes of this system is lacking. In this study, isolated rat livers were perfused in vitro with oxygenated Krebs-Ringer bicarbonate buffer solution, for 2 minutes and 1, 2, 3, and 4 hour(s) at 37 degrees C, using a non-recirculating perfusion system. The perfused livers were processed for semithin section light microscopy, transmission electron microscopy, and scanning electron microscopy. Sectional areas of cell deaths were measured by a camera-tracing assembly from 1.5 microns thick Araldite sections stained with toluidine blue. Progressive nuclear and cytoplasmic changes, leading to cell death, occurred in the hepatocytes of the centrilobular zone, during the 2nd, 3rd, and 4th hour of the perfusion at a rate of 9.03% +/- 1.5%, 38.7% +/- 2.7%, and 55.1% +/- 5.9% (mean +/- standard deviation) of the total sectional areas respectively. Midzonal hepatocytes showed normal basophilic staining but exhibited loss of glycogen granules, loss of microvilli, development of aqueous vacuoles and formation of blebs. The fine structures of cell organelles, glycogen granules, microvilli and plasma membrane of the cells in the periportal zone were well preserved throughout the experimental period. For further quantitative, metabolic and functional studies using isolated rat liver perfused with Krebs-Ringer solution, it is evident from the present investigation that the periportal zone represents the functional region of the hepatic lobule. Whilst progressive changes, leading to cell death, occurred in the centrilobular zone.  相似文献   

9.
Amiloride, a commonly used inhibitor of Na+-H+ exchange, has been shown to exhibit a variety of nonspecific effects. Recently, the more potent amiloride analogs, 5-(N,N-dimethyl)amiloride hydrochloride (DMA) and 5-(N-ethyl-N-isopropyl)amiloride (EIA), have been used to control for the nonspecific effects of the parent compound. In the present study, we have explored the effects of these analogs on Na+/K+-transporting ATPase (Na+/K+-ATPase) and Na+-coupled alanine transport in primary rat hepatocyte cultures and rat liver plasma membranes, and we have compared the effects of these analogs with the effects of amiloride and ouabain. Amiloride, DMA, and EIA increased steady-state Na+ content and inhibited ouabain-sensitive 86Rb+ uptake in a reversible, concentration-dependent, ouabain-like manner, with estimated 50% inhibitory concentrations (IC50) of 3.0.10(-3) M, 5.2.10(-4) M, and 1.2.10(-4) M, respectively. Amiloride, DMA and EIA also inhibited ouabain-sensitive ATP hydrolysis in rat liver plasma membranes with similar potency (IC50 values of 2.2.10(-3) M, 2.2.10(-3) M, and 1.7.10(-4) M, respectively). In separate experiments, amiloride (5.10(-3) M), DMA (10(-3) M), and EIA (2.5.10(-4) M) decreased the uptake into hepatocytes of alanine by 20%, 61%, and 59%, respectively, and further studies with DMA (10(-3) M) demonstrated that this inhibition was largely due to a decrease in the Na+-dependent fraction of alanine uptake. These findings indicate that amiloride, DMA, and EIA inhibit hepatic Na+/K+-ATPase directly, reversibly, and with a relative rank order potency of EIA greater than DMA greater than amiloride. All three compounds also inhibit the hepatic uptake of alanine, and presumably could indirectly inhibit other Na+-coupled transport processes as well.  相似文献   

10.
1. The metabolic fate of infused [1-14C]glutamate was studied in perfused rat liver. The 14C label taken up by the liver was recovered to 85 +/- 2% as 14CO2 and [14C]glutamine. Whereas 14CO2 production accounted for about 70% of the [1-14C]glutamate taken up under conditions of low endogenous rates of glutamine synthesis, stepwise stimulation of glutamine synthesis by NH4Cl increased 14C incorporation into glutamine at the expense of 14CO2 production. Extrapolation to maximal rates of hepatic glutamine synthesis yielded an about 100% utilization of vascular glutamate taken up by the liver for glutamine synthesis. This was observed in both, antegrade and retrograde perfusions and suggests an almost exclusive uptake of glutamate into perivenous glutamine-synthetase-containing hepatocytes. 2. Glutamate was simultaneously taken up and released from perfused rat liver. At a near-physiological influent glutamate concentration (0.1 mM), the rates of unidirectional glutamate influx and efflux were similar (about 100 and 120 nmol g-1 min-1, respectively). 3. During infusion of [1-14C]oxoglutarate (50 microM), addition of glutamate (2 mM) did not affect hepatic uptake of [1-14C]oxoglutarate. However, it increased labeled glutamate release from the liver about 10-fold (from 9 +/- 2 to 86 +/- 20 nmol g-1 min-1; n = 4), whereas 14CO2 production from labeled oxoglutarate decreased by about 40%. This suggests not only different mechanisms of oxoglutarate and glutamate transport across the plasma membrane, but also points to a glutamate/glutamate exchange. 4. Oxoglutarate was recently shown to be taken up almost exclusively by perivenous glutamine-synthetase-containing hepatocytes [Stoll, B & H?ussinger, D. (1989) Eur. J. Biochem. 181, 709-716] and [1-14C]oxoglutarate (9 microM) was used to label selectively the intracellular glutamate pool in this perivenous cell population. The specific radioactivity of this intracellular (perivenous) glutamate pool was assessed by measuring the specific radioactivity of newly synthesized glutamine which is continuously released from these cells into the perfusate. Comparison of the specific radioactivities of glutamine and glutamate released from perivenous cells indicates that about 60% of total glutamate release from the liver is derived from the perivenous glutamine-synthetase-containing cell population. Following addition of unlabeled glutamate (0.1 mM), unidirectional glutamate efflux from perivenous cells increased from about 30 to 80 nmol g-1 min-1, whereas glutamate efflux from non-perivenous (presumably periportal) hepatocytes remained largely unaltered (i.e. 20-30 nmol g-1 min-1). 5. It is concluded that, in the intact liver, vascular glutamate is almost exclusively taken up by the small perivenous hepatocyte population containing glutamine synthetase.  相似文献   

11.
To elucidate insulin action on hepatic glucose output (glycogenolysis) in the state exposed to an excess glucocorticoid, the fed rat liver was isolated and cyclically perfused with a medium containing 5 mM glucose and various concentrations of insulin. The rat was subcutaneously injected with 1 mg/kg of dexamethasone (Dex) for 7 days. Dex-treated rats showed marked increases of serum insulin and plasma glucose level compared with those in control rats. Hepatic glycogen contents in Dex group were markedly increased compared with those in control (115 +/- 5 and 28 +/- 4 mg/g, respectively). Insulin extraction rate in the perfused liver was not different between control and Dex group. Perfusate glucose level after 60 min perfusion was much higher in the Dex-treated rat liver than that of the control at 0 microU/ml insulin (34.5 +/- 2.5 vs 23.0 +/- 2.0 mM, P less than 0.01), and reduced to the nadir level (19.0 +/- 3.0 and 13.0 +/- 1.5 mM, respectively) at 100 microU/ml insulin in both groups, i.e., the decreasing rate in perfusate glucose level was not different between Dex and control group (43% and 44%, respectively). These results suggest that Dex-treatment augments hepatic glucose output, but does not affect the sensitivity and responsiveness of that to insulin.  相似文献   

12.
The effects of plasma components on the kinetics of copper transport by rat hepatocytes were examined in an attempt to determine how copper is mobilized from plasma for uptake by the liver. Specific protein-facilitated transport was indicated by saturation kinetics, competition by related substrates, and similar kinetic parameters for uptake and efflux. For copper uptake, Km = 11 +/- 0.6 microM and Vmax = 2.7 +/- 0.6 nmol Cu/(min X mg protein). Zinc is a competitive inhibitor of copper uptake, and copper competes for zinc uptake. Copper efflux from preloaded cells is biphasic. The kinetic parameters for the initial rapid phase are similar to the parameters for uptake. Copper transport by hepatocytes is strictly passive. A variety of metabolic inhibitors have no effect on uptake and initial rates are solely dependent on extracellular-intracellular concentration gradients. Albumin markedly inhibits copper uptake by a substrate removal mechanism, and histidine facilitates albumin-inhibited copper uptake. The active species that delivers copper to hepatocytes under conditions of excess albumin and excess histidine is the His2Cu complex. Experiments with [3H]His2 64Cu showed that the transported species is free ionic copper. The kinetic parameters of copper transport by hepatocytes isolated from the brindled mouse model of Menkes' disease are normal. However, these cells show a decreased capacity to accumulate copper on prolonged incubation. An intracellular metabolic defect seems to be involved.  相似文献   

13.
The effect of inhibition of glycogen phosphorylase by 1,4-dideoxy-1,4-imino-d-arabinitol on rates of gluconeogenesis, gluconeogenic deposition into glycogen, and glycogen recycling was investigated in primary cultured hepatocytes, in perfused rat liver, and in fed or fasted rats in vivo clamped at high physiological levels of plasma lactate. 1,4-Dideoxy-1,4-imino-d-arabinitol did not alter the synthesis of glycerol-derived glucose in hepatocytes or lactate-derived glucose in perfused liver or fed or fasted rats in vivo. Thus, 1,4-dideoxy-1,4-imino-d-arabinitol inhibited hepatic glucose output in the perfused rat liver (0.77 +/- 0.19 versus 0.33 +/- 0.09, p < 0.05), whereas the rate of lactate-derived gluconeogenesis was unaltered (0.22 +/- 0.09 versus 0.18 +/- 0.08, p = not significant) (1,4-dideoxy-1,4-imino-d-arabinitol versus vehicle, micromol/min * g). Overall, the data suggest that 1,4-dideoxy-1,4-imino-d-arabinitol inhibited glycogen breakdown with no direct or indirect effects on the rates of gluconeogenesis. Total end point glycogen content (micromol of glycosyl units/g of wet liver) were similar in fed (235 +/- 19 versus 217 +/- 22, p = not significant) or fasted rats (10 +/- 2 versus 7 +/- 2, p = not significant) with or without 1,4-dideoxy-1,4-imino-d-arabinitol, respectively. The data demonstrate no glycogen cycling under the investigated conditions and no effect of 1,4-dideoxy-1,4-imino-d-arabinitol on gluconeogenic deposition into glycogen. Taken together, these data also suggest that inhibition of glycogen phosphorylase may prove beneficial in the treatment of type 2 diabetes.  相似文献   

14.
As a first step in attempting to isolate the Na(+)-dependent System N transporter from rat liver we have investigated the use of prophase-arrested oocytes from Xenopus laevis for the functional expression of rat liver glutamine transporters. Individual oocytes, defolliculated by collagenase treatment, were injected with 50 nl of a 1 mg.ml-1 solution of poly(A)+ RNA (mRNA) isolated from rat liver. 50 microM L-[3H]glutamine uptake was measured 1-5 days post-injection: after 48 h, poly(A)+ RNA-injected oocytes showed a 60 +/- 12% increase in Na(+)-dependent glutamine uptake compared to controls. This increased uptake showed characteristic features of hepatic System N: that is, it tolerated Li(+)-for-Na+ substitution and was inhibited by the System N substrate L-histidine (5 mM) in Li medium, unlike endogenous Na(+)-dependent glutamine transport. In subsequent experiments rat liver poly(A)+ RNA, size-fractionated by density gradient fractionation, was injected into oocytes. Injection of poly(A)+ RNA of 1.9-2.8 kilobases (kb) in size resulted in a significant stimulation of Na(+)-dependent glutamine transport to 0.362 +/- 0.080 pmol.min-1/oocyte from 0.178 +/- 0.060 pmol.min-1/oocyte in vehicle-injected oocytes (p less than 0.01). A lighter fraction, with poly(A)+ RNA of less than 1.9 kilobases size resulted in a similar increase in Na(+)-dependent glutamine uptake which was largely Li(+)-tolerant: Li(+)-stimulated glutamine uptake in oocytes injected with this fraction increased to 0.230 +/- 0.070 pmol.min-1/oocyte from 0.098 +/- 0.029 pmol.min-1/oocyte in controls (p less than 0.05). This enhanced rate of Li(+)-stimulated glutamine uptake was inhibited 28 and 70%, respectively, by 1 and 5 mM L-histidine. Na(+)-independent uptake of glutamine rose by 72 +/- 12% in oocytes injected with poly(A)+ RNA of 2.8-3.6 kb (p less than 0.001). These results demonstrate that glutamine transporters, with characteristics associated with hepatic Systems N, L, and A (or ASC), can be expressed in X. laevis oocytes injected with specific size fractions of rat liver mRNA.  相似文献   

15.
Liou HH  Hsu HJ  Tsai YF  Shih CY  Chang YC  Lin CJ 《Life sciences》2007,81(8):664-672
To examine the interaction between nicotine and MPTP/MPP+ in the blood-brain barrier, cellular uptake of MPTP and MPP+ was studied in the presence of nicotine and several compounds, including MPTP/MPP+ analogs and a specific inhibitor of organic cation transporter (OCT) in an adult rat brain microvascular endothelial cell line (ARBEC). The kinetic properties of the uptake of MPTP, MPP+, and nicotine were also examined. In addition, a microdialysis study was performed to evaluate the in vivo effect of nicotine (i.p.) on extracellular levels of MPTP and MPP+ in the brain after intravenous administration of MPTP. The results showed that uptake of MPTP, MPP+, and nicotine was partly mediated by a carrier system that was sensitive to decynium22, a specific OCT inhibitor. RT-PCR showed the presence of OCT1 mRNA in ARBEC. Capacity for uptake of MPTP and nicotine was much higher than that for MPP+ (Km and Vm values of 10.94+/-1.44 microM and 0.049+/-0.007 pmol/mg s, respectively, for MPP+, compared to values of 35.75+/-0.85 microM and 40.95+/-3.56 pmol/mg s for MPTP and 25.29+/-6.44 microM and 51.15+/-14.18 pmol/mg s for nicotine). In addition, nicotine competitively inhibited the uptake of both MPTP and MPP+, with inhibition constants (Ki) of 328 microM and 210 microM, respectively. In vivo microdialysis results showed that nicotine significantly reduced brain extracellular levels of MPTP in the first 30 min (507.4+/-8.5 ng/ml vs. 637.9+/-30.8 ng/ml with and without nicotine pre-treatment, respectively), but did not have significant effect on those of MPP+. In conclusion, nicotine can inhibit in vitro cellular uptake and in vivo transfer of MPTP across the blood-brain barrier, which can be mediated by multiple pathways including OCT1.  相似文献   

16.
Cancer influences hepatic amino acid metabolism in the host. To further investigate this relationship, the effects of an implanted fibrosarcoma on specific amino acid transport activities were measured in periportal (PP)- and perivenous (PV)-enriched rat hepatocyte populations. Na(+)-dependent glutamate transport rates were eightfold higher in PV than in PP preparations but were relatively unaffected during tumor growth. System N-mediated glutamine uptake was 75% higher in PV than in PP preparations and was stimulated up to twofold in both regions by tumor burdens of 9 +/- 4% of carcass weight compared with hepatocytes from pair-fed control animals. Excessive tumor burdens (26 +/- 7%) resulted in hypophagia, loss of PV-enriched system N activities, and reduced transporter stimulation. Conversely, saturable arginine uptake was enhanced fourfold in PP preparations and was induced twofold only after excessive tumor burden. These data suggest that hepatic amino acid transporters are differentially influenced by cancer in a spatial and temporal manner, and they represent the first report of reciprocal zonal enrichment of system N and saturable arginine uptake in the mammalian liver.  相似文献   

17.
The aim of this study was to investigate the effects of calcium channel blockers on tertbutyl hydroperoxide (TBH) induced liver injury using isolated perfused rat hepatocytes. Rat hepatocytes were immobilized in agarose threads and perfused with Williams E medium. Hepatocyte injury was induced by the addition of tertbutyl hydroperoxide (1 mM) to the perfusion medium 30 min after the addition of either verapamil or diltiazim. Hepatocyte injury was observed by monitoring the functional and metabolic competence of hepatocytes or by ultrastructural morphological examination of hepatocytes. Verapamil (0.5 mM) reduced lactate dehydrogenase leakage in TBH-injured hepatocytes as compared to the controls (154+/-11% vs. 247+/-30%). Lipid peroxides production was reduced after verapamil pretreatment as compared to the controls and oxygen consumption was increased by pretreatment of hepatocytes with verapamil. Verapamil pretreatment increased the protein synthesis activity at both levels of granular endoplasmic reticulum and free polysomes in cytoplasm and decreased ATPase activity. Diltiazem was qualitatively effective as verapamil. It is concluded that in hepatocyte oxidative injury, calcium channel blockers exhibited hepatoprotective properties. The hepatoprotective effect of calcium channel blockers was accompanied by a decrease in ATPase activity, which may implicate a normalization of Ca2+i after TBH intoxication.  相似文献   

18.
The present study was undertaken to elucidate the direct effect of thyrotropin (TSH) on the conversion of thyroxine (T4) to 3,5,3'-triiodothyronine (T3) in the isolated perfused rat liver. The liver was perfused without recirculation with a synthetic medium containing 10 micrograms/dl T4 and the effect of constant infusion of bovine TSH (125 or 250 microU/ml) on the conversion of T4 to T3 was examined. T4 uptake in the perfused liver was not changed by the addition of TSH. The release of T3 (10.3 +/- 1.4 ng/g/30min, mean +/- SD), tissue T3 production (99.5 +/- 21.4 ng/g/30min), net T3 production (102.6 +/- 20.2 ng/g/30min), and the conversion rate of T4 to T3 (14.8 +/- 3.5%) in the liver perfused with 250 microU/ml TSH were significantly higher than those in controls (8.1 +/- 1.2 ng/g/30min, 69.0 +/- 6.8 ng/g/30min, 69.9 +/- 6.1 ng/g/30min, and 10.0 +/- 0.8%), respectively. These results suggest that TSH may directly enhance hepatic conversion of T4 to T3 in rats in vitro.  相似文献   

19.
The relationship between L-tryptophan uptake and tryptophan 2,3-dioxygenase activity in hepatocytes was examined and compared with the change of hepatic L-leucine, L-phenylalanine, and L-tyrosine uptakes using isolated hepatocytes of rats in which the oxygenase was induced with L-tryptophan or hydrocortisone. In L-tryptophan- or hydrocortisone-treated rat hepatocytes, the rate of L-tryptophan uptake into hepatocytes via the saturable high-affinity transport component significantly increased but the hepatic uptake rate of L-leucine did not change at all. In hydrocortisone-treated rat hepatocytes, a little stimulated hepatic uptake of L-phenylalanine or L-tyrosine was observed. In the stimulated hepatic uptake of L-tryptophan via the high-affinity transport component, the Km value did not change but the Vmax value increased. Liver plasma membranes prepared from rats treated with L-tryptophan or hydrocortisone showed the same binding rate of L-tryptophan to the membranes as those from control rats. In addition, hepatic L-tryptophan uptake via the high-affinity transport component correlated well with hepatic tryptophan 2,3-dioxygenase activity (r = 0.787). The present results indicate that the uptake of L-tryptophan into hepatocytes via a transport system which works under physiological conditions is closely related to hepatic tryptophan 2,3-dioxygenase activity.  相似文献   

20.
1. Heat output by suspensions of isolated rat hepatocytes was determined by using a modified batch-type microcalorimeter. 2. The ratio of O(2) uptake (determined polarographically) to heat output was used to assess the metabolic efficiency of isolated hepatocytes. 3. Cells from starved or fed rats incubated in either bicarbonate-buffered physiological saline containing gelatin, or bicarbonate-buffered physiological saline containing amino acids, serum albumin and glucose showed no significant difference with respect to the ratio of O(2) uptake to heat output. 4. For liver cells from 24h-starved rats, the addition of 10mm-dihydroxyacetone and 2.5mm-fructose significantly decreased the ratio of O(2) uptake to heat output from 1.94+/-0.05 in the controls to 1.52+/-0.04 and 1.54+/-0.01mumol/J respectively. 5. Glucagon (1mum), which slightly increased both O(2) uptake and heat output, did not significantly alter the ratio. 6. The addition of extracellular 10mm-NH(4)Cl and urease to provide an energetically wasteful cycle by ensuring hydrolysis of newly synthesized urea, lowered the ratio of O(2) uptake to heat output from 1.81+/-0.08 to 1.47+/-0.06mumol/J, indicating a reduced metabolic efficiency. 7. Metabolic efficiency in rats of different dietary regimen, age and genetically based obesity was also assessed. No differences in the ratio of O(2) uptake to heat output were found between liver cell suspensions prepared from rats maintained on colony diet and high-fat diet or sucrose-rich diet nor between animals ranging from 38 to 179 days of age. Comparison of the ratio of liver cell O(2) uptake to heat output between homozygote Zucker fa/fa obese rats and their lean littermates showed no significant difference. 8. It is concluded that the ratio of O(2) uptake to heat output for isolated hepatocytes is relatively constant unless perturbed by conditions that markedly enhance substrate cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号