首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction catalyzed by orotidine 5'-monophosphate decarboxylase (OMPDC) is accompanied by exceptional values for rate enhancement (k(cat)/k(non) = 7.1 × 10(16)) and catalytic proficiency [(k(cat)/K(M))/k(non) = 4.8 × 10(22) M(-1)]. Although a stabilized vinyl carbanion/carbene intermediate is located on the reaction coordinate, the structural strategies by which the reduction in the activation energy barrier is realized remain incompletely understood. This laboratory recently reported that "substrate destabilization" by Asp 70 in the OMPDC from Methanothermobacter thermoautotrophicus (MtOMPDC) lowers the activation energy barrier by ~5 kcal/mol (contributing ~2.7 × 10(3) to the rate enhancement) [Chan, K. K., Wood, B. M., Fedorov, A. A., Fedorov, E. V., Imker, H. J., Amyes, T. L., Richard, J. P., Almo, S. C., and Gerlt, J. A. (2009) Biochemistry 48, 5518-5531]. We now report that substitutions of hydrophobic residues in a pocket proximal to the carboxylate group of the substrate (Ile 96, Leu 123, and Val 155) with neutral hydrophilic residues decrease the value of k(cat) by as much as 400-fold but have a minimal effect on the value of k(ex) for exchange of H6 of the FUMP product analogue with solvent deuterium; we hypothesize that this pocket destabilizes the substrate by preventing hydration of the substrate carboxylate group. We also report that substitutions of Ser 127 that is proximal to O4 of the orotate ring decrease the value of k(cat)/K(M), with the S127P substitution that eliminates hydrogen bonding interactions with O4 producing a 2.5 × 10(6)-fold reduction; this effect is consistent with delocalization of the negative charge of the carbanionic intermediate on O4 that produces an anionic carbene intermediate and thereby provides a structural strategy for stabilization of the intermediate. These observations provide additional information about the identities of the active site residues that contribute to the rate enhancement and, therefore, insights into the structural strategies for catalysis.  相似文献   

2.
The crystal structure of yeast orotidine 5'-monophosphate decarboxylase (ODCase) complexed with the inhibitor 6-hydroxyuridine 5'-phosphate (BMP) reveals the presence of a series of strong interactions between enzyme residues and functional groups of this ligand. Enzyme contacts with the phosphoribofuranosyl moiety of orotidine 5'-phosphate (OMP) have been shown to contribute at least 16.6 kcal/mol of intrinsic binding free energy to the stabilization of the transition state for the reaction catalyzed by yeast ODCase. In addition to these enzyme-ligand contacts, active site residues contributed by both subunits of the dimeric enzyme are positioned to form hydrogen bonds with the 2'- and 3'-OH groups of the ligand's ribosyl moiety. These involve Thr-100 of one subunit and Asp-37 of the opposite subunit, respectively. To evaluate the contributions of these ribofuranosyl contacts to ground state and transition state stabilization, Thr-100 and Asp-37 were each mutated to alanine. Elimination of the enzyme's capacity to contact individual ribosyl OH groups reduced the k(cat)/K(m) value of the T100A enzyme by 60-fold and that of the D37A enzyme by 300-fold. Removal of the 2'-OH group from the substrate OMP decreased the binding affinity by less than a factor of 10, but decreased k(cat) by more that 2 orders of magnitude. Upon removal of the complementary hydroxymethyl group from the enzyme, little further reduction in k(cat)/K(m) for 2'-deoxyOMP was observed. To assess the contribution made by contacts involving both ribosyl hydroxyl groups at once, the ability of the D37A mutant enzyme to decarboxylate 2'-deoxyOMP was measured. The value of k(cat)/K(m) for this enzyme-substrate pair was 170 M(-1) s(-1), representing a decrease of more than 7.6 kcal/mol of binding free energy in the transition state. To the extent that electrostatic repulsion in the ground state can be tested by these simple alterations, the results do not lend obvious support to the view that electrostatic destabilization in the ground state enzyme-substrate complex plays a major role in catalysis.  相似文献   

3.
A novel nonradioactive, microassay method has been developed to determine simultaneously the two enzymatic activities of orotate phosphoribosyltransferase (OPRTase) and orotidine 5'-monophosphate decarboxylase (ODCase), either as a bifunctional protein (uridine 5'-monophosphate synthase, UMPS) or as separate enzymes. Substrates (orotate for OPRTase or orotidine 5'-monophosphate for ODCase) and a product (UMP) of the enzymatic assay were separated by high-performance liquid chromatography (HPLC) using a reversed-phase column and an ion-pairing system; the amount of UMP was quantified by dual-wavelength uv detection at 260 and 278 nm. This HPLC assay can easily detect picomole levels of UMP in enzymatic reactions using low specific activity UMPS of mammalian cell extracts, which is difficult to do with the other nonradioactive assays that have been described. The HPLC assay is suitable for use in protein purification and for kinetic study of these enzymes.  相似文献   

4.
Orotidine 5'-monophosphate decarboxylase (ODCase) catalyzes the decarboxylation of orotidine 5'-monophosphate, the last step in the de novo synthesis of uridine 5'-monophosphate. ODCase is a very proficient enzyme [Radzicka, A., and Wolfenden, R. (1995) Science 267, 90-93], enhancing the reaction rate by a factor of 10(17). This proficiency has been enigmatic, since it is achieved without metal ions or cofactors. Here we present a 2.5 A resolution structure of ODCase complexed with the inhibitor 1-(5'-phospho-beta-D-ribofuranosyl)barbituric acid. It shows a closely packed dimer composed of two alpha/beta-barrels with two shared active sites. The orientation of the orotate moiety of the substrate is unambiguously deduced from the structure, and previously proposed catalytic mechanisms involving protonation of O2 or O4 can be ruled out. The proximity of the OMP carboxylate group with Asp71 appears to be instrumental for the decarboxylation of OMP, either through charge repulsion or through the formation of a very short O.H.O hydrogen bond between the two carboxylate groups.  相似文献   

5.
The crystal structure of the complex formed between recombinant yeast orotidine 5'-phosphate decarboxylase and the competitive inhibitor 6-hydroxyuridine 5'-phosphate reveals the presence of four hydrogen bonds between active site residues Tyr-217 and Arg-235 and the phosphoryl group of this inhibitor. When Tyr-217 and Arg-235 are individually mutated to alanine, values of k(cat)/K(m) are reduced by factors of 3000- and 7300-fold, respectively. In the Y217A/R235A double mutant, activity is reduced more than 10(7)-fold. Experiments with highly enriched [(14)C]orotic acid show that when ribose 5'-phosphate is deleted from substrate orotidine 5'-phosphate, k(cat)/K(m) is reduced by more than 12 orders of magnitude, from 6.3 x 10(7) M(-1) s(-1) for OMP to less than 2.5 x 10(-5) M(-1) s(-1) for orotic acid. Activity toward orotate is not "rescued" by 1 M inorganic phosphate. The K(i) value of ribose 5'-phosphate, representing the part of the natural substrate that is absent in orotic acid, is 8.1 x 10(-5) M. Thus, the effective concentration of the 5'-phosphoribosyl group, in stabilizing the transition state for enzymatic decarboxylation of OMP, is estimated to be >2 x 10(8) M, representing one of the largest connectivity effects that has been reported for an enzyme reaction.  相似文献   

6.
The enzymatic decarboxylation of orotidine 5'-monophosphate may proceed by an addition-elimination mechanism involving a covalently bound intermediate or by elimination of CO2 to generate a nitrogen ylide. In an attempt to distinguish between these two alternatives, 1-(phosphoribosyl)barbituric acid was synthesized with 13C at the 5-position. Interaction of this potential transition-state analogue inhibitor with yeast orotidine-5'-monophosphate decarboxylase resulted in a small (0.6 ppm) downfield displacement of the C-5 resonance, indicating no rehybridization of the kind that might have been expected to accompany 5,6-addition of an enzyme nucleophile. When the substrate orotidine 5'-monophosphate was synthesized with deuterium at C-5, no significant change in kcat (H/D = 0.99 +/- 0.06) or kcat/KM (H/D = 1.00 +/- 0.06) was found to result, suggesting that C-5 does not undergo significant changes in geometry before or during the step that determines the rate of the catalytic process. These results are consistent with a nitrogen ylide mechanism and offer no support for the intervention of covalently bound intermediates in the catalytic process.  相似文献   

7.
The effect of exogenous adenine or uracil upon the de novo pathway for synthesis of pyrimidine nucleotides in Escherichia coli K12 was investigated. Parameters studied were levels of the enzymes carbamoyl phosphate synthase (EC 2.7.2.9), aspartate carbamoyltransferase (EC 2.1.3.2) and orotate phosphoribosyltransferase (EC 2.4.2.10) and the intermediates carbamoyl phosphate, aspartate and orotate, together with the contributions of exogenous uracil and aspartate to intracellular pyrimidine nucleotide. Taken with earlier data [Bagnara, A.S. & Finch, L. R. (1974) Eur. J. Biochem- 41, 421--430] on contents of UTP, CTP and 5-phosphoribosyl 1-diphosphate in cultures of this strain after the addition of adenine or uracil, the results obtained provide new insights into the regulatory mechanisms operating on the pathway in vivo. These insights enable evaluation of the contributions of such factors as limitation for a substrate, feed-back allosteric control by end products and enzyme repression/depression mechanisms. The evidence presented indicates that depressed levels of orotate phosphoribosyltransferase in E. coli K12 result in the wasteful ultilization of asparatate for excess synthesis of pyrimidine nucleotide precursors during balanced growth of the strain in minimal medium. Exogenous adenine increases the excessive accumulation of these precursors by lowering the intracellular content of 5-phosphoribosyl 1-diphosphate (Bagnara and Finch, 1974). This causes a decrease in the conversion of orotate to orotidine 5'-monophosphate, thus lowering the utilization or orotate and its precursors for synthesis of pyrimidine nucleotides. Further, since the contents of these nucleotide end products are thereby decreased (Bagnara nad Finch, 1974), theri feed-back on the early steps in the pathway is diminished and the production of the precursors is increased. It is postulated that growth of E. coli K12 under these conditions is limited by a compound that is metabolically related to precursors to aspartate.  相似文献   

8.
Orotidine-5'-monophosphate decarboxylase (OD-Case) catalyzes the conversion of orotidine 5'-monophosphate to UMP. In mammals, ODCase is present as part of a bifunctional protein which also contains orotate phosphoribosyltransferase; the preceding enzyme in the de novo UMP biosynthetic pathway. We have isolated a plasmid (pMEJ) which contains a cDNA for the ODCase domain of UMP synthase. Insertion of this sequence into an Escherichia coli expression vector (pUC12) has allowed for the expression of ODCase and not orotate phosphoribosyltransferase in E. coli. The molecular weight of the expressed protein is 26,000-27,300 from immunoblot analysis which corresponds closely to the molecular weight of the ODCase domain (28,500) isolated by tryptic digestion of UMP synthase. We have sequenced the cDNA insert of pMEJ and deduced the amino acid sequence. The molecular weight of the ODCase domain calculated from the amino acid sequence in 28,654. Comparison of the deduced amino acid sequence from pMEJ with that for yeast ODCase (a monofunctional protein) demonstrated that 52% of the amino acids were identical when the two sequences are compared. Furthermore, several stretches of the amino acid sequence have 80% or greater absolute homology.  相似文献   

9.
A rapid and efficient method is described for the synthesis of [6-14C]orotidine 5′-monophosphate from radioactive orotic acid using purified yeast orotate phosphoribosyltransferase and inorganic pyrophosphatase. Radioactive orotidine 5′-monophosphate is purified by ion exchange chromatography and employed in small scale assays of Drosophila orotate phosphoribosyltransferase and orotldylate decarboxylase in which both enzyme activities are simultaneously measured in single reaction mixtures. Radioactive substrate and products are separated for counting using DEAE-cellulose paper chromatograms developed in one or two solvents.  相似文献   

10.
Regulation of pyrimidine nucleotide biosynthesis in Pseudomonas synxantha ATCC 9890 was investigated and the pyrimidine biosynthetic pathway enzyme activities were affected by pyrimidine supplementation in cells grown on glucose or succinate as a carbon source. In pyrimidine-grown ATCC 9890 cells, the activities of four de novo enzymes could be depressed which indicated possible repression of enzyme synthesis. To learn whether the pathway was repressible, pyrimidine limitation experiments were conducted using an orotate phosphoribosyltransferase (pyrE) mutant strain identified in this study. Compared to excess uracil growth conditions for the succinate-grown mutant strain cells, pyrimidine limitation of this strain caused dihydroorotase activity to increase about 3-fold while dihydroorotate dehydrogenase and orotidine 5'-monophosphate decarboxylase activities rose about 2-fold. Regulation of de novo pathway enzyme synthesis by pyrimidines appeared to be occurring. At the level of enzyme activity, aspartate transcarbamoylase activity in P. synxantha ATCC 9890 was strongly inhibited in vitro by pyrophosphate, UTP, ADP, ATP, CTP and GTP under saturating substrate concentrations.  相似文献   

11.
Mutants of orotidine 5'-monophosphate decarboxylase containing all possible single (Q215A, Y217F, and R235A), double, and triple substitutions of the side chains that interact with the phosphodianion group of the substrate orotidine 5'-monophosphate have been prepared. Essentially the entire effect of these mutations on the decarboxylation of the truncated neutral substrate 1-(β-d-erythrofuranosyl)orotic acid that lacks a phosphodianion group is expressed as a decrease in the third-order rate constant for activation by phosphite dianion. The results are consistent with a model in which phosphodianion binding interactions are utilized to stabilize a rare closed enzyme form that exhibits a high catalytic activity for decarboxylation.  相似文献   

12.
A pyrimidine phosphoribosyltransferase, previously shown to utilize 5-fluorouracil and possibly also uracil and orotate (Reyes, P. (1969) Biochemistry 8, 2057-2062), has been purified about 100-fold from murine leukemia P1534J. Roughly 20% of the original activity was recovered to yield an enzyme preparation with a specific activity of 7.4 mumol of 5-fluorouracil utilized/hour/mg of protein. Disc gel electrophoresis of this preparation revealed the presence of a major band of protein accompanied by several trace contaminants. Emphasis was placed on a study of the substrate specificity of this enzyme. 5-Fluorouracil, uracil, and orotate phosphoribosyltransferase activities purified in parallel during fractionation with ammonium sulfate and protamine sulfate and eluted together from columns of Sephadex tG-150 and DEAE-cellulose. The three phosphoribosyltransferase activities eluted from the Sephadex columns with an apparent molecular weight of 55,000 to 60,000. In spite of this coordinate fractionation, preferential losses of orotate activity were experienced during DEAE-cellulose chromatography. Orotate activity continued to behave in a unique manner under other conditions, such as during proteolytic digestion. In the latter case, however, all three activities responded in parallel when digestion took place in the presence of 5mM UMP. The following results provided additional evidence to support the view that all three phosphoribosyltransferase activities may be catalyzed by the same enzyme: (a) the apparent Km for 5-phosphoribosyl 1-pyrophosphate (PP-ribose-P) did not change significantly when enzyme activity was measured with either 5-fluorouracil, uracil, or orotate; (b) 5-fluorouracil and uracil were found to be mutually competitive inhibitors; the effect of 5-fluorouracil on orotate activity was likewise competitive in nature; (c) in the absence of UMP, orotate was a noncompetitive inhibitor of 5-fluorouracil and uracil activities, but in the presence of 5mM UMP it became a competitive inhibitor of both of these activities; (d) 5-fluorouracil and orotate activities co-sedimented in 5 to 20% sucrose gradients (uracil activity was not examined); and (e) a wide variety of normal mouse tissues displayed virtually the same 5-fluorouracil to uracil to orotate activity ratio as found in P1534J enzyme preparations. The apparent Km and Ki values reported in this study indicate that the preferred pyrimidine substrate is orotate. It seems likely, therefore, that this enzyme functions in vivo as an orotate phosphoribosyltransferase. Orotate phosphoribosyltransferase and orotidine 5'-monophosphate (OMP) decarboxylase activities (a) eluted together during gel filtration on Sephadex G-150, (b) co-sedimented in 5 to 20% sucrose gradients, (c) remained associated during fractionation with ammonium sulfate and protamine sulfate, and (d) separated into a phosphoribosyltransferase and decarboxylase component when enzyme preparations previously subjected to limited proteolysis by elastase were sedimented in sucrose gradients...  相似文献   

13.
An energy decomposition scheme has been used to elucidate the importance of the changes of enzyme conformational substates to the reduction of the activation barrier in enzyme-catalyzed reactions. This analysis may be illustrated by the reaction of orotidine 5'-monophosphate decarboxylase, which exhibits a remarkable rate enhancement of over 17 orders of magnitude compared to the uncatalyzed process. The mechanism shows that the enzyme conformation is more distorted in the reactant state than in the transition state. The energy released from protein conformation relaxation provides the predominant contribution to the rate enhancement of orotidine 5'-monophosphate decarboxylase. The proposed mechanism is consistent with results from site-directed mutagenesis experiments, in which mutations distant from the reactive center can have significant effects on the catalytic rate enhancement (k(cat)), but rather a small influence on the binding affinity for the substrate (K(M)).  相似文献   

14.
Orotate phosphoribosyltransferase (EC 2.4.2.10) and orotidine 5'-monophosphate decarboxylase (EC 4.1.1.23) are the final two of six enzymatic steps required in the de novo biosynthesis of uridine 5'-monophosphate (UMP). Earlier work of this laboratory showed that, in the mouse Ehrlich ascites carcinoma, both of these enzymatic activities were contained on the single multifunctional polypeptide chain, UMP synthase. We report here that the placenta provided an available human source for UMP synthase with 40-fold higher orotate phosphoribosyltransferase and orotidine 5'-monophosphate decarboxylase specific activities than erythrocytes, a human source previously used by others. By using the placenta as a source of UMP synthase and by developing a novel purification procedure different from that used in the purification of UMP synthase from the Ehrlich ascites carcinoma (the only other homogeneous preparation of a mammalian UMP synthase), we achieved the purification of human UMP synthase to apparent homogeneity. This represents the first publication to homogeneity of UMP synthase from a human source as well as from a source other than malignant cell lines. Contrary to earlier reports human placental UMP synthase was found to be a multifunctional protein containing both enzymatic activities on a single polypeptide of 51,000 molecular weight. Preliminary characterization of the human placental UMP synthase showed it to be similar to UMP synthase from the Ehrlich ascites carcinoma in subunit molecular weight, native molecular weight, isozyme pattern (although not absolute pI values), pH optima of enzymatic activities, and kinetic constants for orotidine 5'-monophosphate (Km) and 6-azauridine 5'-monophosphate (Ki) at the decarboxylase site.  相似文献   

15.
Rishavy MA  Cleland WW 《Biochemistry》2000,39(16):4569-4574
Orotidine 5'-monophosphate shows a (15)N isotope effect of 1.0036 at N-1 for decarboxylation catalyzed by orotidine 5'-monophosphate decarboxylase. Picolinic acid shows a (15)N isotope effect of 0.9955 for decarboxylation in ethylene glycol at 190 degrees C, while N-methyl picolinic acid shows a (15)N isotope effect of 1.0053 at 120 degrees C. The transition state for enzymatic decarboxylation of orotidine 5'-monophosphate resembles the transition state for N-methyl picolinic acid in that no bond order changes take place at N-1. This rules out enolization to give a quaternary nitrogen at N-1 in the enzymatic mechanism and suggests a carbanion intermediate stabilized by simple electrostatic interaction with Lys-93. The driving force for the reaction appears to be ground-state destabilization resulting from charge repulsion between the carboxyl of the substrate and Asp-91.  相似文献   

16.
An orotate phosphoribosyltransferase, OPRTase, assay method which relies upon binding reactant [3H]orotic acid and product [3H]orotidine-5'-monophosphate to polyethyleneimine-impregnated-cellulose resin and collecting on a GFC glass fiber filter is presented. Elution with 2 X 5 ml of 0.1 M sodium chloride in 5 mM ammonium acetate removes all of the orotate and leaves all of the product orotidine monophosphate (OMP) bound so that it may be measured in a scintillation counter. It was found that the addition of 10 microM barbituric acid riboside monophosphate to the reaction mixture prevented the conversion of OMP to UMP and products of UMP. The assay is suitable for measurement of OPRTase activity with purified enzyme or in crude homogenates. A modification of this scheme using commercially available yeast OPRTase and 10 microM of unlabeled OMP provides an assay for phosphoribosylpyrophosphate with a sensitivity such that 10 pmol of PRPP may be measured.  相似文献   

17.
The final two steps of de novo uridine 5'-monophosphate (UMP) biosynthesis are catalyzed by orotate phosphoribosyltransferase (OPRT) and orotidine 5'-monophosphate decarboxylase (OMPDC). In most prokaryotes and simple eukaryotes these two enzymes are encoded by separate genes, whereas in mammals they are expressed as a bifunctional gene product called UMP synthase (UMPS), with OPRT at the N terminus and OMPDC at the C terminus. Leishmania and some closely related organisms also express a bifunctional enzyme for these two steps, but the domain order is reversed relative to mammalian UMPS. In this work we demonstrate that L. donovani UMPS (LdUMPS) is an essential enzyme in promastigotes and that it is sequestered in the parasite glycosome. We also present the crystal structure of the LdUMPS in complex with its product, UMP. This structure reveals an unusual tetramer with two head to head and two tail to tail interactions, resulting in two dimeric OMPDC and two dimeric OPRT functional domains. In addition, we provide structural and biochemical evidence that oligomerization of LdUMPS is controlled by product binding at the OPRT active site. We propose a model for the assembly of the catalytically relevant LdUMPS tetramer and discuss the implications for the structure of mammalian UMPS.  相似文献   

18.
19.
K. LI AND T.P. WEST. 1995. Two uracil auxotrophs of the phytopathogen Burkholderia cepacia ATCC 25416, which is known to be involved in food spoilage, were isolated by a combination of ethylmethane sulphonate and D-cycloserine counterselection. One mutant exhibited depressed orotate phosphoribosyltransferase activity while the other mutant lacked orotidine 5'-monophosphate decarboxylase activity. Pyrimidine limitation of either auxotroph elevated aspartate transcarbamoylase and dihydroorotase activities by at least 1.5-fold indicating that these pathway enzymes may be repressible by a uracil-related compound in B. cepacia . Overall, regulation of de novo pyrimidine synthesis in the uracil auxotrophs of B. cepacia ATCC 25416 was observed.  相似文献   

20.
A potential alternate substrate for orotidine-5'-monophosphate decarboxylase, 2- thio-orotidine-5'-monophosphate, was synthesized enzymatically and purified by a modification of a previous account (K. Shostak, and M. E. Jones 1992, Biochemistry 31, 12155-12161). Characterization of the product was confirmed by mass spectrometry, (31)P NMR, and utilization by orotate phosphoribosyltransferase in the direction of pyrophosphorolysis. The previous work probably did not result in the purification of the desired compound, as evidenced by our observation of 2-thioOMP's sensitivity to high temperature, as used previously. Using a very sensitive HPLC assay for the potential decarboxylated product 2-thioUMP, no measurable activity of ODCase toward the alternate substrate was observed, representing a decarboxylation rate decreased by 10(-7) from the k(cat) for ODCase toward OMP. Additionally, 2-thioOMP effects no inhibition of ODCase decarboxylation of OMP at a concentration of 50 microM, indicating a poor ability to bind to the ODCase active site. The results bear implications for proposed mechanisms for catalysis by ODCase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号