首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Escherichia coli grew faster in autoclaved marine sediment than in seawater alone. When E. coli was cultivated in sediment diluted with minimal medium M63 at 0.6 M NaCl, supplemented or not supplemented with glucose or with seawater, the osmoprotector glycine betaine was accumulated in the cells. The best growth occurred on glucose. Accumulation of glycine betaine was not observed with E. coli was grown in sterile seawater alone. The fact that E. coli grew better in the sediments than in seawater is attributed somewhat to the high content of organic matter in the sediment but mainly to the accumulation of glycine betaine. Thus, osmoprotection should be considered to be an additional factor in bacterial survival in estuarine sediments.  相似文献   

2.
Considering both the protective effect of glycine betaine (GB) on enteric bacteria grown at high osmolarity and the possible presence of GB in marine sediments, we have analyzed the survival, in nutrient-free seawater, of Escherichia coli cells incubated in sediments supplemented with GB or not supplemented and measured the efficiency of GB uptake systems and the expression of proP and proU genes in both seawater and sediments. We did this by using strains harboring proP-lacZ and proU-lacZ operon or gene fusions. We found that the uptake of GB and the expression of both proP and proU were very weak in seawater. The survival ability of cells in seawater supplemented with GB was a linear function of GB concentration, although the overall protection by the osmolyte was low. In sediments, proP expression was weak and GB uptake and proU expression were variable, possibly depending on the availability of organic nutrients. In a sediment with a high total organic carbon content, GB uptake was very high and proU expression was enhanced; cells previously incubated in this sediment showed a higher resistance to decay in seawater. GB might therefore play a significant role in the long-term maintenance of enteric bacterial cells in some marine sediments.  相似文献   

3.
Considering both the protective effect of glycine betaine (GB) on enteric bacteria grown at high osmolarity and the possible presence of GB in marine sediments, we have analyzed the survival, in nutrient-free seawater, of Escherichia coli cells incubated in sediments supplemented with GB or not supplemented and measured the efficiency of GB uptake systems and the expression of proP and proU genes in both seawater and sediments. We did this by using strains harboring proP-lacZ and proU-lacZ operon or gene fusions. We found that the uptake of GB and the expression of both proP and proU were very weak in seawater. The survival ability of cells in seawater supplemented with GB was a linear function of GB concentration, although the overall protection by the osmolyte was low. In sediments, proP expression was weak and GB uptake and proU expression were variable, possibly depending on the availability of organic nutrients. In a sediment with a high total organic carbon content, GB uptake was very high and proU expression was enhanced; cells previously incubated in this sediment showed a higher resistance to decay in seawater. GB might therefore play a significant role in the long-term maintenance of enteric bacterial cells in some marine sediments.  相似文献   

4.
The conjugative transfer of plasmid RP4 between two strains of Escherichia coli in a sterile marine sediment was enhanced by the presence of glycine betaine (frequency increased 20 to 40 times). The conjugation was also facilitated by the osmoprotection of donor cells. Glycine betaine is a universal osmolyte and has been found in marine sediments at high concentrations. So this phenomenon could have epidemiological and sanitary importance by increasing the possibility of dissemination of some plasmids present in enterobacteria in natural marine deposits.  相似文献   

5.
We present evidence that glycine betaine (betaine) which was synthesized from choline was excreted and reaccumulated in osmoregulating cells of Escherichia coli. Choline which was accumulated in bet mutants defective in betaine synthesis was shown to be excreted in response to betaine uptake. Our data suggest that E. coli has efflux systems for betaine and choline which are independent of the uptake systems for these metabolites. The ProU system of E. coli, but not that of Salmonella typhimurium, can mediate low-affinity choline uptake.  相似文献   

6.
A major component of the Escherichia coli response to elevated medium osmolarity is the synthesis of a periplasmic protein with an Mr of 31,000. The protein was absent in mutants with lambda placMu insertions in the proU region, a locus involved in transport of the osmoprotectant glycine betaine. This periplasmic protein has now been purified to homogeneity. Antibody directed against the purified periplasmic protein crossreacts with the fusion protein produced as a result of the lambda placMu insertion, indicating that proU is the structural gene specifying the 31-kDa protein. The purified protein binds glycine betaine with high affinity but has no affinity for either proline or choline, clarifying the role of proU in osmoprotectant transport. The amino-terminal sequence of the mature glycine betaine binding protein is Ala-Asp-Leu-Pro-Gly-Lys-Gly-Ile-Thr-Val-Asn-Pro.  相似文献   

7.
Glycine betaine is believed to be the most active naturally occurring osmoprotectant molecule for Escherichia coli and other bacteria. It is a dipolar ion possessing a quaternary ammonimum group and a carboxylic acid group. To examine the molecular requirements for osmoprotective activity, dimethylthetin was compared with glycine betaine. Dimethylthetin is identical to glycine betaine except for substitution of dimethyl sulfonium for the quaternary nitrogen group. Dimethylthetin was found to be about equally as effective as glycine betaine in permitting E. coli to grow in hypertonic NaCl, and both compounds were recovered almost completely from bacterial cells grown in the presence of hypertonic NaCl. 3-Dimethylsulfonioproprionate, an analog of dimethylthetin observed in marine algae, and 3-Dimethylsulfonio-2-methylproprionate were found to be less active. Dimethylthetin may prove useful as a molecular probe to study betaine metabolism and as a model for the development of antibacterial agents.  相似文献   

8.
The genes from the extreme halophile Ecto-thiorhodospira halochloris encoding the biosynthesis of glycine betaine from glycine were cloned into Escherichia coli. The accumulation of glycine betaine and its effect on osmotolerance of the cells were studied. In mineral medium with NaCl concentrations from 0.15 to 0.5 M, the accumulation of both endogenously synthesized and exogenously provided glycine betaine stimulated the growth of E. coli. The intracellular levels of glycine betaine and the cellular yields were clearly higher for cells receiving glycine betaine exogenously than for cells synthesizing it. The lower level of glycine betaine accumulation in cells synthesizing it is most likely a consequence of the limited availability of precursors (e.g. S-adenosylmethionine) rather than the result of a low expression level of the genes. Glycine betaine also stimulated the growth of E. coli and decreased acetate formation in mineral medium with high sucrose concentrations (up to 200 g.l(-1)).  相似文献   

9.
Escherichia coli, a fecal coliform, was found to survive for longer periods of time in unsterile natural seawater when sediment material was present than in seawater alone, and at least on one occasion growth was observed to occur. This enteric bacterium was found to increase rapidly in number in autoclaved natural seawater and autoclaved sediment taken from areas receiving domestic wastes, even when the seawater had salinities as high as 34 g/kg. However, in autoclaved seawater, growth was always more gradual and never reached numbers as high as those observed when sediment was present. It was found that nutrients were easily eluted from the sediment after autoclaving or upon addition to artificial seawater, but little elution occured during mixing of the sediments with unsterile natural seawater. The longer survival of E. coli in the sediment is attributed to the greater content of organic matter present in the sediment than the sweater. These laboratory results, in part, could explain why on a volume basis larger numbers of coliforms and fecal coliforms and fecal coliforms were found in estuarine sediments than the overlaying water at field sites.  相似文献   

10.
Compatible solutes such as glycine betaine and proline betaine are accumulated to exceedingly high intracellular levels by many organisms in response to high osmolarity to offset the loss of cell water. They are excluded from the immediate hydration shell of proteins and thereby stabilize their native structure. Despite their exclusion from protein surfaces, the periplasmic ligand-binding protein ProX from the Escherichia coli ATP-binding cassette transport system ProU binds the compatible solutes glycine betaine and proline betaine with high affinity and specificity. To understand the mechanism of compatible solute binding, we determined the high resolution structure of ProX in complex with its ligands glycine betaine and proline betaine. This crystallographic study revealed that cation-pi interactions between the positive charge of the quaternary amine of the ligands and three tryptophan residues forming a rectangular aromatic box are the key determinants of the high affinity binding of compatible solutes by ProX. The structural analysis was combined with site-directed mutagenesis of the ligand binding pocket to estimate the contributions of the tryptophan residues involved in binding.  相似文献   

11.
Lac- mutants of Escherichia coli which presented a growth triggered by adding glycine betaine to the medium were isolated and characterized. Glycine betaine restores beta-galactosidase (strain AM 12) and lactose permease (strain AT42) activities. It is suggested that the right and active conformation of these enzymes, lost during mutagenesis, is restored, in vivo, in presence of this betaine.  相似文献   

12.
13.
Abstract The metabolism of the methylated osmolytes glycine betaine (GB) and dimethylsulfoniopropionate (DMSP) was studied in a bacterium (strain MD 14–50) isolated from a colony of the cyanobacterium Trichodesmium . MD 14–50 when grown on DMSP cleaved dimethylsulfide (DMS) from DMSP and oxidized acrylate. In contrast to DMSP, GB was metabolized by sequential N-demethylations. Low concentrations (100 μM) of DMSP or GB allowed the growth of MD 14–50 on glucose at higher salinities than in their absence. At elevated salinities, DMSP was accumulated intracellularly with less catabolism and DMS production. Thus, DMSP and GB were catabolized by different mechanisms but functioned interchangeably as osmolytes.  相似文献   

14.
Trehalose considerably increased the tolerance of Escherichia coli to air drying, whether added as an excipient prior to drying or accumulated as a compatible solute in response to osmotic stress. The protective effect of exogenously added trehalose was concentration dependent, up to a threshold value of 350 mM. However, trehalose alone cannot explain the intrinsically greater desiccation tolerance of stationary compared to exponential phase E. coli cells, although their tolerance was also enhanced by exogenous or endogenously accumulated trehalose. In contrast, glycine betaine whether added as an excipient or accumulated intracellularly had no influence on desiccation tolerance. These data demonstrate that the protection provided by compatible solutes to cells subjected to desiccation differs from that during osmotic stress, due to the much greater reduction in available cell water. The protective effects of trehalose during desiccation appear to be due to its stabilising influence on membrane structure, its chemically inert nature and the propensity of trehalose solutions to form glasses upon drying, properties which are not shared by glycine betaine.  相似文献   

15.
We combined the use of low inoculation titers (300 +/- 100 CFU/ml) and enumeration of culturable cells to measure the osmoprotective potentialities of dimethylsulfoniopropionate (DMSP), dimethylsulfonioacetate (DMSA), and glycine betaine (GB) for salt-stressed cultures of Escherichia coli. Dilute bacterial cultures were grown with osmoprotectant concentrations that encompassed the nanomolar levels of GB and DMSP found in nature and the millimolar levels of osmoprotectants used in standard laboratory osmoprotection bioassays. Nanomolar concentrations of DMSA, DMSP, and GB were sufficient to enhance the salinity tolerance of E. coli cells expressing only the ProU high-affinity general osmoporter. In contrast, nanomolar levels of osmoprotectants were ineffective with a mutant strain (GM50) that expressed only the low-affinity ProP osmoporter. Transport studies showed that DMSA and DMSP, like GB, were taken up via both ProU and ProP. Moreover, ProU displayed higher affinities for the three osmoprotectants than ProP displayed, and ProP, like ProU, displayed much higher affinities for GB and DMSA than for DMSP. Interestingly, ProP did not operate at substrate concentrations of 200 nM or less, whereas ProU operated at concentrations ranging from 1 nM to millimolar levels. Consequently, proU(+) strains of E. coli, but not the proP(+) strain GM50, could also scavenge nanomolar levels of GB, DMSA, and DMSP from oligotrophic seawater. The physiological and ecological implications of these observations are discussed.  相似文献   

16.
17.
The spread of antibiotic-resistant microorganisms is widely recognized, but data about their sources, presence, and significance in marine environments are still limited. We examined 109 Escherichia coli strains from coastal marine sediments carrying virulence genes for antibiotic susceptibility, specific resistance genes, prevalence of class 1 and 2 integrons, and sequence type. Antibiotic resistance was found in 35% of strains, and multiple resistances were found in 14%; the resistances detected most frequently were against tetracycline (28%), ampicillin (16.5%), trimethoprim-sulfamethoxazole (13%), and streptomycin (7%). The highest prevalence of resistant strains was in phylogenetic group A, whereas phylogroup B2 exhibited a significantly lower frequency than all the other groups. Sixty percent of multiresistant strains harbored class 1 or 2 integrase genes, and about 50% carried resistance genes (particularly dfrA and aadA) linked to a class 1 integron. Multilocus sequence typing of 14 selected strains identified eight different types characteristic of extraintestinal pathogens and three new allelic combinations. Our data suggest that coastal marine sediment may be a suitable environment for the survival of pathogenic and antimicrobial-resistant E. coli strains capable of contributing to resistance spread via integrons among benthic bacteria, and they highlight a role for these strains in the emergence of new virulent genotypes.  相似文献   

18.
Evidence that TraT interacts with OmpA of Escherichia coli   总被引:10,自引:0,他引:10  
I Riede  M L Eschbach 《FEBS letters》1986,205(2):241-245
The OmpA protein is one of the major outer membrane proteins of Escherichia coli. Among other functions the protein serves as a receptor for several phages and increases the efficiency of F-mediated conjugation when present in recipient cells. TraT is an F-factor-coded outer membrane lipoprotein involved in surface exclusion, the mechanism by which E. coli strains carrying F-factors become poor recipients in conjugation. To determine a possible interaction of TraT with OmpA, the influence of TraT on phage binding to cells was measured. Because TraT inhibits inactivation of OmpA-specific phages it is suggested that TraT interacts directly with OmpA. Sequence homology of TraT with proteins 38, the phage proteins recognizing outer membrane proteins, supports this finding. A model of protein interactions is discussed.  相似文献   

19.
Glycine betaine transport in Escherichia coli: osmotic modulation.   总被引:22,自引:36,他引:22  
Exogenous glycine betaine highly stimulates the growth rate of various members of the Enterobacteriaceae, including Escherichia coli, in media with high salt concentrations (D. Le Rudulier and L. Bouillard, Appl. Environ. Microbiol. 46:152-159, 1983). In a nitrogen- and carbon-free medium, glycine betaine did not support the growth of E. coli either on low-salt or high-salt media. This molecule was taken up by the cells but was not catabolized. High levels of glycine betaine transport occurred when the cells were grown in media of elevated osmotic strength, whereas relatively low activity was found when the cells were grown in minimal medium. A variety of electrolytes, such as NaCl, KCl, NaH2PO4, K2HPO4, K2SO4, and nonelectrolytes like sucrose, raffinose, and inositol triggered the uptake of glycine betaine. Furthermore, in cells subjected to a sudden osmotic upshock, glycine betaine uptake showed a sixfold stimulation 30 min after the addition of NaCl. Part of this stimulation might be a consequence of protein synthesis. The transport of glycine betaine was energy dependent and occurred against a concentration gradient. 2,4-Dinitrophenol almost totally abolished the glycine betaine uptake. Azide and arsenate exerted only a small inhibition. In addition, N,N'-dicyclohexylcarbodiimide had a very low inhibitory effect at 1 mM. These results indicated that glycine betaine transport is driven by the electrochemical proton gradient. The kinetics of glycine betaine entry followed the Michaelis-Menten relationship, yielding a Km of 35 microM and a Vmax of 42 nmol min-1 mg of protein-1. Glycine betaine transport showed considerable structural specificity. The only potent competitor was proline betaine when added to the assay mixtures at 20-fold the glycine betaine concentration. From these results, it is proposed that E. coli possesses an active and specific glycine betaine transport system which is regulated by the osmotic strength of the growth medium.  相似文献   

20.
Escherichia coli AT2046 has been shown previously to lack the enzyme serine transhydroxymethylase and to require exogenous glycine for growth as a consequence. Strains JEV73 and JEV73R, mutants derived from strain AT2046, are shown here to be serine transhydroxymethylase deficient, but able to derive their glycine from endogenously synthesized threonine. Leucine is shown to be closely involved in the regulation of biosynthesis of glycine, to spare glycine in strain AT2046T, to replace glycine in strain JEV73, and to increase threonine conversion to glycine in a representative prototroph of E. coli. An interpretation of strains JEV73 and JEV73R as regulatory mutants of strain AT2046 is given. A hypothesis as to the role of leucine as a signal for nitrogen scavenging is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号