首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
C. F. Mason 《Oecologia》1970,5(3):215-239
Summary The population densities of snails living in beech litter were studied form March 1968 to April 1969. Litter production over one year was measured and the role of snails in litter disappearance assessed.Snails were extracted from litter using a modified Vágvölgyi (1952) flotation method, extraction efficiencies being 84%. The mean annual population density of the twenty-one species of snail recorded on the main sampling site was estimated at 489/m2. Carychium tridentatum was the most numerous species, with a mean density of 200/m2. Acanthinula aculeata, Punctum pygmaeum and Vitrea contracta also had fairly high mean densities. The mean annual biomass was 699 mg dry wt./m2 or 278 mg ash-free dry wt./m2. Hygromia striolata and Oxychilus cellarius/alliarius were the most important species in terms of biomass on the main site. Within the limits of accuracy imposed by the sampling regime the population densities of four out of five of the species (C. tridentatum, A. aculeata, V. contracta, Retinella pura) studied remained unchanged throughout the year, whereas P. pygmaeum had a significantly higher autumn population. C. tridentatum populations were highly aggregated at all times of the year, most markedly so in June. Other species were aggregated at certain times of the year only. Samples taken from other sites showed total population densities of snails ranging from 185–1082 snails/m2.A total tree litter production of 652 g/m2/annum was recorded of which 584g/m2/annum was of beech material. 72% fell in the October–December period. 58% of the beech litter-fall was leaves, 5.2% bud-scales, 27% fruits and 10% twigs and bark. Summation of appropriate field layer peak standing crops amounted to 23.3 g/m2. This was considered as potential litter and was equivalent to 3.4% of the total litter input. The litter standing on the woodland floor in Septermber 1968 was 2,700 g/m2, hence, assuming a steady state, litter turnover time was estimated as 4.5 years.It was calculated that the total snail population ingested 0.35–0.43% of the annual litter input, of which 49% was assimilated. The role of the individual species is examined in relation to concepts of key species in ecosystem functioning. The possible role of slugs in decomposition processes is also discussed.  相似文献   

2.
In order to investigate the annual variation of soil respiration and its components in relation to seasonal changes in soil temperature and soil moisture in a Mediterranean mixed oak forest ecosystem, we set up a series of experimental treatments in May 1999 where litter (no litter), roots (no roots, by trenching) or both were excluded from plots of 4 m2. Subsequently, we measured soil respiration, soil temperature and soil moisture in each plot over a year after the forest was coppiced. The treatments did not significantly affect soil temperature or soil moisture measured over 0–10 cm depth. Soil respiration varied markedly during the year with high rates in spring and autumn and low rates in summer, coinciding with summer drought, and in winter, with the lowest temperatures. Very high respiration rates, however, were observed during the summer immediately after rainfall events. The mean annual rate of soil respiration was 2.9 µ mol m?2 s?1, ranging from 1.35 to 7.03 µmol m?2 s?1. Soil respiration was highly correlated with temperature during winter and during spring and autumn whenever volumetric soil water content was above 20%. Below this threshold value, there was no correlation between soil respiration and soil temperature, but soil moisture was a good predictor of soil respiration. A simple empirical model that predicted soil respiration during the year, using both soil temperature and soil moisture accounted for more than 91% of the observed annual variation in soil respiration. All the components of soil respiration followed a similar seasonal trend and were affected by summer drought. The Q10 value for soil respiration was 2.32, which is in agreement with other studies in forest ecosystems. However, we found a Q10 value for root respiration of 2.20, which is lower than recent values reported for forest sites. The fact that the seasonal variation in root growth with temperature in Mediterranean ecosystems differs from that in temperate regions may explain this difference. In temperate regions, increases in size of root populations during the growing season, coinciding with high temperatures, may yield higher apparent Q10 values than in Mediterranean regions where root growth is suppressed by summer drought. The decomposition of organic matter and belowground litter were the major components of soil respiration, accounting for almost 55% of the total soil respiration flux. This proportion is higher than has been reported for mature boreal and temperate forest and is probably the result of a short‐term C loss following recent logging at the site. The relationship proposed for soil respiration with soil temperature and soil moisture is useful for understanding and predicting potential changes in Mediterranean forest ecosystems in response to forest management and climate change.  相似文献   

3.
To assess the variation of soil respiration at different forest stages we measured it in a coppiced oak (Quercus cerris L.) chronosequence in central Italy during two campaigns, spanning 2 successive years, in four stands at different stages of the rotation: 1 year (S1), 5 years (S5), 10 years (S10) and 17 years (S17) after coppicing. The contribution of the different components of soil respiration flux (aboveground litter, belowground decomposition soil organic matter and root respiration) was estimated by a paired comparison of manipulative experiments between the recently coppiced stand (S1) and mature stand (S17). Ninety percent of soil respiration values were between 1.7 and 7.8 μmol m?2 s?1, with an overall mean (±SD) of 4.0±2.7 μmol m?2 s?1. Spatial variation of soil respiration was high (CV=44.9%), with a mean range (i.e. patch size) of 4.8±2.7 m, as estimated from a semivariance analysis. In the absence of limitation by soil moisture, soil respiration was related to soil temperature with the exponential Q10 model (average Q10=2.25). During summer, soil moisture constrained soil respiration and masked its dependence on soil temperature. Soil respiration declined over the years after coppicing. Assuming a linear decline with stand age, we estimated a reduction of 24% over a 20‐year‐rotation cycle. The response of soil respiration to temperature also changed with age of the stands: the Q10 was estimated to decrease from 2.90 in S1 to 2.42 in S17, suggesting that different components or processes may be involved at different developmental stages. The contribution of heterotrophic respiration to total soil respiration flux was relatively larger in the young S1 stand than in the mature S17 stand.  相似文献   

4.
J. Phillipson  R. Abel 《Oecologia》1983,57(3):333-338
Summary Two methods of extraction were used in the estimation of snail population densities in woodland litter. The time-consuming-Vágvölgyi technique proved to be 6.25 times more efficient than infra-red heat extraction but it was shown that the results obtained by the latter method could be easily corrected to conform with those of the former.Snail density varied with season (Winter, 1,000–1,250 m-2, Summer, 50–600 m-2), the annual mean density being 645 m-2. The annual mean ash-free dry weight biomass was 176 mg m-2 while annual population metabolism equalled 0.8941 O2 (=17.84 kJ m-2 yr-1).Two independent estimates of the energy equivalent of food consumption gave rise to values of 25.37 and 57.98 kJ m-2 yr-1, these respectively account for 0.54 and 1.23% of the known ground litter disappearance of 4,716.58 kJ (=235 g dry wt. m-2 yr-1).  相似文献   

5.
高寒矮嵩草草甸冬季CO2释放特征   总被引:1,自引:0,他引:1  
吴琴  胡启武  曹广民  李东 《生态学报》2011,31(18):5107-5112
冬季碳排放在高寒草地年内碳平衡中占有重要位置。为探讨高寒草地冬季碳排放特征及温度敏感性,于2003-2005年在中国科学院海北高寒草甸生态系统研究站,利用密闭箱-气相色谱法连续观测了高寒矮嵩草草甸2个冬季的生态系统、土壤呼吸通量特征。结果表明:1)高寒矮嵩草草甸冬季生态系统呼吸、土壤呼吸均具有明显的日变化和季节变化规律,温度是其主要的控制因子,能够解释44%以上的呼吸速率变异。2)冬季生态系统呼吸与土壤呼吸速率在统计上没有显著差异,土壤呼吸占生态系统呼吸的比例高达85%以上。3)2003-2004年冬季生态系统呼吸、土壤呼吸的Q10值分别为1.53,1.38;2004-2005年冬季生态系统呼吸与土壤呼吸的Q10值为1.86,1.68,2个冬季生态系统呼吸的Q10值均高于土壤呼吸。4)未发现高寒矮嵩草草甸冷冬年份的Q10值高于暖冬年份以及冬季的Q10值高于生长季。  相似文献   

6.
陶宝先  张保华  董杰  刘晨阳 《生态学报》2019,39(15):5564-5572
凋落物分解速率及其温度敏感性Q_(10)能够影响凋落物对土壤的碳归还及其对全球变暖的响应。然而,凋落物有机碳质量对凋落物分解及其温度敏感性的影响研究仍不充分。以黄河三角洲芦苇(Phragmites australi)为例,通过凋落物袋法、室内模拟实验及固态~(13)C核磁共振技术,研究有机碳质量对凋落物分解及其温度敏感性的影响,探讨预测凋落物分解及其温度敏感性的指标。结果表明:(1)随着凋落物分解,易分解碳组分(烷氧碳、双烷氧碳)相对含量逐渐降低,而难分解碳组分(芳香碳)相对含量显著增加,疏水碳/亲水碳、芳香碳/烷氧碳比值逐渐增大,凋落物有机碳更加稳定,凋落物呼吸速率及失重率呈下降趋势。(2)凋落物失重主要受烷基碳、烷氧碳相对含量及C/N的影响,凋落物CO_2累积释放量主要受烷氧碳及双烷氧碳相对含量的影响。羰基碳相对含量可以用来解释Q_(10)的变异。因此,相对于生态化学计量比,烷基碳、烷氧碳、双烷氧碳、羰基碳相对含量是预测凋落物分解及其温度敏感性的敏感性指标。  相似文献   

7.
Growth and respiration of Cyprideis torosa Jones 1850 (Crustacea Ostracoda)   总被引:1,自引:0,他引:1  
P. M. J. Herman  C. Heip 《Oecologia》1982,54(3):300-303
Summary The ostracod Cyprideis torosa Jones 1850 is a dominant species in brackish water habitats. To assess its importance, growth and respiration were measured. The shells form an increasing part of total weight as the animals grow but there is no correlation between shell weight and soft parts weight in the adults, indicating that tissue growth is a continuous process in these ostracods.Respiration was measured at 20° C. The slope of the log-log regression of respiration on dry weight was 0.746, showing that Cyprideis torosa follows the general rule for this relationship. The respiration rate per unit biomass was 0.246 nl O2 g-1 h-1, which is low but well within the range of observed meiobenthic respiration rates.The Q10, expressing the temperature dependence of respiration, was 2.15. The general validity of Price and Warwick's (1980) hypothesis relating Q10 to stability of food supply is questioned.  相似文献   

8.
Population studies of three aquatic gastropods in an intermittent backwater   总被引:4,自引:4,他引:0  
Summary Three snail populations of an intermittent backwater were studied over a 20-month period, and estimates were made of rate of population change, mean biomass, annual and summer net production, and survival under conditions of little standing water. Lymnaea palustris and Physa integra populations were essentially univoltine, while G. parvus appeared to produce several generations during the year. L. palustris formed a protective epiphragm and was apparently better suited to recurrent dry periods than either G. parvus or P. integra, the latter population being maintained through immigration from the stream population. The population density of G. parvus was usually well below, and more aggregated, than the other two species, and there was considerable sampling error associated with its estimated population parameters.The estimated annual production rates for L. palustris and P. integra were 2.18 g/m2 and 1.59 g/m2, respectively, and these two species accounted for about 98% of the total gastropod production. About 75.9% and 66.5% of the L. palustris and P. integra production, respectively, occurred between June and November. Summer turnover ratios (ratio of production to mean standing crop) in 1969 were 4.69 for L. palustris and 2.94 for P. integra. An extended dry period early in the summer of 1970 reduced total snail production to about 18–24% that of the previous season, although summer turnover ratios were fairly consistent.  相似文献   

9.
Soil respiration (heterotropic and autotropic respiration, Rg) and aboveground litter fall carbon were measured at three forests at different succession (early, middle and advanced) stages in Dinghushan Biosphere Reserve, Southern China. It was found that the soil respiration increases exponentially with soil temperature at 5 cm depth (Ts) according to the relation Rg=a exp(bTs), and the more advanced forest community during succession has a higher value of a because of higher litter carbon input than the forests at early or middle succession stages. It was also found that the monthly soil respiration is linearly correlated with the aboveground litter carbon input of the previous month. Using measurements of aboveground litter and soil respiration, the net primary productions (NPPs) of three forests were estimated using nonlinear inversion. They are 475, 678 and 1148 g C m?2 yr?1 for the Masson pine forest (MPF), coniferous and broad‐leaf mixed forest (MF) and subtropical monsoon evergreen broad‐leaf forest (MEBF), respectively, in year 2003/2004, of which 54%, 37% and 62% are belowground NPP for those three respective forests if no change in live plant biomass is assumed. After taking account of the decrease in live plant biomass, we estimated the NPP of the subtropical MEBF is 970 g C m?2 yr?1 in year 2003/2004. Total amount of carbon allocated below ground for plant roots is 388 g C m?2 yr?1 for the MPF, 504 g C m?2 yr?1 for the coniferous and broad‐leaf MF and 1254 g C m?2 yr?1 for the subtropical MEBF in 2003/2004. Our results support the hypothesis that the amount of carbon allocation belowground increases during forest succession.  相似文献   

10.
The relationship between net photosynthetic (P N) and leaf respiration (R) rates of Quercus ilex, Phillyrea latifolia, Myrtus communis, Arbutus unedo, and Cistus incanus was monitored in the period February 2006 to February 2007. The species investigated had low R and P N during winter, increasing from March to May, when mean air temperature reached 19.2 °C. During the favourable period, C. incanus and A. unedo had a higher mean P N (16.4±2.4 μmol m−2 s−1) than P. latifolia, Q. ilex, and M. communis (10.0±1.3 μmol m−2 s−1). The highest R (1.89±0.30 μmol m−2 s−1, mean of the species), associated to a significant P N decrease (62 % of the maximum, mean value of the species), was measured in July (mean R/P N ratio 0.447±0.091). Q10, indicating the respiration sensitivity to short-term temperature increase, was in the range 1.49 to 2.21. Global change might modify R/P N determining differences in dry matter accumulation among the species, and Q. ilex and P. latifolia might be the most favoured species by their ability to maintain sufficiently higher P N and lower R during stress periods.  相似文献   

11.
Rising atmospheric CO2 has been predicted to reduce litter decomposition as a result of CO2‐induced reductions in litter quality. However, available data have not supported this hypothesis in mesic ecosystems, and no data are available for desert or semi‐arid ecosystems, which account for more than 35% of the Earth's land area. The objective of our study was to explore controls on litter decomposition in the Mojave Desert using elevated CO2 and interannual climate variability as driving environmental factors. In particular, we sought to evaluate the extent to which decomposition is modulated by litter chemistry (C:N) and litter species and tissue composition. Naturally senesced litter was collected from each of nine 25 m diameter experimental plots, with six plots exposed to ambient [CO2] or 367 μL CO2 L?1 and three plots continuously fumigated with elevated [CO2] (550 μL CO2 L?1) using FACE technology beginning in April 1997. All litter collected in 1998 (a wet, or El Niño year; 306 mm precipitation) was pooled as was litter collected in 1999 (a dry year; 94 mm). Samples were allowed to decompose for 4 and 12 months starting in May 2001 in mesh litterbags in the locations from which litter was collected. Decomposition of litter produced under elevated CO2 and ambient CO2 did not differ. Litter produced in the wetter year showed more rapid initial decomposition (over the first 4 months) than that produced in the drier year (27±2% yr?1 or 7.8±0.7 g m?2 yr?1 for 1998 litter; 18±3% yr?1 or 2.2±0.4 g m?2 yr?1 for 1999 litter). C:N ratios of litter produced under elevated CO2 (wet year: 37±0.5; dry year: 42±2.5) were higher than those of litter produced under ambient CO2 (wet year: 34±1.1; dry year: 35±1.4). Litter production in the wet year (amb. CO2: 25.1±1.1 g m?2 yr?1; elev. CO2: 35.0±1.1 g m?2 yr?1) was more than twice as high as that in the dry year (amb. CO2: 11.6±1.7 g m?2, elev. CO2: 13.3±3.4 g m?2), and contained a greater proportion of Lycium pallidum and a lower proportion of Larrea tridentata than litter produced in the dry year. Decomposition, viewed across all treatments, decreased with increasing C:N ratios, decreased with increasing proportions of Larrea tridentata and increased with increasing proportions of Lycium pallidum and Lycium andersonii. Because litter C:N did not vary by litter production year, and CO2 did not alter decomposition or litter species/tissue composition, it is likely that the impact of year‐to‐year variation in precipitation on the proportion of key plant species in the litter may be the most important way in which litter decomposition will be modulated in the Mojave Desert under future rising atmospheric CO2.  相似文献   

12.
Woody tissue maintenance respiration of four conifers in contrasting climates   总被引:21,自引:0,他引:21  
We estimate maintenance respiration for boles of four temperate conifers (ponderosa pine, western hemlock, red pine, and slash pine) from CO2 efflux measurements in autumn, when construction respiration is low or negligible. Maintenance respiration of stems was linearly related to sapwood volume for all species; at 10°C, respiration per unit sapwood volume ranged from 4.8 to 8.3 mol CO2 m–3 s–1. For all sites combined, respiration increased exponentially with temperature (Q 10 =1.7, r 2=0.78). We estimate that maintenance respiration of aboveground woody tissues of these conifers consumes 52–162 g C m–2 y–1, or 5–13% of net daytime carbon assimilation annually. The fraction of annual net daytime carbon fixation used for stem maintenance respiration increased linearly with the average annual temperature of the site.  相似文献   

13.
The basal respiration rate at 10°C (R10) and the temperature sensitivity of soil respiration (Q10) are two premier parameters in predicting the instantaneous rate of soil respiration at a given temperature. However, the mechanisms underlying the spatial variations in R10 and Q10 are not quite clear. R10 and Q10 were calculated using an exponential function with measured soil respiration and soil temperature for 11 mixed conifer-broadleaved forest stands and nine broadleaved forest stands at a catchment scale. The mean values of R10 were 1.83 µmol CO2 m−2 s−1 and 2.01 µmol CO2 m−2 s−1, the mean values of Q10 were 3.40 and 3.79, respectively, for mixed and broadleaved forest types. Forest type did not influence the two model parameters, but determinants of R10 and Q10 varied between the two forest types. In mixed forest stands, R10 decreased greatly with the ratio of coniferous to broadleaved tree species; whereas it sharply increased with the soil temperature range and the variations in soil organic carbon (SOC), and soil total nitrogen (TN). Q10 was positively correlated with the spatial variances of herb-layer carbon stock and soil bulk density, and negatively with soil C/N ratio. In broadleaved forest stands, R10 was markedly affected by basal area and the variations in shrub carbon stock and soil phosphorus (P) content; the value of Q10 largely depended on soil pH and the variations of SOC and TN. 51% of variations in both R10 and Q10 can be accounted for jointly by five biophysical variables, of which the variation in soil bulk density played an overwhelming role in determining the amplitude of variations in soil basal respiration rates in temperate forests. Overall, it was concluded that soil respiration of temperate forests was largely dependent on soil physical properties when temperature kept quite low.  相似文献   

14.
Monthly changes in density and biomass of a Pila globosa population were estimated in the littoral area of the pond Idumban. Mean density of active snail was 10.4, equivalent to 76 g dry weight/m2 during 1973 and 6.5, equivalent to 45 g/m2 during 1974. Total population size of the snail decreased from 9.2 × 106 individuals, equivalent to 6.5 ton during 1973 to 6.3 × 106 snails, equivalent to 4.4 ton during 1974. The period from December to May represented the time of abundance and active growth. Mortality assessed from marking and recapture as well as from monthly changes in population density, averaged to 2.7 snails/m2/month or 20% of the density. Growth estimated by marking and recapture suggested that the snail required a period of over 4 years to attain a body (wet) weight of 35 g. Laboratory experiments revealed that young (<4 g), intermediate (4 g><24 g) and old (>24 g) P. globosa grew at the rate of 4.0, 1.5 and 0.3 mg dry weight/g live weight/day. Using these values and the size-wise population density data, net productivity of the snail was estimated as 74 and 40 g/m2/year in 1973 and 74, respectively. The snail exhibited an efficiency of 70% for absorption and 10% for conversion. Using these values, it was further possible to estimate rates of feeding and absorption for the population. Consumption amounted to 1039 g/m2 in 1973 and 560 g/m2 in 1974. The efficiencies of exploitation, gross and net productions were 21, 7 and 10%, respectively; ecological efficiency amounted to 1.4% only.  相似文献   

15.
Summary The endogenous respiration of 14C-labelled spores of B. cereus was measured through the 14CO2 produced, and the rate expressed as Q (l CO2/hxmg). New upper limits for respiration in various conditions have been set.Dry spores had no measurable activity; Q<10–4 at room temperature and <10–3 at 35° C. For wet spores of different harvests, at 30°C, Q lay between 0.0013 to 0.067. Near 40° C, respiration showed a maximum. Thermal history has a great influence on Q. CO2 production by heat-killed spores is attributed largely to infection.Water or 10–3 m sodium phosphate buffer (pH=6.5) gave equal spore respiration, in strong NaCl it was less. Azide enhanced respiration dramatically. A temporary increase was also found with non-radioactive glucose. Exogenous respiration of spores in glucose exceeded endogenous respiration.Endogenous and exogenous respiration of vegetative forms were much larger than those of spores and were time-dependent. The ratio of minimum (endogenous, dry spores) and maximum (exogenous, wet vegetative cells) respiration was at least 3x105.  相似文献   

16.
田慧敏  刘彦春  刘世荣 《生态学报》2022,42(10):3889-3896
凋落物既是森林生态系统养分循环的重要构件,又是森林土壤环境和功能的关键调节因子。降雨脉冲导致的土壤碳排放变异是陆地生态系统碳汇能力评价的不确定性来源之一。凋落物在调节土壤碳排放对降雨脉冲的响应中的作用仍缺乏科学的评价。通过在暖温带栎类落叶阔叶林中设置不同凋落物处理(对照、去除凋落物和加倍凋落物)和降雨模拟实验以阐明凋落物数量变化对土壤呼吸脉冲的影响。结果表明:模拟降雨脉冲之前,不同凋落物处理下的土壤呼吸存在显著差异;与对照相比,加倍凋落物导致土壤呼吸速率显著增加57.6%,然而,去除凋落物则对土壤呼吸无显著影响。模拟降雨后52小时内,对照、去除凋落物和加倍凋落物样方的土壤累积碳排放量分别为251.69 gC/m~2,250.93 gC/m~2和409.01 gC/m~2,加倍凋落物处理下的土壤碳排放量显著高于对照和去除凋落物处理;然而,去除凋落物与对照之间无显著差异。此外,不同凋落物处理下土壤呼吸的脉冲持续时间存在显著差异;加倍凋落物显著提高降雨后土壤呼吸脉冲的持续时间,分别比对照和去除凋落物高出262%和158%。多元逐步回归分析表明,土壤总碳排放通量和土壤呼吸的脉冲持续时间与土壤理...  相似文献   

17.
改变凋落物输入对川西亚高山天然次生林土壤呼吸的影响   总被引:1,自引:0,他引:1  
2019年5月-10月,采用LI-8100A土壤碳通量自动测量分析仪对川西米亚罗林区20世纪60年代采伐后经自然更新恢复形成的岷江冷杉(Abies faxoniana)次生针叶林(针叶林)、红桦(Betula albo-sinensis)+青榨槭(Acer davidii)+岷江冷杉次生针阔混交林(针阔混交林)和青榨槭+红桦+陕甘花楸(Sorbus koehneana Schneid)次生阔叶林(阔叶林)的土壤呼吸及土壤温湿度因子(对照、去除凋落物和加倍凋落物)进行观测。结果显示:去除和加倍凋落物对土壤温湿度的影响不显著,且3种林型之间的土壤呼吸速率差异不显著。与对照相比,去除凋落物使针叶林、针阔混交林、阔叶林的土壤呼吸速率分别降低了17.65%、21.01%和19.83%(P<0.05);加倍凋落物则分别增加6.76%、7.28%、8.16%(P>0.05)。3种林分土壤呼吸速率均与土壤温度极显著指数相关,与土壤湿度不相关。对照Q10值变幅为2.01-3.29,去除凋落物降低了3种林型的Q10值;加倍凋落物分别提高了针叶林和降低了针阔混交林和阔叶林的Q10值。土壤呼吸速率仅表现在天然次生林对照处理中受到土壤pH、有机质、可溶性有机氮和草本Pielou均匀度指数的显著影响。研究结果表明,天然次生阔叶林和针阔混交林凋落物对土壤呼吸的贡献及Q10值高于天然次生针叶林,说明在未来CO2浓度及温度升高背景下,地表凋落物增加并未引起天然次生林土壤呼吸速率成倍增加,更有利于该区域天然次生林尤其是针叶林的土壤碳吸存。  相似文献   

18.
Fine root litter derived from birch (Betula pendula Roth.) and Sitka spruce (Picea sitchensis (Bong.) Carr.) plants grown under two CO2 atmospheric concentrations (350 ppm and 600 ppm) and two nutrient regimes was used for decomposition studies in laboratory microcosms. Although there were interactions between litter type, CO2/fertiliser treatments and decomposition rates, in general, an increase in the C/N ratio of the root tissue was observed for roots of both species grown under elevated CO2 in unfertilized soil. Both weight loss and respiration of decomposing birch roots were significantly reduced in materials derived from enriched CO2, whilst the decomposition of spruce roots showed no such effect. A parallel experiment was performed using Betula pendula root litter grown under different N regimes, in order to test the relationship between C/N ratio of litter and root decomposition rate. A highly significant (p<0.001) negative correlation between C/N ratio and root litter respiration was found, with an r2=0.97. The results suggest that the increased C/N ratio of plant tissues induced by elevated CO2 can result in a reduction of decomposition rate, with a resulting increase in forest soil C stores.  相似文献   

19.
作为森林生态系统的第二大碳通量,土壤呼吸在全球碳循环和气候变化中发挥着重要作用。通过探究土壤呼吸对间伐和改变凋落物的响应规律以及响应之间的联系,能够为准确评价森林碳循环提供依据。针对不同强度(对照、轻度、中度、重度)间伐后的华北落叶松人工林,2016年5月至10月采用LI-8100土壤碳通量测量系统对其原状、凋落物去除、凋落物加倍的土壤呼吸进行观测。结果表明:土壤呼吸在生长季的8月份达到最高值,呈现出明显的季节动态。不同林分间伐处理下,中度间伐显著促进了土壤呼吸,使平均土壤呼吸速率升高了15.66%,轻度间伐和重度间伐对土壤呼吸的影响不显著;不同凋落物处理下,去除凋落物使平均土壤呼吸速率降低了40.16%,加倍凋落物使平均土壤呼吸速率升高了16.06%。中度间伐使土壤呼吸生长季通量增加了55.06 g C/m~2;去除凋落物使土壤呼吸生长季通量减少了153.48 g C/m~2,加倍凋落物使土壤呼吸生长季通量增加了79.87 g C/m~2。土壤呼吸速率与土壤温度呈显著指数相关,而与土壤湿度无显著相关。不同林分间伐处理下,土壤呼吸的温度敏感性指数(Q10)为2.36—3.46,轻度间伐下Q10值最高;凋落物去除和加倍均降低了土壤呼吸的温度敏感性。土壤温湿度对土壤呼吸存在着显著影响,能够解释土壤呼吸28.7%—62.3%的季节变化。研究结果表明间伐和凋落物处理对华北落叶松人工林土壤CO_2释放的影响表现出一定的交互作用,中度间伐和加倍凋落物的交互作用对土壤呼吸的促进作用显著大于单一因子。可见,间伐作业通过改变土壤微环境和凋落物量,对土壤呼吸以及森林生态系统碳循环产生着重要影响。  相似文献   

20.
Total stem, branch, twig, and coarse root respiration (Rt) of an adult Pinus cembra tree at the alpine timberline was measured continuously at ten positions from 7 October 2001 to 21 January 2003 with an automated multiplexing gas exchange system. There was a significant spatial variability in woody tissue respiration when expressed per unit surface area or per unit sapwood volume. Surface area related maintenance (Rm) respiration at 0°C ranged between 0.109 and 0.643 mol m–2 s–1 and there was no clear trend with respect to tissue type and diameter. Sapwood volume based Rm at 0°C by contrast, varied between 2.5 mol m–3 s–1 in the stem and 193.2 mol m–3 s–1 in thin twigs in the upper crown. Estimated Q10 values ranged from 1.7 to 3.1. These Q10 values were used along with Rm at 0°C and annual woody tissue temperature records to predict annual total Rm. Annual total Rm accounted for 73±6% of annual Rt in 2002.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号