首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The overfishing of an increasing number of fish populations has put focus on the need for development of robust sustainable harvest strategies that can be easily implemented. This requires estimates and modelling of the deterministic and stochastic components of the population dynamics as well as an evaluation of the contribution of different harvest strategies to future population fluctuations. Here we present an example of such an approach, using the collapse of Norwegian spring-spawning herring stock as a case. We demonstrate that the collapse probably was due to overfishing, and that the large influence of the environmental stochasticity could only influence the timing of the collapse. We suggest that a proportional threshold strategy with a threshold around 14 billion individuals (4 200 000 tons), combined with a harvest of 30–40% of the individuals above this threshold will give a sustainable yield with little annual variation. The choice of harvest strategy should also be strongly influenced by the uncertainty in the assessment of stock size. When the population stock is estimated with uncertainty, the proportional threshold strategy give a mean annual yield close to the optimum for known population size.  相似文献   

2.
In 2014, the International Council for the Exploration of the Sea (ICES) was unexpectedly unable to provide an analytical assessment of eastern Baltic cod stock; factors such as data issues, assessment methodology, and the ecological situation of cod were indicated as the reasons for this failure. Some evidence suggests that the natural mortality (M) of cod could increase substantially in forthcoming years and that the selectivity could change. In this paper, age‐structured and stock‐production assessment models were applied to simulate the dynamics of cod stock; in the models, both constant and increasing natural mortalities were permitted. In the age‐structured model, the effects of selectivity related to the cod size on the cod assessment were also analysed. In addition, stock with characteristics similar to Baltic cod stock and increasing natural mortality was generated and assessed with the age‐structured model using both constant and increasing M. It was shown that models with increasing natural mortality of cod in recent years perform much better than models with constant natural mortality in terms of the distribution of residuals and retrospective patterns. The models with size‐dependent selectivity did not perform better than other standard assessments. The assessment of generated stock (where natural mortality was increasing) with constant natural mortality in the assessment model showed a poor distribution of residuals and strong retrospective patterns, similar to the ICES assessment with constant M. The conducted simulations strongly suggest that the main reason for the poor recent cod assessment is the increase in natural mortality, which is not considered in the assessment methodology.  相似文献   

3.
Cannibalism is known to be a significant source of natural mortality of young North-east Arctic (NEA) cod. Cannibalism data, starting from 1984, have been used in NEA cod stock assessments since 1995, which has led to inconsistency in the cod abundance time series from 1946 to the present. To address this inconsistency, this study estimates the cannibalism-induced mortality (M2) of NEA cod at age 3–5 for the period 1946–1983. Combined qualitative and quantitative cod stomach content data for 1984–2010 were used to make the M2 estimations for age groups 3–5 (ICES 2014), then different factors including SSB were used to examine which covariates explained variability in M2 and thus make predictions for 1946–1983. The level of cannibalism was estimated to be high in the 1950s – early1960s. VPA-based assessment was run using these estimated M2 values. As a result, numbers of cod eaten by their conspecifics in the historical period and new increased recruitment estimates at age 3 were computed. The main factors affecting cannibalism appeared to be young cod abundance, total stock biomass (TSB) of large cod, and capelin total stock biomass (which represents an alternative prey). The problems involved in using the new recruitment time series in fishery management are discussed. The methodology presented here represents a generic approach to extending predation mortalities back in time to improve historical stock estimates.  相似文献   

4.
In the north-west Atlantic Ocean, stock assessments conducted for some commercially harvested coastal sharks indicate declines from 64 to 80% with respect to virgin population levels. While the status of commercially important species is available, abundance trend information for other coastal shark species in the north-west Atlantic Ocean are unavailable. Using a generalized linear modelling (GLM) approach, a relative abundance index was derived from 1994 to 2009 using observer data collected in a commercial bottom longline fishery. Trends in abundance and average size were estimated for bull shark Carcharhinus leucas, spinner shark Carcharhinus brevipinna, tiger shark Galeocerdo cuvier and lemon shark Negaprion brevirostris. Increases in relative abundance for all shark species ranged from 14% for C. brevipinna, 12% for C. leucas, 6% for N. brevirostris and 3% for G. cuvier. There was no significant change in the size at capture over the time period considered for all species. While the status of shark populations should not be based exclusively on abundance trend information, but ultimately on stock assessment models, results from this study provide some cause for optimism on the status of these coastal shark species.  相似文献   

5.
Overfishing, pollution and other environmental factors have greatly reduced commercially valuable stocks of fish. In a 2006 Science article, a group of ecologists and economists warned that the world may run out of seafood from natural stocks if overfishing continues at current rates. In this paper, we explore the interaction between a constant proportion harvest policy and recruitment dynamics. We examine the discrete-time constant proportion harvest policy discussed in Ang et al. (2009) and then expand the framework to include stock-recruitment functions that are compensatory and overcompensatory, both with and without the Allee effect.We focus on constant proportion policies (CPPs). CPPs have the potential to stabilize complex overcompensatory stock dynamics, with or without the Allee effect, provided the rates of harvest stay below a threshold. If that threshold is exceeded, CPPs are known to result in the sudden collapse of a fish stock when stock recruitment exhibits the Allee effect. In case studies, we analyze CPPs as they might be applied to Gulf of Alaska Pacific halibut fishery and the Georges Bank Atlantic cod fishery based on harvest rates from 1975 to 2007. The best fit models suggest that, under high fishing mortalities, the halibut fishery is vulnerable to sudden population collapse while the cod fishery is vulnerable to steady decline to zero. The models also suggest that CPP with mean harvesting levels from the last 30 years can be effective at preventing collapse in the halibut fishery, but these same policies would lead to steady decline to zero in the Atlantic cod fishery. We observe that the likelihood of collapse in both fisheries increases with increased stochasticity (for example, weather variability) as predicted by models of global climate change.  相似文献   

6.
Economic inefficiency and other problems associated with managing fisheries through restrictions on fishing times, places and gear have led to development of management systems based on individual fishers' quotas. But this shift from input controls to output controls calls for much more accurate and timely stock assessments. The risk of stock collapse resulting from overfishing, coupled with growing pressure for low-risk resource management policies, call for conservative quota-setting in the face of uncertain stock information. Under existing assessment systems, quotas may need to be so conservative that foregone catches could wipe out the economic gains from quota management. This problem might be overcome by taking advantage of the incentives of quota-holders to contribute to, and invest in, the gathering of information to improve stock assessments.  相似文献   

7.
Summary Management of noble crayfish fisheries varies considerably between countries. Minimum legal harvest sizes range from 70 to 120 mm TL. National, regional and local crayfish harvesting regulations exist. The variations in regulations are strongly influenced by traditions for crayfish harvest and consumption. The current harvest of noble crayfish in Europe is approximately 220 tonnes; this is less than 10% of the pre-plague historic record. Improved fishery regulations may potentially increase the annual harvest. Because of allometric growth, noble crayfish increase by some 40–50% in weight by increasing in total length from 90 to 100 mm. Stock structure and stock characteristics vary between localities. Female noble crayfish mature at a size of 62–85 mm TL and the number of attached eggs is low, i.e. less than 200. Mean size of females in trap catches may be lower than mean size at maturity, indicating vulnerability to recruitment overfishing. There is a market for crayfish smaller than 90 mm TL, both for consumption and for stocking, and these often constitute more than 75% of trap catches. Regulations for catching crayfish are thus needed in order to prevent recruitment overfishing and to sustain high and stable yields. The authors therefore recommend a national minimum harvest size of 90–95 mm TL. The catching season should start after the first moult and after the brood have left their mother, and terminate when the mating period approaches in September. In localities with high exploitation a short harvest season (2–3 weeks) is recommended in the early August intermoult period. However, crayfish harvest regulations should also account for the variation that occurs between local stocks, and if necessary exemptions from the national regulations should be given where appropriate.  相似文献   

8.
European lobster populations in Norway and Sweden are severely reduced as a result of intense harvesting over a long time. Various alternative management options have been proposed or endorsed to both facilitate recovery and increase yield. Accordingly, Minimum Landing Size (MLS) regulations are widely used for the European lobster. We developed an individual-based population model which integrates biological knowledge about lobsters’ population dynamics to explore how available harvesting strategies and management options influence abundance and yield. The model reproduced basic features of a real lobster population in Sweden. Even for a relatively large MLS high fishing effort may still be detrimental to the long term production of the stock, while increasing the MLS further prevents this recruitment overfishing. A moratorium on berried females, in combination with the MLS appears to stabilize population fluctuations and yield, leading to higher yield for all MLS's considered. The female moratorium harvesting strategy also performed better than a maximum size limit. Yield per recruit calculations gave similar quantitative results, and also shows that a larger MLS reduce the risk of growth overfishing. A smaller MLS enables the harvest of many individuals but is very sensitive to increase in effort which easily promotes overfishing.  相似文献   

9.
ABSTRACT The sex-age-kill (SAK) model is widely used to estimate abundance of harvested large mammals, including white-tailed deer (Odocoileus virginianus). Despite a long history of use, few formal evaluations of SAK performance exist. We investigated how violations of the stable age distribution and stationary population assumption, changes to male or female harvest, stochastic effects (i.e., random fluctuations in recruitment and survival), and sampling efforts influenced SAK estimation. When the simulated population had a stable age distribution and λ > 1, the SAK model underestimated abundance. Conversely, when λ < 1, the SAK overestimated abundance. When changes to male harvest were introduced, SAK estimates were opposite the true population trend. In contrast, SAK estimates were robust to changes in female harvest rates. Stochastic effects caused SAK estimates to fluctuate about their equilibrium abundance, but the effect dampened as the size of the surveyed population increased. When we considered both stochastic effects and sampling error at a deer management unit scale the resultant abundance estimates were within ±121.9% of the true population level 95% of the time. These combined results demonstrate extreme sensitivity to model violations and scale of analysis. Without changes to model formulation, the SAK model will be biased when λ ≠ 1. Furthermore, any factor that alters the male harvest rate, such as changes to regulations or changes in hunter attitudes, will bias population estimates. Sex-age-kill estimates may be precise at large spatial scales, such as the state level, but less so at the individual management unit level. Alternative models, such as statistical age-at-harvest models, which require similar data types, might allow for more robust, broad-scale demographic assessments.  相似文献   

10.
Both the Norwegian Spring Spawning herring (Clupea harengus) and the Northeast Arctic (NEA) cod (Gadus morhua) are examples of strong stock reduction and decline of the associated fisheries due to overfishing followed by a recovery. Cod and herring are both part of the Barents Sea ecosystem, which has experienced major warming events in the early (1920–1940) and late 20th century. While the collapse or near collapse of these stocks seems to be linked to an instability created by overfishing and climate, the difference of population dynamics before and after is not fully understood. In particular, it is unclear how the changes in population dynamics before and after the collapses are associated with biotic interactions. The combination of the availability of unique long‐term time series for herring and cod makes it a well‐suited study system to investigate the effects of collapse. We examine how species interactions may differently affect the herring and cod population dynamic before and after a collapse. Particularly we explore, using a GAM modeling approach, how herring could affect cod and vice versa. We found that the effect of cod biomass on herring that was generally positive (i.e., covariation) but the effect became negative after the collapse (i.e., predation or competition). Likewise a change occurred for the cod, the juvenile herring biomass that had no effect before the collapse had a negative effect after. Our results indicate that the population collapses may alter the inter‐specific interactions and response to abiotic environmental changes. While the stocks are at similar abundance levels before and after the collapses, the system is potentially different in its functioning and may require different management action.  相似文献   

11.
While a few North Atlantic cod stocks are stable, none have increased and many have declined in recent years. Although overfishing is the main cause of most observed declines, this study shows that in some regions, climate by its influence on plankton may exert a strong control on cod stocks, complicating the management of this species that often assumes a constant carrying capacity. First, we investigate the likely drivers of changes in the cod stock in the North Sea by evaluating the potential relationships between climate, plankton and cod. We do this by deriving a Plankton Index that reflects the quality and quantity of plankton food available for larval cod. We show that this Plankton Index explains 46.24% of the total variance in cod recruitment and 68.89% of the variance in total cod biomass. Because the effects of climate act predominantly through plankton during the larval stage of cod development, our results indicate a pronounced sensitivity of cod stocks to climate at the warmer, southern edge of their distribution, for example in the North Sea. Our analyses also reveal for the first time, that at a large basin scale, the abundance of Calanus finmarchicus is associated with a high probability of cod occurrence, whereas the genus Pseudocalanus appears less important. Ecosystem‐based fisheries management (EBFM) generally considers the effect of fishing on the ecosystem and not the effect of climate‐induced changes in the ecosystem state for the living resources. These results suggest that EBFM must consider the position of a stock within its ecological niche, the direct effects of climate and the influence of climate on the trophodynamics of the ecosystem.  相似文献   

12.
The diet composition and feeding strategy of the Argentine hake Merluccius hubbsi in the San Matías Gulf were analysed in order to use this information for the sustainable management of the fishery. Merluccius hubbsi behaved as an opportunistic predator. Small M. hubbsi consumed planktonic crustaceans, whereas medium and large fish ate numerous prey taxa with low frequency of occurrence and variable specific abundance. Intra- and intercohort cannibalism were detected in all size groups and were particularly significant in large M. hubbsi. Medium-sized M. hubbsi consumed small conspecifics and large-sized M. hubbsi consumed both small and medium M. hubbsi. These results indicate that the removal of large M. hubbsi by fishing may increase the risk of overfishing by two combined effects: a direct effect of recruitment-overfishing and an indirect effect of growth-overfishing through an enhanced cannibalism of medium M. hubbsi on small M. hubbsi. Intra- and intercohort cannibalism and other trophic relationships in the M. hubbsi should therefore be considered explicitly in stock assessment models.  相似文献   

13.
Understanding how combinations of fishing effort and selectivity affect productivity is central to fisheries research. We investigate the roles of fishing regulation in comparison with ecosystem status for Baltic Sea cod stock productivity, growth performance, and population stability. This case study is interesting because three cod populations with different exploitation patterns and stock status are located in three adjacent but partially, ecologically different areas. In assessing stock status, growth, and productivity, we use survey information and rather basic stock parameters without relying on age readings. Because there is an urgent interest of better understanding of the current development of the Eastern Baltic cod stock, we argue that our approach represents partly a novel way of interpreting monitoring information together with catch data in a simplified yet more informative way. Our study reports how the Eastern and Western Baltic cod have gone toward more truncated size structures between 1991 and 2016, in particular for the Eastern Baltic cod, whereas the Öresund cod show no trend. We suggest that selective fishing may disrupt fish population dynamic stability and that lower natural productivity might amplify the effects of selective fishing. In support of earlier findings on a density‐dependent growth of Eastern Baltic cod, management is advised to acknowledge that sustainable exploitation levels for Eastern Baltic cod are much more limited than perceived in regular assessments. Of more general importance, our results emphasize the need to embrace a more realistic view on what ecosystems can produce regarding tractable fish biomass to facilitate a more ecosystem‐based fisheries management.  相似文献   

14.
The Baltic Sea is characterised by a heterogeneous oceanographic environment. The deep water layers forming the habitat of Baltic cod (Gadus morhua callarias L.) are subjected to frequently occurring pronounced anoxic conditions. Adverse oxygen conditions result in physiological stress for organisms living under these conditions. For cod e.g. a direct relationship between oxygen availability and food intake with a decreasing ingestion rate at hypoxia could be revealed. In the present study, the effects of oxygen deficiency on consumption rates were investigated and how these translate to stock size estimates in multi‐species models. Based on results from laboratory experiments, a model was fitted to evacuation rates at different oxygen levels and integrated into the existing consumption model for Baltic cod. Individual mean oxygen corrected consumption rates were 0.1–10.9% lower than the uncorrected ones. At the currently low predator stock size, however, the effect of oxygen‐reduced consumption on the total amount of eaten prey biomass and thus predation mortalities was only marginal. But should successful management lead to higher cod stock sizes in the future, then total predation mortalities will greatly increase and thus improved precision of these estimates would be valuable for the assessment of prey stocks.  相似文献   

15.
复合种群管理的风险评估——以日本鲐为例   总被引:3,自引:0,他引:3  
官文江  高峰  李纲  陈新军 《生态学报》2014,34(13):3682-3692
单一种群是目前渔业资源评估的基本假设,但渔业资源常由多个地方种群或产卵种群组成,并且种群间存在交流,构成复合种群。根据复合种群概念,以东、黄海日本鲐为例,对其12种种群动态情况进行了模拟。利用模拟所得的数据及剩余产量模型,分别分析了在复合种群、两独立种群及单一种群假设下所设置的10种评估管理方案,结果表明:(1)基于复合种群假设的评估管理方案与模拟的种群动态一致,在单位捕捞努力量渔获量(CPUE)观测误差较小情况下,该方案为最佳方案,可获得最大可持续产量,但随CPUE观测误差增大,该方案种群灭绝率增大,管理效果随之退化。(2)基于两独立种群假设的评估管理方案均使资源过度开发,不利于资源可持续利用。(3)在单一种群假设下,选择不同CPUE作为资源指数和采用不同捕捞量分配方法的评估管理方案存在过度捕捞和开发不足两种状况,其管理效果受种群本身参数及空间交换率等因素的影响而不同;若采用的CPUE反映部分种群动态信息,则其评估管理方案至少在一种模拟情况下出现种群100%灭绝;若CPUE能反映整个种群资源量的动态变化,且捕捞量能按种群的空间结构进行分配,则管理效果与(1)类似,但不能获得最大可持续产量,若忽略种群的空间结构影响而均匀分配捕捞量,则至少在一种模拟情况下出现种群100%灭绝。据此,对于复合种群的管理,建议:(A)如果种群数据收集及数据精度能得到保证,该资源的评估与管理应基于复合种群假设;(B)如果目前收集种群数据存在较大困难,且CPUE数据存在较大误差,则可采用单一种群假设,但必须设定更保守的捕捞量和采用基于种群空间结构的总许可渔获量(TAC)管理方案;(C)在制定渔业管理政策时,应结合种群生态、数据、模型假设及参数估计方法等方面的不确定性对管理控制规则进行系统的管理策略评价以避免风险。  相似文献   

16.
Baltic cod, like other species, is susceptible to inter‐annual fluctuations in sexual maturation, depending on the length, age, sex, extent of the habitat area, and stock abundance of the cod population. Maturity is one of the biological indicators used to detect changes in a stock that can be caused by fishing. To address these issues specifically for the eastern Baltic cod stock, long‐term data (1990–2006) from Polish research vessels in the southern Baltic were examined. To date, the ICES has used the same maturity ogives over extended periods and assumed invariant sex ratios for the assessment of eastern Baltic cod. The combined maturity ogives calculated in the present study were markedly lower, particularly for age groups 2–4 (5), in all periods, than those used in the ICES assessment. Moreover, the proportion of females increased with length and age, suggesting that annual verification of the sex ratio is needed. The present study also revealed that the total length (L50%) and the age (mean age‐at‐maturity; MAM50%) at which 50% achieved first sexual maturity were higher for females than for males in the study period. The long‐term mean L50% and MAM50% for females were 43.9 cm and 4.3 years, respectively, and for males 34.8 cm and 3.4 years. There was also a spatial difference between calculated maturity ogives, with slightly lower L50% (range: 1.4–8.6 cm) in the Gdańsk Basin than in the Bornholm Basin. The increasing trend in fishing mortality observed in 1993–2004 (ICES data) did not translate into a temporal trend in calculated maturity ogives. However, changes in L50% and MAM50% reflected recruitment variations (ICES data). The significance of these findings is discussed in the context of the environment and recruits abundance.  相似文献   

17.
ABSTRACT

Elasmobranchs are a vulnerable resource, more susceptible to overfishing than most teleosts, and their assessment is complicated due to a general lack of information about their fisheries, biology and ecology. This study aimed to analyse all fishery and survey data available for elasmobranchs caught over the past c. 25 years around the Azores (NE Atlantic) to provide a baseline information, which can be used to inform stock assessment and management strategies. Elasmobranch species covered pelagic, benthopelagic and demersal habitats, from shallow to deep-water strata in areas around the islands and seamounts. These species are taken accidentally as by-catch of three main fisheries: swordfish fishery, black scabbardfish fishery and demersal bottom longline fishery. The latter represents one of the most important fishing activities in the Azores, and frequent elasmobranch by-catches include Raja clavata, Galeorhinus galeus, Deania calcea, D. profundorum, Etmopterus pusillus and E. spinax. A slight reduction in the abundance indices of these species was observed, despite the implemented technical measures (e.g. minimum size, zero catch). Little is known about resource dynamics for the Azorean region and no analytical assessments have been conducted. This study highlights the vulnerability to overfishing of these resources and the urgent need to develop management strategies.  相似文献   

18.
Northern shrimp (Pandalus borealis) is targeted by commercial fisheries, but is also an important prey in the marine food web. In this study, stomach content data were used to study predation on shrimp by three gadoid species, cod (Gadus morhua), haddock (Melanogrammus aeglefinus) and whiting (Merlangius merlangus), in six inshore areas around Iceland. The results showed that shrimp was more important in the diet of cod compared with the other two predators. However, the overall predation pressure was similar for cod and haddock due to the high abundance of haddock. Therefore, even though shrimp is not the primary source of food for haddock, this species can have a substantial effect on shrimp stocks when haddock abundance is high. In addition, while cod and haddock did not select for any particular size of shrimp, whiting seemed to preferentially target juvenile shrimp. The results suggest that due to the overall effects of these three predators on shrimp stocks, gadoids need to be included in the management of shrimp stocks as predation is one of the major drivers in the development of this important prey stock.  相似文献   

19.
Recent substantial declines in northeastern Atlantic cod stocks necessitate improved biological knowledge and the development of techniques to complement standard stock assessment methods (which largely depend on accurate commercial catch data). In 2003, an ichthyoplankton survey was undertaken in the Irish Sea and subsamples of 'cod-like' eggs were analysed using a TaqMan multiplex, PCR (polymerase chain reaction) assay (with specific probes for cod, haddock and whiting). The TaqMan method was readily applied to the large number of samples (n = 2770) generated during the survey and when combined with a manual DNA extraction protocol had a low failure rate of 6%. Of the early stage 'cod-like' eggs (1.2-1.75 mm diameter) positively identified: 34% were cod, 8% haddock and 58% whiting. As previous stock estimates based on egg surveys for Irish Sea cod assumed that the majority of 'cod-like' eggs were from cod, the TaqMan results confirm that there was probably substantial contamination by eggs of whiting and haddock that would have inflated estimates of the stock biomass.  相似文献   

20.
Species around the world have suffered collapses, and a key question is why some populations are more vulnerable than others. Traditional conservation biology and evidence from terrestrial species suggest that slow-growing populations are most at risk, but interactions between climate variability and harvest dynamics may alter or even reverse this pattern. Here, we test this hypothesis globally. We use boosted regression trees to analyse the influences of harvesting, species traits and climate variability on the risk of collapse (decline below a fixed threshold) across 154 marine fish populations around the world. The most important factor explaining collapses was the magnitude of overfishing, while the duration of overfishing best explained long-term depletion. However, fast growth was the next most important risk factor. Fast-growing populations and those in variable environments were especially sensitive to overfishing, and the risk of collapse was more than tripled for fast-growing when compared with slow-growing species that experienced overfishing. We found little evidence that, in the absence of overfishing, climate variability or fast growth rates alone drove population collapse over the last six decades. Expanding efforts to rapidly adjust harvest pressure to account for climate-driven lows in productivity could help to avoid future collapses, particularly among fast-growing species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号