共查询到20条相似文献,搜索用时 0 毫秒
1.
RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana 下载免费PDF全文
Phototropin 1 (phot1) and phot2, which are blue light receptor kinases, function in blue light-induced hypocotyl phototropism, chloroplast relocation, and stomatal opening in Arabidopsis (Arabidopsis thaliana). Previous studies have shown that the proteins RPT2 (for ROOT PHOTOTROPISM2) and NPH3 (for NONPHOTOTROPIC HYPOCOTYL3) transduce signals downstream of phototropins to induce the phototropic response. However, the involvement of RPT2 and NPH3 in stomatal opening and in chloroplast relocation mediated by phot1 and phot2 was unknown. Genetic analysis of the rpt2 mutant and of a series of double mutants indicates that RPT2 is involved in the phot1-induced phototropic response and stomatal opening but not in chloroplast relocation or phot2-induced movements. Biochemical analyses indicate that RPT2 is purified in the crude microsomal fraction, as well as phot1 and NPH3, and that RPT2 makes a complex with phot1 in vivo. On the other hand, NPH3 is not necessary for stomatal opening or chloroplast relocation. Thus, these results suggest that phot1 and phot2 choose different signal transducers to induce three responses: phototropic response of hypocotyl, stomatal opening, and chloroplast relocation. 相似文献
2.
Tomoko Tsuchida-Mayama Michiharu Nakano Yukiko Uehara Miho Sano Noriko Fujisawa Kiyotaka Okada Tatsuya Sakai 《Plant science》2008,174(6):626-633
The phototropic response in Arabidopsis thaliana is initiated by the blue-light photoreceptors, phototropin (phot)1 and phot2. A recent study has shown that one of the phototropic signal transducers, NPH3, is phosphorylated under dark conditions and dephosphorylated by blue-light irradiation. To further understand the function of phosphorylation and dephosphorylation of NPH3 during this phototropic response, we have mapped the phosphorylation sites of NPH3 in our current study. The NPH3 protein has at least three phosphorylation sites at serine residues, Ser212, Ser222, and Ser236, and these sites are dephosphorylated by blue-light irradiation. By immunoblotting analysis, these phosphorylation sites in phot1 mutants are not dephosphorylated following blue-light irradiation at both low and high fluence rates, even though such irradiations induce the phot2-dependent phototropic response in phot1. These results suggest that the dephosphorylated NPH3 is involved in the phot1-dependent phototropic response and is not essential for the phot2-dependent phototropic response. We generated two types of transgenic nph3 plants expressing a NPH3S212A/S222A/S232A/S236A protein and a NPH3Δ212–238 protein in which the phosphorylation region is deleted, and assessed the phototropic phenotype of these. Based upon our present findings, we discuss the role of dephosphorylated and phosphorylated NPH3 in mediating the phototropic response. 相似文献
3.
Mutations of Arabidopsis in potential transduction and response components of the phototropic signaling pathway. 总被引:13,自引:2,他引:13 下载免费PDF全文
Four genetic loci were recently identified by mutations that affect phototropism in Arabidopsis thaliana (L.) Heyhn. seedlings. It was hypothesized that one of these loci, NPH1, encodes the apoprotein for a phototropic photoreceptor. All of the alleles at the other three mutant loci (nph2, nph3, and nph4) contained wild-type levels of the putative NPH1 protein and exhibited normal blue-light-dependent phosphorylation of the NPH1 protein. This indicated that the NPH2, NPH3, and NPH4 proteins likely function downstream of NPH1 photoactivation. We show here that, although the nph2, nph3, and nph4 mutants are all altered with respect to their phototropic responses, only the nph4 mutants are also altered in their gravitropic responsiveness. Thus, NPH2 and NPH3 appear to act as signal carriers in a phototropism-specific pathway, whereas NPH4 is required for both phototropism and gravitropism and thus may function directly in the differential growth response. Despite their altered phototropic responses in blue and green light as etiolated seedlings, the nph2 and nph4 mutants exhibited less dramatic mutant phenotypes as de-etiolated seedlings and when etiolated seedlings were irradiated with unilateral ultraviolet-A (UV-A) light. Examination of the phototropic responses of a mutant deficient in biologically active phytochromes, hy1-100, indicated that phytochrome transformation by UV-A light mediates an increase in phototropic responsiveness, accounting for the greater phototropic curvature of the nph2 and nph4 mutants to UV-A light than to blue light. 相似文献
4.
Phytochrome A regulates red-light induction of phototropic enhancement in Arabidopsis. 总被引:20,自引:5,他引:15 下载免费PDF全文
Phytochrome A (phyA) and phytochrome B photoreceptors have distinct roles in the regulation of plant growth and development. Studies using specific photomorphogenic mutants and transgenic plants overexpressing phytochrome have supported an evolving picture in which phyA and phytochrome B are responsive to continuous far-red and red light, respectively. Photomorphogenic mutants of Arabidopsis thaliana that had been selected for their inability to respond to continuous irradiance conditions were tested for their ability to carry out red-light-induced enhancement of phototropism, which is an inductive phytochrome response. We conclude that phyA is the primary photoreceptor regulating this response and provide evidence suggesting that a common regulatory domain in the phyA polypeptide functions for both high-irradiance and inductive phytochrome responses. 相似文献
5.
6.
The fluence-response curves were measured for phototropic curvature in response to unilateral 450-nm light in hypocotyls of Arabidopsis thaliana (L.) Heynh. These show the classical first positive (peak curvature of 9–10°), indifferent and second positive phototropic response. Reciprocity is valid only for the first positive response; the fluence requirements for its induction are similar to those for induction of the first positive phototropic response of coleoptiles. Large angles of curvature also may be induced by multiple pulses if the individual pulses are separated by an optimum dark period of about 15 min. The curvature induced by a given fluence, whether applied in continuous irradiation or a sequence of pulses, is a linear function of the duration of continuous irradiation or the duration between first and last pulse, respectively. For a given fluence applied in a sequence of pulses, reciprocity remains valid provided the duration between first and last exposure is kept constant. When the duration between first and last pulse is sufficiently long, the fluence required for high phototropic curvature falls in the first positive fluence range. These results are interpreted to indicate the existence of a kinetic limitation in the transduction sequence, and a relatively short lifetime of an initial physiologically active photoproduct. The apparent existence of more than one positive response may have resulted from these characteristics of the transduction sequence. 相似文献
7.
8.
Desensitization and recovery of phototropic responsiveness in Arabidopsis thaliana. 总被引:2,自引:0,他引:2 下载免费PDF全文
Phototropism is induced by blue light, which also induces desensitization, a partial or total loss of phototropic responsiveness. The fluence and fluence-rate dependence of desensitization and recovery from desensitization have been measured for etiolated and red light (669-nm) preirradiated Arabidopsis thaliana seedlings. The extent of desensitization increased as the fluence of the desensitizing 450-nm light was increased from 0.3 to 60 micromoles m-2 s-1. At equal fluences, blue light caused more desensitization when given at a fluence rate of 1.0 micromole m-2 s-1 than at 0.3 micromole m-2 s-1. In addition, seedlings irradiated with blue light at the higher fluence rate required a longer recovery time than seedlings irradiated at the lower fluence rate. A red light preirradiation, probably mediated via phytochrome, decreased the time required for recovery from desensitization. The minimum time for detectable recovery was about 65 s, and the maximum time observed was about 10 min. It is proposed that the descending arm of the fluence-response relationship for first positive phototropism is a consequence of desensitization, and that the time threshold for second positive phototropism establishes a period during which recovery from desensitization occurs. 相似文献
9.
Experimental evidence indicates that during phototropism, Phycomyces sporangiophores use their own net rotation to convert an apparently spatial stimulus to a temporal one. Conversion to a continuous temporal stimulus insures that phototropism never adapts as long as the spatial asymmetry in illumination is maintained. If this temporal stimulus is circumvented by rotating the cell backwards so that there is no net rotation of some of the receptors relative to the light, the response can be reduced by two-thirds. The system thus adapts to the incident light, resulting in a reduced response. For the illumination of a transparent cell, this compensating rotation speed is 10 degrees/min counterclockwise and probably corresponds to the photoreceptor rotation in the most effective part of the growing zone. We infer that this region is in the upper portion of the growing zone and that the receptor system rotates integrally with that region of the cell. 相似文献
10.
11.
The newly discovered aer locus of Escherichia coli encodes a 506-residue protein with an N terminus that resembles the NifL aerosensor and a C terminus that resembles the flagellar signaling domain of methyl-accepting chemoreceptors. Deletion mutants lacking a functional Aer protein failed to congregate around air bubbles or follow oxygen gradients in soft agar plates. Membranes with overexpressed Aer protein also contained high levels of noncovalently associated flavin adenine dinucleotide (FAD). We propose that Aer is a flavoprotein that mediates positive aerotactic responses in E. coli. Aer may use its FAD prosthetic group as a cellular redox sensor to monitor environmental oxygen levels. 相似文献
12.
Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. 总被引:15,自引:3,他引:12 下载免费PDF全文
The phototropic response is an important component of seedling establishment in higher plants because it orients the young seedlings for maximal photosynthetic light capture. Despite their obvious importance, little is known about the mechanisms underlying the perception and transduction of the light signals that induce phototropic curvatures. Here, we report the isolation of eight mutants of Arabidopsis that lack or have severely impaired phototropic responses. These nph (for nonphototropic hypocotyl) mutants comprise four genetic loci: nph1, nph2, nph3, and nph4. Physiological and biochemical characterization of the nph1 allele series indicated that the NPH1 locus may encode the apoprotein for a dual-chromophoric or multichromophoric holoprotein photoreceptor capable of absorbing UV-A, blue, and green light and that this photoreceptor regulates all the phototropic responses of Arabidopsis. It appears that the NPH1 protein is most likely a 120-kD plasma membrane-associated phosphoprotein because all of the nph1 mutations negatively affected the abundance of this protein. In addition, the putative NPH1 photoreceptor protein is genetically and biochemically distinct from the HY4 protein, which most likely acts as a photoreceptor for blue light-mediated hypocotyl growth inhibition. Furthermore, the NPH1 and HY4 proteins are not functionally redundant because mutations in either gene alone affect only one physiological response but not the other, thus providing strong support for the hypothesis that more than one blue light photoreceptor is required for the normal growth and development of a seedling. 相似文献
13.
14.
15.
Victoria Campuzano José María Díaz-Mínguez Arturo P. Eslava María Isabel Alvarez 《Molecular & general genetics : MGG》1990,223(1):148-151
Summary Only eight genes are known to be involved in the phototropic response of Phycomyces (madA-H). Mutants affected in these genes have played a major role in the analysis of photosensory transduction processes in this system. A set of new mutants isolated by Alvarez et al. (1989) that are unable to bend towards dim unilateral blue light were studied by complementation and recombination. Two of these mutants have mutations in madE, one has a mutation in madF and one is a double madE madF mutant. The three remaining mutants tested did not complement each other and showed positive complementation with strains carrying mutations in the genes madA, madB, and madC, indicating that they carried mutations in a new gene designated madI. Recombination analysis showed that madI is unlinked to madA, madB and madC. 相似文献
16.
Kun‐Xiao Zhang Heng‐Hao Xu Ting‐Ting Yuan Liang Zhang Ying‐Tang Lu 《The Plant journal : for cell and molecular biology》2013,76(2):308-321
Root negative phototropism is an important response in plants. Although blue light is known to mediate this response, the cellular and molecular mechanisms underlying root negative phototropism remain unclear. Here, we report that the auxin efflux carrier PIN‐FORMED (PIN) 3 is involved in asymmetric auxin distribution and root negative phototropism. Unilateral blue‐light illumination polarized PIN3 to the outer lateral membrane of columella cells at the illuminated root side, and increased auxin activity at the illuminated side of roots, where auxin promotes growth and causes roots bending away from the light source. Furthermore, root negative phototropic response and blue‐light‐induced PIN3 polarization were modulated by a brefeldin A‐sensitive, GNOM‐dependent, trafficking pathway and by phot1‐regulated PINOID (PID)/PROTEIN PHOSPHATASE 2A (PP2A) activity. Our results indicate that blue‐light‐induced PIN3 polarization is needed for asymmetric auxin distribution during root negative phototropic response. 相似文献
17.
The herbicide, 4 chloro-5-(methylamino)-2-(α,α,α,-trifluoro-m-tolyl)-3 (2H)-pyridazinone (SAN 9789), which blocks the synthesis in higher plants of colored carotenoids but not of flavins, was used to examine the involvement of carotenoids in corn seedling phototropism. It was concluded that “bulk” carotenoids are not the photoreceptor pigment based on the results that increasing concentrations of SAN 9789 (up to 100 micromolar) did not alter the phototropic sensitivity to 380 nanometers light (using geotropism as a control) and did not increase the threshold intensities of fluence response curves for both 380 and 450 nanometers light even though carotenoid content was reduced to 1 to 2% of normal. SAN 9789 treatment, however, did reduce seedling sensitivity toward 450 nanometers light indicating that carotenoids are involved in phototropism. Carotenoids, which are located mainly in the primary leaves, may act in phototropism as an internal screen, enhancing the light intensity gradient across the seedling and thus contributing to the ability of the seedling to perceive light direction. These results indicate that the action spectra for phototropic responses can be significantly affected by the absorbance of screening pigments in vivo thus altering its shape from the in vitro absorption spectrum of the photoreceptor pigment. 相似文献
18.
Xiang Zhao Qingping Zhao Chunye Xu Jin Wang Jindong Zhu Baoshuan Shang Xiao Zhang 《植物学报(英文版)》2018,60(7):562-577
Two redundant blue‐light receptors, known as phototropins (phot1 and phot2), influence a variety of physiological responses, including phototropism, chloroplast positioning, and stomatal opening in Arabidopsis thaliana. Whereas phot1 functions in both low‐ and high‐intensity blue light (HBL), phot2 functions primarily in HBL. Here, we aimed to elucidate phot2‐specific functions by screening for HBL‐insensitive mutants among mutagenized Arabidopsis phot1 mutants. One of the resulting phot2 signaling associated (p2sa) double mutants, phot1 p2sa2, exhibited phototropic defects that could be restored by constitutively expressing NON‐PHOTOTROPIC HYPOCOTYL 3 (NPH3), indicating that P2SA2 was allelic to NPH3. It was observed that NPH3‐GFP signal mainly localized to and clustered on the plasma membrane in darkness. This NPH3 clustering on the plasma membrane was not affected by mutations in genes encoding proteins that interact with NPH3, including PHOT1, PHOT2 and ROOT PHOTOTROPISM 2 (RPT2). However, the HBL irradiation‐mediated release of NPH3 proteins into the cytoplasm was inhibited in phot1 mutants and enhanced in phot2 and rpt2‐2 mutants. Furthermore, HBL‐induced hypocotyl phototropism was enhanced in phot1 mutants and inhibited in the phot2 and rpt2‐2 mutants. Our findings indicate that phot1 regulates the dissociation of NPH3 from the plasma membrane, whereas phot2 mediates the stabilization and relocation of NPH3 to the plasma membrane to acclimate to HBL. 相似文献
19.
Nucleoside-diphosphate kinase (NDPK) 2 in Arabidopsis has been identified as a phytochrome-interacting protein by using the C-terminal domain of phytochrome A (PhyA) as the bait in yeast two-hybrid screening. The far-red light-absorbing form of phytochrome (Pfr) A stimulates NDPK2 gamma-phosphate exchange activity in vitro. To better understand the multiple functions of NDPK and its role in phytochrome-mediated signaling, we characterized the interaction between phytochrome and NDPK2. Domain studies revealed that PER-ARNT-SIM domain A in the C-terminal domain of phytochrome is the binding site for NDPK2. Additionally, phytochrome recognizes both the NDPK2 C-terminal fragment and the NDPK2 hexameric structure to fulfill its binding. To illustrate the mechanism of how the Pfr form of phytochrome stimulates NDPK2, His-197-surrounding residue mutants were made and tested. Results suggested that the H-bonding with His-197 inside the nucleotide-binding pocket is critical for NDPK2 functioning. The pH dependence profiles of NDPK2 indicated that mutants with different activities from the wild type have different pK(a) values of His-197 and that NDPK2 hyperactive mutants possess lower pK(a) values. Because a lower pK(a) value of His-197 accelerates NDPK2 autophosphorylation and the phospho-transfer between the phosphorylated NDPK2 and its kinase substrate, we concluded that the Pfr form of phytochrome stimulates NDPK2 by lowering the pK(a) value of His-197. 相似文献
20.
Wan Y Jasik J Wang L Hao H Volkmann D Menzel D Mancuso S Baluška F Lin J 《The Plant cell》2012,24(2):551-565
Under blue light (BL) illumination, Arabidopsis thaliana roots grow away from the light source, showing a negative phototropic response. However, the mechanism of root phototropism is still unclear. Using a noninvasive microelectrode system, we showed that the BL sensor phototropin1 (phot1), the signal transducer NONPHOTOTROPIC HYPOCOTYL3 (NPH3), and the auxin efflux transporter PIN2 were essential for BL-induced auxin flux in the root apex transition zone. We also found that PIN2-green fluorescent protein (GFP) localized to vacuole-like compartments (VLCs) in dark-grown root epidermal and cortical cells, and phot1/NPH3 mediated a BL-initiated pathway that caused PIN2 redistribution to the plasma membrane. When dark-grown roots were exposed to brefeldin A (BFA), PIN2-GFP remained in VLCs in darkness, and BL caused PIN2-GFP disappearance from VLCs and induced PIN2-GFP-FM4-64 colocalization within enlarged compartments. In the nph3 mutant, both dark and BL BFA treatments caused the disappearance of PIN2-GFP from VLCs. However, in the phot1 mutant, PIN2-GFP remained within VLCs under both dark and BL BFA treatments, suggesting that phot1 and NPH3 play different roles in PIN2 localization. In conclusion, BL-induced root phototropism is based on the phot1/NPH3 signaling pathway, which stimulates the shootward auxin flux by modifying the subcellular targeting of PIN2 in the root apex transition zone. 相似文献