首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although increasing the pCO2 for diatoms will presumably down‐regulate the CO2‐concentrating mechanism (CCM) to save energy for growth, different species have been reported to respond differently to ocean acidification (OA). To better understand their growth responses to OA, we acclimated the diatoms Thalassiosira pseudonana, Phaeodactylum tricornutum, and Chaetoceros muelleri to ambient (pCO2 400 μatm, pH 8.1), carbonated (pCO2 800 μatm, pH 8.1), acidified (pCO2 400 μatm, pH 7.8), and OA (pCO2 800 μatm, pH 7.8) conditions and investigated how seawater pCO2 and pH affect their CCMs, photosynthesis, and respiration both individually and jointly. In all three diatoms, carbonation down‐regulated the CCMs, while acidification increased both the photosynthetic carbon fixation rate and the fraction of CO2 as the inorganic carbon source. The positive OA effect on photosynthetic carbon fixation was more pronounced in C. muelleri, which had a relatively lower photosynthetic affinity for CO2, than in either T. pseudonana or P. tricornutum. In response to OA, T. pseudonana increased respiration for active disposal of H+ to maintain its intracellular pH, whereas P. tricornutum and C. muelleri retained their respiration rate but lowered the intracellular pH to maintain the cross‐membrane electrochemical gradient for H+ efflux. As the net result of changes in photosynthesis and respiration, growth enhancement to OA of the three diatoms followed the order of C. muelleri > P. tricornutum > T. pseudonana. This study demonstrates that elucidating the separate and joint impacts of increased pCO2 and decreased pH aids the mechanistic understanding of OA effects on diatoms in the future, acidified oceans.  相似文献   

2.
The tolerance to copper ions of three diatoms, namely, Skeletonema costatum, (Grev.) Cleve, Thalassiosira pseudonana (Hust.) Hasle and Phaeodactylum tricornutum Bohlin grown in dialysis and batch cultures in the local fjord water has been established. Reduction of growth rates was observed by the addition of 10, 25 and 400 μg/1 of copper ions, respectively for the three species investigated. At the higher levels of copper addition (400 and 700 MS/1) cells of P. tricornutum in dialysis culture increased their copper content to more than 200 times over those of the controls, the ratio of copper to chlorophyll in the cells increasing 150 times.All three species showed marked increases in copper content when a copper salt was added to batch cultures of the algae. The two clones of Skeletonema costatum tested showed nearly identical sensitivity to copper ions, but they differed markedly in their zinc tolerance.  相似文献   

3.
Three marine phytoplankton, Dunaliella tertiolecta Butcher, Phaeodactylum tricornutum Bohlin, and Thalassiosira pseudonana (3H) Hasle & Heindal, were grown on waste water-sea water mixtures in continuous-flow monocultures. P. tricornutum increased in biomass with increasing waste-water additions until a mixture of about 40 % waste water-60 % sea water was reached. The other species did not increase in biomass beyond a 20 % waste water-80 % sea water mixture and even showed some inhibition at higher waste water additions. The carbon/nitrogen (CN) ratio of the algae was consistently below 6 when nitrogen was not limiting growth, but increased with decreasing dilution rate under nitrogen-limiting conditions, depending on whether NH4+-N or NO3?-N was the main nitrogen source.Species dominance in enriched cultures is controlled by a complex interaction of environmental factors. By altering the chemical composition (CN ratio) of dominant phytoplankton such as P. tricornutum in mass culture through control of nitrogen source and concentration, it may be possible to increase the nutritional value of these organisms so that they represent a balanced diet for the growth of herbivorous shellfish.  相似文献   

4.
Although substantial economic barriers exist, marine diatoms such as Thalassiosira pseudonana and Phaeodactylum tricornutum hold promise as feedstock for biodiesel because of their ability to manufacture and store triacylglycerols (TAGs). The recent sequencing of these two marine diatom genomes by the United States Department of Energy Joint Genome Institute and the development of improved systems for genetic manipulation should allow a more systematic approach to understanding and maximizing TAG production. However, in order to best utilize these genomes and genetic tools, we must first gain a deeper understanding of the nutrient-mediated regulation of TAG anabolism. By determining both the yield and molecular species distribution of TAGs we will, in the future, be able to fully characterize the effects of genetic manipulation. Here, we lay the groundwork for understanding TAG production in T. pseudonana and P. tricornutum, as a function of nitrate and silicate depletion. Diatoms were starved of either nitrate or silicate, and TAGs were extracted with hexane from lyophilized samples taken at various time intervals following starvation. The timing of TAG production and the relative abundance of TAGs were estimated by fluorescence spectroscopy using Nile red and the total yield per biomass determined by gravimetric assay. TAGs were analyzed using thin layer chromatography, gas chromatography–mass spectrometry, and electrospray ionization mass spectrometry to identify the major TAG species produced during the growth curve. Under our conditions, the TAG yield from T. pseudonana is about 14–18% of total dry weight. The TAG yield from P. tricornutum is about 14% of total dry weight. Silicate-starved T. pseudonana accumulated an average of 24% more TAGs than those starved for nitrate; however, the chemotypes of the TAGs produced were generally similar regardless of the starvation condition employed.  相似文献   

5.
The distribution of marine phytoplankton will shift alongside changes in marine environments, leading to altered species frequencies and community composition. An understanding of the response of mixed populations to abiotic changes is required to adequately predict how environmental change may affect the future composition of phytoplankton communities. This study investigated the growth and competitive ability of two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana, along a temperature gradient (9–35°C) spanning the thermal niches of both species under both high‐nitrogen nutrient‐replete and low‐nitrogen nutrient‐limited conditions. Across this temperature gradient, the competitive outcome under both nutrient conditions at any assay temperature, and the critical temperature at which competitive advantage shifted from one species to the other, was well predicted by the temperature dependencies of the growth rates of the two species measured in monocultures. The temperature at which the competitive advantage switched from P. tricornutum to T. pseudonana increased from 18.8°C under replete conditions to 25.3°C under nutrient‐limited conditions. Thus, P. tricornutum was a better competitor over a wider temperature range in a low N environment. Being able to determine the competitive outcomes from physiological responses of single species to environmental changes has the potential to significantly improve the predictive power of phytoplankton spatial distribution and community composition models.  相似文献   

6.
7.
An obligate requirement for selenium is demonstrated in axenic culture of the coastal marine diatom Thalassiosira pseudonana (clone 3H) (Hust.) Hasle and Heimdal grown in artificial seawater medium. Selenium deficiency was characterized by a reduction in growth rate and eventually by a cessation of cell division. The addition of 10−10 M Na2SeO3 to nutrient enriched artificial seawater resulted in excellent growth of T. pseudonana and only a slight inhibition of growth occurred at Na2SeO3 concentrations of 10−3 and 10−2 M. By contrast, Na2SeO4 failed to support growth of T. pseudonana when supplied at concentrations less than 10−7 M and the growth rate at this concentration was only one quarter of the maximum growth rate. The addition of 10−3 and 10−2 M Na2SeO4 to the culture medium was toxic and cell growth was completely inhibited. Eleven trace elements were tested for their ability to replace the selenium requirement by this alga find all were without effect. In selenium-deficient and selenium-starved cultures of T. pseudonana cell volume increased as much as 10-fold as a result of an increase in cell length (along the pervalvar axis) but cell width was constant. It is concluded that selenium is an indispensable element for the growth of T. pseudonana and it should be included as a nutrient enrichment to artificial seawater medium when culturing this alga.  相似文献   

8.
Two species of marine diatoms [Skeletonema costatum (Greville) Cleve and Thalassiosira pseudonana (Hustedt) Hasle and Heimdal] were grown in glass and polyarbonate containers. S. costatum exhibited a signzJicantly lower exponential growth rate and maximal yield and a signajcantly longer lag phase when grown in polycarbonate. Exponential growth rate and maximal yield of T. pseudonana was significantly reduced (P < 0.05 in all cases). This study suggests that a difference in diatom growth between glass and polyarbonate containers might arise in certain cases. However, such a difference may not be detectable with all biomass measurement techniques or with low within-treatment replication.  相似文献   

9.
The effect of pH on flocculation was studied using the diatom Phaeodactylum tricornutum and the green algae Scenedesmus cf. obliquus as surrogate species. There was a distinct, species-specific threshold of pH where flocculation started. P. tricornutum started to flocculate at pH 10.5 and S. cf. obliquus at pH 11.3. Above this threshold, settling rates up to 360 cm h−1 were observed for P. tricornutum and the concentrating factor was up to 60-fold. The combined effect of pH, turbulence, and cell density on flocculation of P. tricornutum was additionally studied in a factorial 53-design experiment. pH was the most important factor affecting flocculation, but at the pH threshold (pH 10.5), the concentrating factor was increased by increasing cell density and turbulence. Algae increases the pH during photosynthesis, and the P. tricornutum and S. cf. obliquus cultures increased the pH to a maximum of 10.8 and 9.5, respectively, after discontinuing the CO2 supply. For P. tricornutum, this was above the flocculation threshold, and rapid settling of this species due to increased pH was observed in a matter of hours after the CO2 supply was turned off. This could be used as a simple, low-cost, initial dewatering step for this species.  相似文献   

10.
11.
The growth rates of 3 species of phytoplankton were found to be dependent on the vitamin B12 concentrations in the media. In batch cultures, the vitamin B12 half-saturation constants and standard errors were 0.39 ± 0.042 μμg/ml for Thalassiosira pseudonana (clone 3H), 1.69 ± 0.24 μμg/ml for Isochrysis galbana, and 2.77 ± 1.65 μμg/ml for Monochrysis lutheri. A chemostat was used to grow T. pseudonana with vitamin B12 as the controlling factor. In the chemostat the yield and standard deviation, 102 ± 21 × 104 cells/μμg vitamin B12, was the same as in the batch culture, 126 ± 13 ± 104 cells/μμg. The chemostat half-saturation constant, 0.26 ± 0.068 μμg/ml vitamin B12, and maximum growth rate were in agreement with those obtained in batch cultures. Vitamin concentrations for maximum growth, rates were greater than those calculated necessary from yield data to give observed population densities similar to those in natural waters. In the sea the effect of vitamin B12 concentration on growth rates may be complicated by low concentrations of other nutrients or the presence of inhibitors.  相似文献   

12.
The relative requirement of N and P (the optimum N:P ratio)by Dunaliella tertiolecta, Phaeodactylum tricornutum, Prymnesiumparvum and Thalassiosira pseudonana was studied under variouslight intensities and spectra. The ratio was determined as theratio of the minimum cell N and P concentrations (q0N and q0pwhen either nutrient was limiting. The ratio varied widely amongspecies; under light-saturation for growth (116 µEin m–2s–1 it ranged from 11.8 in D. tertiolecta to 36.6 in P.tricornutum. The ratio appeared to be higher at a sub-saturatingintensity (24 µEin m–2 s–1 in all except P.tricornutum, mainly because of higher qoN with little changein qoP. In T. pseudonana QoP also increased, resulting in aninsignificant change in the ratio. The ratio varied little withinthe range of saturation intensity. Light quality affected qoNand qoP as well as the ratio, and the pattern of change variedfrom species to species. The optimum ratio of individual specieswas linearly correlated to their qoN except in P. tricornutum.qoN for all species showed a linear correlation with cell proteinconcentrations irrespective of light conditions. The changeof optimum N:P ratios in the three species thus appears to berelated to changes in cell protein contents. The ratio of carbohydratesto protein remained constant regardless of light intensity orquality and was higher in P-limited cultures. We conclude thatchanges in light regime can strongly influence algal nutrientrequirements and species interrelationships by altering theoptimum cellular N:P ratio.  相似文献   

13.
Short-term (1–9 min) nitrate uptake kinetics were measured in Thalassiosira pseudonana (Hust.) Hasle & Heimdal grown in nitrate-limited, ammonium-limited, and nitrate-sufficient continuous cultures. For all cultures, maximal nitrate uptake rates did not develop until approximately 3 min after nitrate addition; thereafter, nitrate uptake rates remained constant or declined slightly. The Ks and Vmax for the nitrate-limited cultures were higher at any growth rate than those for the ammonium-limited or nitrate-sufficient cultures. Thus, much higher nitrate concentrations would be required to saturate nitrate uptake in nitrate-limited Thalassiosira pseudonana than is usually considered necessary. The lack of data for other species grown under a range of environmental conditions makes it difficult to generalize about the effect of preconditioning on nitrate uptake kinetics.  相似文献   

14.
The growth kinetics and nitrogen (N)-nutrition of the marine pennate diatom Phaeodactylum tricornutum Bohlin were determined in continuous dialysis culture at different cell densities. Inflow nutrient medium was supplied as natural unenriched estuarine seawater to a dialysis culture system with a high ratio of membrane surface area/culture volume (Am/Vc). Under the experimental conditions, the supply of inorganic macronutrients (NO 3 ? + NO 4 ? and PO 4 ?3 ) by diffusion (Nd) was markedly greater than that provided by the dilution (FfCN) of the culture (Nd ? FfCN), thereby establishing an inverse relationship between the cell density and the dilution rate (D). This continuous dialysis system allows for the maintenance of prolonged growth (> two weeks) at various cell densities (1.4 to 27.2 × 109 cells 1?1) within a range of dilution rates between 0.30 to 1.08 d?1. In high cell density cultures, where the extracellular medium was characterized as nutrient deficient, a lower growth rate (μe) was exhibited than in cultures with lower cell densities. The growth rate (μe) remained equivalent to the dilution rate (D) throughout the culture cycle, indicating that equilibrated growth was achieved. High cell density cultures yielded higher productivity (P), relative to that of cultures grown at lower cell densities, in terms of cell-N and ?C produced per unit time. However, cell quotas of both N and C declined with increasing cell concentrations. Denser cultures were characterized by an enhanced N-conversion efficiency (YN) and a higher cellular N/C atomic ratio. The nutritional response of this diatom in dense cultures reveals an efficient use of N-nutrients, presumably as a result of cellular nutrient adaptation to oligotrophic conditions.  相似文献   

15.
Light-limited rates of photosynthesis normalized for chlorophyll a, (α), and actual photon absorption (quantum efficiency, Ф) were determined for six eponentially growing algal species grown under identical conditions. The same parameters, α and Ф, were also monitored for a single diatom species, Thalassiosira pseudonana Hasle & Heimdal, through its growth cycle in batch culture. Statistical differences in α could be demonstrated among the six different exponentially growing species while no differences could be shown for Ф. Statistical differences among the six species were minimized when photosynthetic rates were normalized for in vivo fluorescence rather than extracted chlorophyll a. Both α and Ф were constant while T. pseudonana was in the exponential phase of growth, but both declined as the culture entered stationary phase. While cells were in exponential growth, differences in a were attributed to varying rates of in vivo light absorption per chlorophyll a, thus providing experimental evidence that the in vivo chlorophyll a extinction coefficient, kc (m2· mg Chl a?1), cannot be assumed constant.  相似文献   

16.
Three marine phytoplankters (Isochrysis galbana, Chaetoceros calcitrans andThalassiosira pseudonana), commonly used in the culture of bivalve larvae, were grown in batch or semi-continuous cultures. Changes in protein, carbohydrate, lipid and some fatty acids were measured as growth became limited by nitrogen, silicon, phosphorus or light. Under N starvation (2 d) the % lipid remained relatively constant, while% carbohydrate increased and% protein decreased in all 3 species compared to cells growing under no nutrient limitation. Under Si starvation (6 h) there was no change in lipid, protein or carbohydrates. The amount of two fatty acids, 20 : 53 and 22 : 63 remained relatively constant under N, P and Si starvation, exept for a sharp drop in the cells of P-starvedT. pseudonana. However, there were pronounced species differences withI. galbana containing significantly less 20 : 5 3 thanC. calcitrans orT. pseudonana. Under light limitation the amount of lipid per cell showed no consistent trend over a range of irradiances for all 3 species. The amount of N per cell (an index of protein content) as a function of irradiance, was relatively constant forI. galbana andT. pseudonana, while the amount of N per cell was lower under low irradiances forC. calcitrans. These examples of changes in protein, carbohydrate, lipid and certain fatty acids under nutrient (N, Si or P) or light limitation, emphasize the importance of knowing the phase (e.g. logarithmic vs stationary) of the growth curve in batch cultures, since the nutritional value of the phytoplankters could change as cultures become dense and growth is terminated due to nutrient or light limitation.Presented at the XIIIth International Seaweed Symposium, University of British Columbia, Vancouver, Canada, August 1989.  相似文献   

17.
Concentrations of riboflavin — a vitamin essential for maricultured animals—were measured in six species of microalgae commonly used in mariculture. These were two diatoms (Chaetoceros gracilis, Thalassiosira pseudonana); two prymnesiophytes (Isochrysis sp. (clone T.ISO),Pavlova lutheri); one chlorophyte (Nannochloris atomus) and one eustigmatophyte (Nannochloropsis oculata). Cultures were analysed during both logarithmic and stationary growth phase.The proportions of riboflavin (µg g-1 dry weight) during logarithmic growth-phase ranged from 20 (T. pseudonana) to 40 µg g-1 (Isochrysis sp. T.ISO). With the onset of stationary phase, the proportion of riboflavin increased in all species; the increase was most dramatic in cultures ofC. gracilis, T. pseudonana andN. atomus (2- to 3-fold).Chaetoceros gracilis contained more riboflavin (106 µg g-1) than all other species (48 to 61 µ g-1).Despite the differences in the composition of the different microalgae, across both logarithmic and stationary growth-phases, all species should provide a rich source of riboflavin for maricultured animals.Author for correspondence  相似文献   

18.
Both high pH and cell senescence are believed to lead to the production of toxic extracellular metabolites in freshwater microalgae. However, there was no evidence for allelopathic suppression of photosynthesis when filtrates of either of two marine microalgae,Phaeodactylum tricornutum andDunaliella tertiolecta, were mixed with whole cultures of the other species. This was true even when filtrate ofP. tricornutum sample was derived from a culture at high pH or from one in various stages of senescence. It is believed that the major factor leading to the dominance ofP. tricornutum in intensive outdoor cultures is the unique ability of this alga to tolerate pH levels above 9.5, not the allelopathic inhibition of competing species.  相似文献   

19.
ABSTRACT

Both Heterosigma akashiwo and Phaeodactylum tricornutum have been reported to produce allelochemicals capable of inhibiting the growth of co-occurring microalgae. Here, potential allelopathy between H. akashiwo and P. tricornutum was evaluated using bi-algal culture, cell-free culture filtrate and a no-contact co-culturing system in nutrient-replete media. Experiments were also conducted in the no-contact co-culturing system under nutrient-limited conditions. In nutrient-replete bi-algal culture, the growth of P. tricornutum and H. akashiwo each tended to be strongly suppressed when the other species was inoculated at high cell densities. A mathematical model was used to simulate the growth interactions of the two species in bi-algal culture and showed that P. tricornutum outcompeted H. akashiwo over time with different initial cell densities under nutrient-sufficient conditions, indicating that P. tricornutum was more potent in allelopathy. Heterosigma akashiwo growth was inhibited both in the P. tricornutum culture filtrate and no-contact co-culturing system. This confirmed that the extracellular allelopathic compounds released by P. tricornutum were one of the sources of the H. akashiwo growth inhibition. Nutrient deficiency did not increase the extent of allelopathic activity of allelochemicals.  相似文献   

20.
The toxicity of polychlorinated biphenyls (PCB) to the diatomThalassiosira pseudonana (formerlyCyclotella nana), grown in pure and mixed cultures, was greatest when in competition with other species. Continuous cultures were superior to batch cultures for studying competitive interactions, and PCB caused greater alteration of species composition in continuous cultures than it did in batch cultures. Natural phytoplankton communities from Vineyard Sound, maintained in continuous culture, responded to PCB stress the same as did gnotobiotic communities, withT. pseudonana showing similar responses in both communities. A PCB concentration of 0.1 μg/liter (0.1 part per billion), a level not uncommon in natural waters, did not affect algal growth in pure cultures but caused substantial disruption of continuous culture communities. The possible impact of PCB pollution on natural phytoplankton communities is discussed. Contribution No. 3181 from the Woods Hole Oceanographic Institution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号