首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell surface membranes are generally considered as inert and hydrophobic providing a stable physical barrier that anchor proteins and maintain cellular homeostasis between the intra- and the extra-cellular environment. The integral proteins that transverse membranes do so once or multiple times and can function alone or as part of a larger complex. Far from being inert, there is a multiplicity of biophysical factors that drive protein-protein and protein-lipid interactions within membranes that are being increasingly recognised as very important for cellular function. Unravelling these “hot-spots” on the contact surface of transmembrane (TM) proteins and targeting peptides to these sites to interrupt the cohesive interaction between the proteins provides both an enormous challenge and a huge therapeutic potential that as yet remains unrecognized. Indeed, with biopharmaceutical research on the rise, TM peptides may prove a useful innovation. Using the T-cell antigen receptor (TCR) as a model system of multi-subunits interacting at the TM via electrostatic charges the potential for peptides as therapeutic agents to interfere with normal immune responses is discussed. The principles of such can be extended to other similar receptor systems including those involved in cancer or infection.  相似文献   

2.
We have previously shown that a synthetic peptide termed core peptide (CP), which corresponds to a sequence within the transmembrane domain of the alpha chain of the T cell antigen receptor (TCR), can inhibit IL-2 production in antigen-stimulated T cells and can suppress inflammation in several T cell-mediated animal models of disease. As the first step in determining the mechanism of CP action, we examined the association of CP with the plasma membrane of human T cells using confocal microscopy. A homogeneous distribution of CP was observed in the plasma membrane of human T cells. This membrane localization was dependent on the presence of positive charges in the CP sequence. CP analogs, containing either neutral or negatively charged amino acids in place of the positive amino acid charges, did not localize within TCR membranes. Following antibody-induced TCR clustering, there was specific colocalization of CP with surface TCR. No association was observed with other cell surface receptors when similarly clustered. Since TCR activation leads to an increased movement of the receptor complex to cholesterol/glycosphingolipid (GSL) plasma membrane microdomains (rafts) we examined whether the association of CP with TCR was raft-driven. TCR clustering led only to a partial colocalization of TCRs with raft GSL, ganglioside GM1, and a complete colocalization of CP with TCRs. We conclude that CP associates specifically with plasma membrane TCRs and not raft lipids.  相似文献   

3.
Summary Core peptide (CP) is a unique peptide derived from the transmembrane sequence of T cell antigen receptor (TCR)-alpha chain and is capable of inhibiting the immune response both invitro and in animal models of T cell mediated inflammation. The structure of CP, with sequence GLRILLLKV, is similar to the amphipathic region of many peptides. Unlike antimicrobial peptides, however, which damage cell membranes, electron microscopy and propidium iodide exclusion assays on cell membranes suggest that CP does not create pores and may act by interfering with signal transduction at the membrane level. To investigate this effect further we report the results of31P and2H solid-state NMR spectroscopy of CP on model membranes. As predicted, even at high concentrations of CP, the structure of model membranes was not significantly perturbed. Only at the very high peptide-to-lipid molar ratio of 1∶10 significant effects on the model membranes were observed. We conclude that CP does not destroy the integrity of the lipid bilayer.  相似文献   

4.
Core peptide (CP) is a unique peptide derived from thetransmembrane sequence of T cell antigen receptor (TCR)-alpha chain and is capable of inhibiting the immuneresponse both in vitro and in animal models of Tcell mediated inflammation. The structure of CP, withsequence GLRILLLKV, is similar to the amphipathic regionof many peptides. Unlike antimicrobial peptides,however, which damage cell membranes, electron microscopyand propidium iodide exclusion assays on cell membranessuggest that CP does not create pores and may act byinterfering with signal transduction at the membranelevel. To investigate this effect further we report theresults of 31P and 2H solid-state NMRspectroscopy of CP on model membranes. As predicted,even at high concentrations of CP, the structure of modelmembranes was not significantly perturbed. Only at thevery high peptide-to-lipid molar ratio of 1:10significant effects on the model membranes were observed. We conclude that CP does not destroy the integrity of thelipid bilayer.  相似文献   

5.
TCR-gene transfer represents an effective way to redirect the specificity of T lymphocytes for therapeutic purposes. Recent successful clinical trials have underscored the potential of this approach in which efficient expression of the exogenous TCR has been directly linked to the efficacy of T cell activity. It has been also demonstrated that the TCR exhibits a lack of stability associated with the presence of positively charged residues in its transmembrane (TM) region. In this study, we designed an original approach selectively to improve exogenous TCR stability by increasing the hydrophobic nature of the TCRα TM region. Incorporation of hydrophobic residues at evolutionarily permissive positions resulted in an enhanced surface expression of the TCR chains, leading to an improved cellular avidity and anti-tumor TCR activity. Furthermore, this strategy was successfully applied to different TCRs, enabling the targeting of human tumors from different histologies. We also show that the combination of these hydrophobic mutations with another TCR-enhancing approach further improved TCR expression and function. Overall, these findings provide information regarding TCR TM composition that can be applied for the improvement of TCR-gene transfer-based treatments.  相似文献   

6.
Stimulation of the T cell antigen receptor (TCR) induces formation of a phosphorylation-dependent signaling network via multiprotein complexes, whose compositions and dynamics are incompletely understood. Using stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics, we investigated the kinetics of signal propagation after TCR-induced protein tyrosine phosphorylation. We confidently assigned 77 proteins (of 758 identified) as a direct or indirect consequence of tyrosine phosphorylation that proceeds in successive "signaling waves" revealing the temporal pace at which tyrosine kinases activate cellular functions. The first wave includes thymocyte-expressed molecule involved in selection (THEMIS), a protein recently implicated in thymocyte development but whose signaling role is unclear. We found that tyrosine phosphorylation of THEMIS depends on the presence of the scaffold proteins Linker for activation of T cells (LAT) and SH2 domain-containing lymphocyte protein of 76 kDa (SLP-76). THEMIS associates with LAT, presumably via the adapter growth factor receptor-bound protein 2 (Grb2) and with phospholipase Cγ1 (PLC-γ1). RNAi-mediated THEMIS knock-down inhibited TCR-induced IL-2 gene expression due to reduced ERK and nuclear factor of activated T cells (NFAT)/activator protein 1 (AP-1) signaling, whereas JNK, p38, or nuclear factor κB (NF-κB) activation were unaffected. Our study reveals the dynamics of TCR-dependent signaling networks and suggests a specific role for THEMIS in early TCR signalosome function.  相似文献   

7.
8.
We have investigated the potential for direct interaction between a peptide Ag, human fibrinopeptide B (hFPB), and the TCR on an hFPB-specific murine T hybridoma. Fluoresceinated hFPB binds specifically to hFPB-responsive T cells, but not to unrelated T hybrids. Among variant subclones of the original hybridoma, ability to bind hFPB correlates with hFPB-specific response and expression of the CD3/TCR complex, indicating that hFPB is binding to the TCR. This TCR-hFPB interaction has an affinity of approximately 6.6 microM, reflecting slow association and rapid dissociation of the Ag from its receptor. These findings confirm the potential for direct Ag-TCR interaction and indicate an Ag recognition mechanism that is not initiated by Ag-MHC interaction.  相似文献   

9.
Cell surface membranes are generally considered as inert and hydrophobic providing a stable physical barrier that anchor proteins and maintain cellular homeostasis between the intra- and the extra-cellular environment. The integral proteins that transverse membranes do so once or multiple times and can function alone or as part of a larger complex. Far from being inert, there is a multiplicity of biophysical factors that drive protein-protein and protein-lipid interactions within membranes that are being increasingly recognised as very important for cellular function. Unravelling these “hot-spots” on the contact surface of transmembrane (TM) proteins and targeting peptides to these sites to interrupt the cohesive interaction between the proteins provides both an enormous challenge and a huge therapeutic potential that as yet remains unrecognized. Indeed, with biopharmaceutical research on the rise, TM peptides may prove a useful innovation. Using the T-cell antigen receptor (TCR) as a model system of multi-subunits interacting at the TM via electrostatic charges the potential for peptides as therapeutic agents to interfere with normal immune responses is discussed. The principles of such can be extended to other similar receptor systems including those involved in cancer or infection.Key words: transmembrane, peptides, biophysics, therapeutics  相似文献   

10.
11.
A major challenge for the structural study of the seven-transmembrane G-protein-coupled receptors is to obtain a sufficient amount of purified protein at the milligram level, which is required for either nuclear magnetic resonance (NMR) spectroscopy or X-ray crystallography. In order to develop a high-yield and cost-effective method, and also to obtain preliminary structural information for the computer modeling of the three-dimensional receptor structural model, a highly hydrophobic peptide from human cannabinoid subtype 2 receptor CB2(65-101), was chosen to develop high-yield membrane protein expression and purification methods. The peptide included the second transmembrane helix with the associated loop regions of the CB2 receptor. It was over-expressed in Escherichia coli, with a modified TrpDelta LE1413 (TrpLE) leading fusion sequence and a nine-histidine tag, and was then separated and purified from the tag in a preparative scale. An experimental protocol for the chemical cleavage of membrane protein fragment was developed using cyanogen bromide to remove the TrpLE tag from the hydrophobic fusion protein. In addition, protein uniformly labeled with isotopic 15N was obtained by expression in 15N-enriched minimum media. The developed and optimized preparation scheme of expression, cleavage, and purification provided a sufficient amount of peptide for NMR structure analysis and other biophysical studies that will be reported elsewhere. The process of fusion protein cleavage following purification was monitored by high-performance liquid chromatography (HPLC) and mass spectrometry (MS), and the final sample was validated by MS and circular dichroism experiments.  相似文献   

12.
Core peptide (CP; GLRILLLKV) is a 9-amino acid peptide derived from the transmembrane sequence of the T-cell antigen receptor (TCR) alpha-subunit. CP inhibits T-cell activation both in vitro and in vivo by disruption of the TCR at the membrane level. To elucidate CP interactions with lipids, surface plasmon resonance (SPR) and circular dichroism (CD) were used to examine CP binding and secondary structure in the presence of either the anionic dimyristoyl-L-alpha-phosphatidyl-DL-glycerol (DMPG), or the zwitterionic dimyristoyl-L-alpha-phoshatidyl choline (DMPC).Using lipid monolayers and bilayers, SPR experiments demonstrated that irreversible peptide-lipid binding required the hydrophobic interior provided by a membrane bilayer. The importance of electrostatic interactions between CP and phospholipids was highlighted on lipid monolayers as CP bound reversibly to anionic DMPG monolayers, with no detectable binding observed on neutral DMPC monolayers.CD revealed a dose-dependent conformational change of CP from a dominantly random coil structure to that of beta-structure as the concentration of lipid increased relative to CP. This occurred only in the presence of the anionic DMPG at a lipid : peptide molar ratio of 1.6:1 as no conformational change was observed when the zwitterionic DMPC was tested up to a lipid : peptide ratio of 8.4 : 1.  相似文献   

13.
14.
The ability to initiate and sustain CD8(+) T cell responses to tumors in vivo is hindered by the development of peripheral T cell tolerance against tumor-associated Ags. Approaches that counter the onset of T cell tolerance may preserve a pool of potentially tumor-reactive CD8(+) T cells. Administration of agonist Ab to the CD40 molecule, expressed on APCs, can enhance immunization approaches targeting T lymphocytes in an otherwise tolerance-prone environment. In this report, the effects of anti-CD40 administration on priming of naive CD8(+) T cells against an endogenous tumor Ag were investigated. Line 501 mice express the SV40 large T Ag oncoprotein as a transgene from the alpha-amylase promoter, resulting in the development of peripheral CD8(+) T cell tolerance to the H-2-D(b)-restricted immunodominant epitope I of T Ag by 6 mo of age, before the appearance of osteosarcomas. We demonstrate that naive epitope I-specific TCR transgenic (TCR-I) T cells undergo peripheral tolerance following adoptive transfer into 6-mo-old 501 mice. In contrast, administration of agonistic anti-CD40 Ab led to increased expansion of TCR-I T cells in 501 mice, the acquisition of effector function by TCR-I T cells and the establishment of T cell memory. Importantly, this enhanced priming effect of anti-CD40 administration did not require immunization and was effective even if administered after naive TCR-I T cells had encountered the endogenous T Ag. Thus, anti-CD40 administration can block the onset of peripheral tolerance and enhance the recruitment of functionally competent effector T cells toward an endogenous tumor Ag.  相似文献   

15.
Jak3 is responsible for growth signals by various cytokines such as interleukin (IL)-2, IL-4, and IL-7 through association with the common gamma chain (gammac) in lymphocytes. We found that T cells from Jak3-deficient mice exhibit impairment of not only cytokine signaling but also early activation signals and that Jak3 is phosphorylated upon T cell receptor (TCR) stimulation. TCR-mediated phosphorylation of Jak3 is independent of IL-2 receptor/gammac but is dependent on Lck and ZAP-70. Jak3 was found to be assembled with the TCR complex, particularly through direct association with CD3zeta via its JH4 region, which is a different region from that for gammac association. These results suggest that Jak3 plays a role not only in cell growth but also in T cell activation and represents cross-talk of a signaling molecule between TCR and growth signals.  相似文献   

16.
We have performed immunoperoxidase staining on cryostat tissue sections and immunofluorescence analysis on cell suspensions to identify cells expressing the alpha/beta T cell antigen receptor during ontogeny and adult life in chickens. We used the mouse monoclonal antibody, TCR2, which was previously shown to recognize the alpha/beta TCR in chickens. TCR2+ cells were observed in thymic cortex and medulla and in T-dependent areas of spleen, intestine, and cecal tonsils of young adult chickens. Some TCR2+ cells were found in the cortex of bursal follicles and in liver. The first TCR2+ cells appear in thymus on Day 13 of the embryonic life and it is only after hatching that TCR2+ cells begin to migrate to the periphery.  相似文献   

17.
We have sought to address the question of clonal variation of TCR within a human T leukemia cell line, HPB-ALL. To do so, a panel of anti-idiotypic antibodies was produced and the cell line examined for variants. We isolated both spontaneous idiotype and receptor-negative variants without applying mutagens or any selective pressure other than sorting the cells. These sorted and cloned populations are all clonally related to each other as shown by their beta-TCR locus gene rearrangements. The idiotype variants have alpha-chains which are differentially glycosylated, but they have the same size core protein after treatment with peptide N-glycosidase F to remove their carbohydrate side chains. This probably accounts for their idiotypic difference, since the antibody that distinguishes them appears dependent upon glycosylation for its binding, as shown by immunoprecipitation in the presence versus the absence of tunicamycin, which inhibits glycosylation from occurring. The idiotype variants differed from one another in variable region sequences by only a single amino acid substitution in the beta-chain, which is likely not important for the idiotypic difference. The receptor-negative variant produces both alpha- and beta-mRNA and cytoplasmic protein for TCR, but fails to transport this protein to the cell surface. We conclude that idiotype and receptor-negative variants of a T cell clone can occur in the absence of appreciable somatic mutation.  相似文献   

18.
Down-regulation of CD4+CD25+ regulatory T (Treg) cell function might be beneficial to enhance the immunogenicity of viral and tumor vaccines or to induce breakdown of immunotolerance. Although the mechanism of suppression used by Treg cells remains controversial, it has been postulated that TGF-beta1 mediates their immunosuppressive activity. In this study, we show that P17, a short synthetic peptide that inhibits TGF-beta1 and TGF-beta2 developed in our laboratory, is able to inhibit Treg activity in vitro and in vivo. In vitro studies demonstrate that P17 inhibits murine and human Treg-induced unresponsiveness of effector T cells to anti-CD3 stimulation, in an MLR or to a specific Ag. Moreover, administration of P17 to mice immunized with peptide vaccines containing tumor or viral Ags enhanced anti-vaccine immune responses and improved protective immunogenicity against tumor growth or viral infection or replication. When CD4+ T cells purified from OT-II transgenic mice were transferred into C57BL/6 mice bearing s.c. EG.7-OVA tumors, administration of P17 improved their proliferation, reduced the number of CD4+Foxp3+ T cells, and inhibited tumor growth. Also, P17 prevented development of immunotolerance induced by oral administration of OVA by genetically modified Lactococcus lactis in DO11.10 transgenic mice sensitized by s.c. injection of OVA. These findings demonstrate that peptide inhibitors of TGF-beta may be a valuable tool to enhance vaccination efficacy and to break tolerance against pathogens or tumor Ags.  相似文献   

19.
We have examined transmembrane signaling events via the TCR/CD3 complex (TCR/CD3) at various stages of T cell development for evidence of developmental regulation. Engagement of TCR/CD3 induced defective activation of phospholipase C (PLC) in thymocytes relative to peripheral blood T lymphocytes. The defect in PLC activation via TCR/CD3 was restricted to immature thymocytes (CD3low, CD4+CD8+). Mature thymocytes (CD3high, CD4+CD8-/CD8+CD4-) were similar to PBL in signaling via TCR/CD3. Both immature and mature thymocytes expressed a similar profile of PLC isoenzyme mRNA species, indicating that the defect in signaling in immature thymocytes was not due to altered expression of PLC isoenzymes. Activation of tyrosine phosphorylation pathways implicated in the coupling of TCR/CD3 to PLC was impaired in immature thymocytes, as evidenced by depressed phosphorylation of CD3 zeta subunit after stimulation with anti TCR/CD3 mAb. This was associated with lower levels of p59fyn tyrosine kinase and minimal or undetectable stimulus-induced kinase activation in immature thymocytes relative to mature thymocytes. We conclude that the capacity to signal via TCR/CD3 is regulated during T cell development by mechanisms acting at the level of TCR/CD3-associated tyrosine phosphorylation pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号