首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cocaine   总被引:1,自引:0,他引:1  
Cocaine HCl (0, 10, or 50 mg/kg) was injected into adult male ICR mice ip. Thirty minutes later, the brains were removed, and nine regions were isolated: olfactory bulbs, olfactory tubercles, prefrontal cortex, septum, striatum, amygdala, hypothalamus, hippocampus, and thalamus. Using high-performance liquid chromatography, concentrations of norepinephrine, dopamine, serotonin, and their major metabolites and the metabolite/neurotransmitter ratios were determined as an indicator of utilization. Serotonergic systems responded most dramatically. 5HIAA/5-HT decreases were seen in all the brain regions, except the septum, hippocampus, and olfactory bulbs. In most instances, the alterations were dose-dependent. The most profound changes were seen in the amygdala, prefrontal cortex, hypothalamus, and thalamus. For noradrenergic systems, significant responses were seen only in the amygdala, prefrontal cortex, and hypothalamus, but then only at the lower dose. The dopaminergic responses were more complex and not always dose-dependent. The DOPAC/DA ratio was decreased only in the amygdala and striatum at the lower dose, and the olfactory tubercles at the higher dose. It was increased in the septum. The HVA/DA ratios were decreased in the amygdala, prefrontal cortex, and hypothalamus, but only at the lower dose (like MHPG/NE). The 3MT/DA ratio was decreased in the thalamus at the lower dose and in the olfactory tubercles at the higher dose, whereas it was increased in the prefrontal cortex at the lower dose. The HVA and DOPAC routes of degradation were both utilized only by the amygdala. Thus, cocaine produced its most comprehensive effects in this nucleus, as well as the greatest absolute percentage changes for all three of the monoamine systems studied.  相似文献   

2.
The concentrations of dopamine (DA), norepinephrine (NE), serotonin (5-HT), dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) were measured in the right and left cortex, striatum, and nucleus accumbens of adult Purdue-Wistar rats. There was more DA in the right cortex and accumbens and a greater concentration of NE in the left striatum. There is more 5-HT in the left striatum and right accumbens, more 5-HIAA in the left cortex, as well as a greater 5-HT turnover in the left accumbens. These results are considered in the light of previous findings concerning the relationship of neurochemical asymmetries and behavioral lateralization.  相似文献   

3.
Abstract: Changes in the tissue levels of 3-methoxytyramine (3-MT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and dopamine in the frontal cortex, hypothalamus, nucleus accumbens, and striatum were evaluated after 0.5-4 h of footshock (2 mA, for 3 s every 30 ± 5 s) in Fischer rats. 3-MT, DOPAC, and HVA levels in the four brain areas peaked at 0.5 h and in most cases returned to baseline values within 4 h. No changes were found in dopamine levels. Repeated footshock stress was evaluated by administering 10 footshock sessions (0.5 h, two per day for 5 days). At the end of the 10th footshock session, 3-MT levels were higher than at the end of the first footshock session in three of the four brain regions, indicating sensitization of dopamine release. No differences were found between the first and 10th footshock sessions in DOPAC and HVA levels. Fourteen days after the 10th footshock session, the levels of 3-MT, DOPAC, and HVA were the same as in control rats in all four brain regions. A 0.5-h footshock challenge presented 14 days after the 10th footshock session attenuated DOPAC levels in the hypothalamus and nucleus accumbens. In contrast, DOPAC and HVA levels in the frontal cortex showed sensitization after footshock challenge, and a similar trend was apparent for 3-MT levels. These results indicate that repeated footshock stress induces generalized sensitization of dopamine release and turnover in some areas of the brain of Fischer rats. This sensitization may persist in the cortical but not subcortical dopamine neurons after discontinuation of the treatment.  相似文献   

4.
Circadian rhythms in noradrenergic (NE) and dopaminergic (DA) metabolites and in cyclic nucleotide production were measured in discrete regions of rat brain. A circadian rhythm was found in the concentration of the NE metabolite, 3-methoxy-4-hydroxyphenylglycol (MHPG), in the hippocampus. No MHPG rhythm was found in frontal, cingulate, parietal, piriform, insular or temporal cortex, or in hypothalamus. Circadian rhythms in the concentration of the NE metabolite, 3,4-dihydroxyphenylglycol (DHPG), occurred in occipital and parietal cortex and hypothalamus, with no rhythm observable in temporal or insular cortex, hippocampus, pons-medulla or cerebellum. The 24-hr mean concentration of MHPG varied 3.5-fold, highest in cingulate and lowest in parietal, temporal and occipital cortex. The 24-hr mean concentration of DHPG varied 6-fold, highest in hypothalamus and lowest in parietal cortex. Circadian rhythms in the concentration of the DA metabolite, homovanillic acid (HVA), were found in olfactory tubercle, amygdala and caudate-putamen, but not in nucleus accumbens. A circadian rhythm in the concentration of the DA metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), occurred in nucleus accumbens, but not in olfactory tubercle or caudate-putamen. The mean 24-hr concentration of HVA was highest in caudate-putamen, intermediate in nucleus accumbens, and lowest in olfactory tubercle and amygdala. The mean 24-hr concentration of DOPAC was highest in nucleus accumbens and lower in olfactory tubercle and caudate-putamen. Circadian rhythms were found in the concentration of cyclic GMP (cGMP) in all regions measured except parietal cortex. The mean 24-hr concentration varied 128-fold, highest in nucleus accumbens, frontal poles, and hypothalamus and lowest in cingulate cortex. Circadian rhythms in cyclic AMP (cAMP) concentration were found in piriform, temporal, occipital, cingulate, and parietal cortex, amygdala and nucleus accumbens. No rhythms were found in frontal or insular cortex, hypothalamus, hippocampus, caudate-putamen or olfactory tubercle. The 24-hr mean cAMP concentration varied 4-fold, highest in parietal cortex and lowest in caudate-putamen and amygdala. Norepinephrine metabolites and dopamine metabolites were rhythmic in few regions. It is, therefore, unlikely that the rhythmicity measured in adrenergic receptors is, in general, a response to rhythmic changes in adrenergic transmitter release. The putative second messenger response systems, especially cGMP, were more often rhythmic. The rhythms in cGMP are parallel in form and region to those in the alpha 1-adrenergic receptor and may act as 2nd messenger for that receptor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Aluminum, a known neurotoxic substance, has been suggested as a possible contributing factor in the pathogenesis of Alzheimer's disease. Ground-water pollution by aluminum has been recently reported. In the current study groups of 5 male BALB/c mice were administered aluminum ammonium sulfate in drinking water ad libitum at 0, 5, 25, and 125 mg/L aluminum for 4 weeks. At the termination of aluminum exposure, their brains were removed and dissected into cerebrum, cerebellum, medulla oblongata, midbrain, corpus striatum, and hypothalamus. The concentration of norepinephrine (NE), dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), serotonin (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA), were determined in each brain area. DA, DOPAC, and HVA levels were lower in the hypothalamus of aluminum-treated mice, most notably in the low-dose group, as compared with control. No marked alterations in NE, 5-HT, and 5-HIAA levels were detected in any brain region. Changes in the concentration of DA and its metabolites measured in the hypothalamus suggest an inhibition of DA synthesis by aluminum.  相似文献   

6.
Effects of acute and subacute cocaine administration on dopamine (DA) and its metabolites in striata and nucleus accumbens of nine week-old Wistar-Kyoto and spontaneously hypertensive rats were studied. Levels of DA,3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were determined by HPLC-EC. There were no differences in DA levels in striata and nucleus accumbens between control WKY and SHR. Levels of DA in two brain regions were unaffected in groups treated acutely with cocaine. Both strains showed a significant increase in striatal HVA 2 hr after cocaine injection. Seven day treatment declined DA levels in striatum of WKY and in nucleus accumbens of SHR. However, only WKY treated subacutely with cocaine showed significantly increased HVA either with or without changes in DOPAC in nucleus accumbens and striatum, respectively. Increased DOPAC/DA and HVA/DA ratios appeared only in striatum of WKY and in nucleus accumbens of SHR following subacute treatment. These results suggest that subacute cocaine administration affects DA levels in striata and nucleus accumbens differently between WKY and SHR.  相似文献   

7.
Abstract: The effects of intracerebroventricular administration of the 5-hydroxytryptamine (5-HT)1A agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT; 0.1 pmol) on adrenocortical and neurochemical responses to stress were examined in conscious male rats. The following stress paradigms were used: acoustic stimulation (105 dB for 2 min); footshock (0.2 mA, five shocks over 5 min); conditioned fear (animals placed in a footshock chamber for 5 min, 24 h after footshock); restraint (5 min); intraperitoneal (i.p.) injection of recombinant human interleukin-1α (rHu-IL-1α, 20 µg/kg); and injection of cocaine hydrochloride (20 mg/kg, i.p.). As previously shown, 8-OH-DPAT was able to attenuate the adrenocortical response to acoustic stress, conditioned fear, rHu-IL-1α, and cocaine administration. Cocaine decreased 5-hydroxyindoleacetic acid (5-HIAA)/5-HT and dihydroxyphenylacetic acid/dopamine (DOPAC/DA) ratios and norepinephrine (NE) concentration in the prefrontal cortex, hypothalamus, and brainstem in all experiments, and 8-OH-DPAT reversed the changes in DOPAC/DA ratio without affecting 5-HIAA/5-HT ratios or NE content. 8-OH-DPAT alone had no effect on these parameters, although it decreased NE content in the prefrontal cortex in several experiments, and in the brainstem in one experiment. Significant decreases in NE content were observed in some brain regions following some of the stressors, but these changes were not generally affected by 8-OH-DPAT. Increases in the 5-HIAA/5-HT and DOPAC/DA ratios were also observed in some brain sites following some stressors, but these changes were not affected by 8-OH-DPAT except in the case of the increased 5-HIAA/5-HT ratio in the prefrontal cortex following the conditioned fear response. These results indicate that although 8-OH-DPAT is able to decrease plasma corticosterone responses following acoustic stress, conditioned fear, rHu-IL-1α, and cocaine administration, these effects do not appear to be related to an action of the 5-HT1A agonist on biogenic amine metabolism. This observation indicates that the predominant effect of 8-OH-DPAT on adrenocortical responses is mediated at postsynaptic sites not involved in the regulation of cerebral biogenic amine metabolism.  相似文献   

8.
Acute and chronic effects of γ-butyrolactone-γ-carbonyl-histidyl-prolinamide (DN-1417) were investigated on motor activity, dopamine (DA) metabolites and DA receptors in various brain regions of rats. The motor activity, as measured with Automex recorder, was enhanced after a single injection with DN-1417 (20 mg/kg, IP), and the motor stimulating action persisted during 21 daily injections. Acute DN-1417 elevated both homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) levels in 7 brain regions, prefrontal cortex polar, medial and lateral fields, nucleus accumbens, olfactory tubercles, amygdala and striatum. After chronic treatment for 7 days, the acute effect of DN-1417 on DA metabolites disappeared in all regions except for the striatum in which DN-1417 still increased HVA and DOPAC. The response of striatal DA metabolites was also observed after chronic treatment for 21 days. Chronic DN-1417 produced no significant change in 3H-spiperone binding in the prefrontal cortex, nucleus accumbens, olfactory tubercles and striatum, while striatal 3H-DA binding displaced by 30 nM spiperone was enhanced after chronic treatment. These results indicate that DN-1417 interacts with mesocortical, mesolimbic and nigrostriatal DA systems in the different modes of action. The lack of tolerance to motor hyperactivity, however, raises the question as to whether DN-1417-induced hyperactivity may be mediated by the activation of mesolimbic DA neurons. The involvement of nigrostriatal neurons in DN-1417-induced motor hyperactivity is suggested.  相似文献   

9.
Intracerebral dialysis was used with a specifically designed HPLC with electrochemical detection assay to monitor extracellular levels of endogenous 3,4-dihydroxyphenylethylamine (dopamine, DA) and its major metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in brain regions of the halothane-anesthetized rat. Significant amounts of DA, DOPAC, and HVA were detected in control perfusates collected from striatum and n. accumbens whereas the medial prefrontal cortex showed lower monoamine levels. The ratio of DA in perfusate to DA in whole tissue suggests that in f. cortex, compared to n. accumbens and striatum, there is a greater amount of DA in the extracellular space relative to the intraneuronal DA content. The DOPAC/HVA ratio in control perfusates varied between regions in accordance with whole tissue measurements. This ratio was highest in n. accumbens and lowest in f. cortex. The monoamine oxidase inhibitor pargyline (100 mg/kg i.p.) caused an exponential decline in DOPAC, but not of HVA, in regional perfusates, an effect that was associated with an increase in DA. The data indicated a higher turnover of extracellular DOPAC in n. accumbens than in striatum and the lowest DOPAC turnover in f. cortex. The rate of decline in extracellular DA metabolite levels was slow compared to whole tissue measurements. In the perfusates there was no statistical correlation between basal amounts of DA in the perfusates and DOPAC and HVA levels or DOPAC turnover for any of the areas, indicating that measurement of DA metabolism in the brain under basal conditions does not provide a good index of DA release. In summary, this study shows clear regional differences in basal DA release and metabolite levels, metabolite patterns, and DOPAC turnover rates in rat brain in vivo.  相似文献   

10.
The rate of removal of 3,4-dihydroxyphenylacetic acid (DOPAC) in nine rat brain areas (striatum, nucleus accumbens, tuberculum olfactorium, hypothalamus, lateral hippocampus, occipital cortex, brain stem, cerebellum, and retina) was calculated from its exponential decline after monoamine oxidase inhibition by pargyline. The experiments were carried out with rats pretreated with either saline or haloperidol. It appeared that the efficiency with which DOPAC was removed from the brain (expressed by the fractional rate constant k) varied considerably throughout the brain. Haloperidol dramatically decreased the k values, and in addition these effects differed widely in the various brain areas. Similarly to DOPAC, haloperidol had a pronounced retarding effect on the efflux of homovanillic acid (HVA) from the brain. These findings strongly suggest that great care should be taken when drug-induced alterations in DOPAC and HVA concentrations are interpreted as changes in dopaminergic activity. The dopamine (DA) concentrations were measured in the same experiments, but it appeared that the pargyline-induced rise in DA was of limited use for the estimation of the synthesis rate of the amine. We calculated the rate of catecholamine synthesis in the nine brain areas from the rise of 3,4-dihydroxyphenylalanine (DOPA) during decarboxylase inhibition. In saline- as well as in haloperidol-pretreated rats it was found that the total catecholamine synthesis rate in the typical dopaminergic areas (striatum, nucleus accumbens, and tuberculum olfactorium) was of the same order of magnitude as the DOPAC rate of removal. This confirms that DOPAC formation is quantitatively the main route of degradation in these brain areas.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
In vivo voltammetry with carbon fiber electrodes was used to assess extracellular 3,4-dihydroxyphenylacetic acid (DOPAC) levels in striatum, nucleus accumbens, and anteromedial prefrontal cortex of freely moving rats subjected to altered motor activity or anxiogenic stimuli. Forced locomotion on a rotarod for 40 min caused an increase in extracellular DOPAC levels in the striatum and to a lesser extent in the nucleus accumbens but not in the prefrontal cortex. Subcutaneous injection of the anxiogenic agent methyl-beta-carboline carboxylate (10 mg/kg) increased extracellular DOPAC levels to a similar extent in prefrontal cortex and nucleus accumbens. Immobilization for 4 min augmented dopamine (DA) metabolism preferentially in the nucleus accumbens and to a lesser extent in the prefrontal cortex. Tail-pinch caused a selective activation of DA metabolism in the nucleus accumbens. None of these stimuli altered extracellular striatal DOPAC levels. These results confirm the involvement of dopaminergic systems projecting to the striatum and nucleus accumbens in motor function and suggest that mesolimbic and mesocortical dopaminergic systems can be specifically activated by certain kinds of anxiogenic stimuli; the relative activation of either of these latter systems could depend primarily on the nature (sensory modality, intensity) of the acute stressor.  相似文献   

12.
Abstract: We examined whether prior exposure to chronic cold (17–28 days, 5°C) alters basal or stress-evoked (30-min tail shock) catecholamine release in medial prefrontal cortex, nucleus accumbens, and striatum, using in vivo microdialysis. Basal norepinephrine (NE) concentrations in medial prefrontal cortex did not differ between chronically cold-exposed rats and naive control rats (2.7 ± 0.3 vs. 2.5 ± 0.2 pg/20 µl, respectively). Basal dopamine (DA) efflux in any of the brain regions was not significantly different between chronically cold-exposed rats and naive rats. However, a trend for lower basal DA efflux in the cold-exposed relative to naive rats was observed in medial prefrontal cortex (1.5 ± 0.2 vs. 2.2 ± 0.3 pg/20 µl, respectively), nucleus accumbens (3.7 ± 0.8 vs. 5.4 ± 0.9 pg/20 µl, respectively), and striatum (4.4 ± 0.5 vs. 7.2 ± 1.5 pg/20 µl, respectively). In medial prefrontal cortex of rats previously exposed to cold, tail shock elicited a greater increase from baseline in both DA and NE efflux relative to that measured in naive rats (DA, 2.3 ± 0.3 vs. 1.2 ± 0.1 pg, respectively; NE, 3.8 ± 0.4 vs. 1.4 ± 0.2 pg, respectively). However, in nucleus accumbens or striatum of rats previously exposed to cold, the stress-induced increase in DA efflux was not significantly different from that of naive rats (nucleus accumbens, 1.8 ± 0.7 vs. 1.5 ± 0.3 pg, respectively; striatum, 1.9 ± 0.4 vs. 2.6 ± 0.7 pg, respectively). Thus, both cortical NE projections and cortically projecting DA neurons sensitize after chronic exposure to cold. In contrast, subcortical DA projections do not sensitize under these conditions.  相似文献   

13.
J A Nielsen  C A Johnston 《Life sciences》1982,31(25):2847-2856
Assays capable of measuring picomole quantities of dopamine (DA), 5-hydroxytryptamine (5-HT), several of their precursors and metabolites concurrently within 25 minutes were developed utilizing high performance liquid chromatography with electrochemical detection (LCEC). Several parameters of the LCEC were altered in order to separate the compounds while maintaining a short assay time. The final LCEC systems demonstrated biological utility in that the DA metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the 5-HT metabolite 5-hydroxy-3-indoleacetic acid (5-HIAA) were detected in rat cerebrospinal fluid; in addition to these compounds, DA and 5-HT were measurable in the striatum, hypothalamus and median eminence of the rat brain. Pargyline decreased the concentrations of DOPAC, HVA and 5-HIAA and increased the 5-HT concentration in all three brain regions, and increased the DA concentration in the striatum. Probenecid increased all three acid metabolite concentrations in the hypothalamus and median eminence, while only the HVA and 5-HIAA concentrations were increased in the striatum. The DA and 5-HT concentrations were unaltered. The LCEC methods described in this paper should be useful in elucidating the mechanisms and roles of 5-HT and DA neurons in experimental paradigms of biological interest.  相似文献   

14.
Concentrations of dopamine (DA), its metabolites 3-methoxytyramine and homovanillic acid (HVA), noradrenaline (NA), its metabolites normetanephrine (NM) and 3-methoxy-4-hydroxyphenylglycol (MHPG), 5-hydroxytryptamine (5-HT, serotonin), and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) were measured in 14 brain regions and in CSF from the third ventricle of 27 human autopsy cases. In addition, in six cases, lumbar CSF was obtained. Monoamine concentrations were determined by reversed-phase liquid chromatography with electrochemical detection. Ventricular/lumbar CSF ratios indicated persistence of rostrocaudal gradients for HVA and 5-HIAA post mortem. Ventricular CSF concentrations of DA and HVA correlated positively with striatal DA and HVA. CSF NA correlated positively with NA in hypothalamus, and CSF MHPG with levels of MHPG in hypothalamus, temporal cortex, and pons, whereas CSF NM concentration showed positive correlations with NM in striatum, pons, cingulate cortex, and olfactory tubercle. CSF 5-HT concentrations correlated positively with 5-HT in caudate nucleus, whereas the concentration of CSF 5-HIAA correlated to 5-HIAA levels in thalamus, hypothalamus, and the cortical areas. These data suggest a specific topographic origin for monoamine neurotransmitters and their metabolites in human ventricular CSF and support the contention that CSF measurements are useful indices of central monoaminergic activity in man.  相似文献   

15.
A J Dunn 《Life sciences》1988,42(19):1847-1853
Brain concentrations of tryptophan, serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) and plasma amino acids were measured after 15 or 30 minutes of intermittent footshock. Footshock treatment significantly decreased the content of 5-HT in prefrontal cortex and hypothalamus, but not brainstem at 15 min, but the decreases were reversed by 30 min. 5-HIAA, the major catabolite of 5-HT, increased in prefrontal cortex after 15 min, and in prefrontal cortex and hypothalamus after 30 min footshock. 5-HIAA:5-HT ratios were increased at both timepoints in all three brain regions. Concomitant changes in the ratios of 3,4-dihydroxyphenylacetic acid (DOPAC) to dopamine and 3-methoxy,-4-hydroxyphenylethyleneglycol (MHPG) to norepinephrine were also observed. Brain concentrations of tryptophan increased progressively during the footshock in all three brain regions. Plasma concentrations of both tryptophan and tyrosine were also significantly increased, while those of histidine and lysine were decreased. It is possible that the stress-related changes in 5-HT metabolism are due to increased plasma tryptophan, in turn causing increased brain tryptophan and 5-HT synthesis. However, the transient decreases in 5-HT suggest a footshock-induced increase of 5-HT release, depleting existing stores of 5-HT, that are replenished by the increased systemic availability of tryptophan.  相似文献   

16.
The effect of electrical foot shock stress on dopamine and DOPAC levels was examined in the frontal cortex, nucleus accumbens, striatum, substantia nigra and medial basal hypothalamus of rats. DA content did not change after stress in any of the structures analyzed except in the substantia nigra in which DA level decreased by about 35% following 20, 60 or 180 min of stress. DOPAC level did not change in the striatum, medial basal hypothalamus and substantia nigra, but increased in the frontal cortex and in n. accumbens by about 75% and 40%, respectively. Pretreatment with diazepam, but not with pentobarbital, prevented stress-induced increased in DOPAC levels.  相似文献   

17.
Catecholamine turnover in brain areas innervated by dopaminergic neurons was examined 2, 6, and 12 days after bilateral, N-methyl-D-aspartate lesions confined to the rat medial prefrontal cortex. The lesion produced a significant regional increase in the concentration of 3,4-dihydroxyphenylethylamine (DA, dopamine) in both the medial prefrontal cortex and the ventral tegmental area. DA concentrations were increased in the nucleus accumbens on day 6 (128% of control), in the ventral tegmental area on day 2 (130% of control), and in the medial prefrontal cortex on days 2 (145% of control) and 6 (127% of control). The only significant changes in the concentration of 3,4-dihydroxyphenylacetic acid (DOPAC) (197% of control), and in the ratio DOPAC/DA (163% of control) were found in the medial prefrontal cortex on day 6 post-lesion. All parameters had returned to control levels by day 12. DA depletion after the administration of alpha-methyl-p-tyrosine (AMPT) was not significantly different between excitotoxin-lesioned and sham animals on day 6 in all brain regions. Noradrenaline (NA) and 3,4-dihydroxyphenylethyleneglycol concentrations and their ratios, and the depletion of noradrenaline after AMPT were also determined, and the lesion resulted in a significant regional increase in NA in both the nucleus accumbens and the ventral tegmental area. An elevation of NA (147% of control) in the nucleus accumbens was found on day 12. Since the excitotoxin lesion destroys corticofugal efferents from medial prefrontal cortex to the nucleus accumbens, the anterior corpus striatum and the ventral tegmental area, our results provide no evidence for a role of these cortical projections in the regulation of subcortical DA metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Abstract: 3-Methoxytyramine (3-MT) and 3,4-dihydroxyphenylacetic acid (DOPAC) rates of formation were used, respectively, to assess the dynamics of dopamine (DA) release and turnover in the rat frontal cortex, nucleus accumbens, and striatum. Assuming total (re)uptake and metabolism of released DA are relatively uniform among the three brain regions, a simplified two pool model was used to assess the metabolic fate of released DA. Under basal conditions, 3-MT formation was found to comprise >60% of total DA turnover (sum of 3-MT plus DOPAC rates of formation) in the frontal cortex, and not more than 15% in the nucleus accumbens and striatum. Haloperidol increased the 3-MT rate of formation to a greater extent in the frontal cortex than in the two other regions. Clozapine increased the 3-MT rate of formation in the frontal cortex and decreased it in the striatum. Both drugs increased DOPAC rate of formation in the frontal cortex and nucleus accumbens. It was elevated by haloperidol but not clozapine in the striatum. It is concluded that (1) O -methylation is a prominent step in the catabolism of DA in the frontal cortex under both physiological conditions and after acute treatment with antipsychotics, (2) 3-MT is the major metabolite of released DA in the frontal cortex and possibly also in the nucleus accumbens and striatum, (3) in contrast to the frontal cortex, most of the DOPAC in the nucleus accumbens and striatum appear to originate from intraneuronal deamination of DA that has not been released, (4) because presynaptic uptake and metabolism of DA give rise to DOPAC, whereas postsynaptic uptake and metabolism produced both DOPAC and 3-MT, the ratio of 3-MT to DOPAC rates of formation can be a useful index of reuptake inhibition.  相似文献   

19.
Rat brain monoamine and serotonin S2 receptor changes during pregnancy   总被引:1,自引:0,他引:1  
The concentrations of noradrenaline (NA), dopamine (DA), serotonin (5-HT), and their metabolites were determined in 5 brain areas of non-pregnant, 15 and 20 day pregnant and 4 day post-partum rats. Striatal 5-HT content was significantly lower in 15 and 20 day pregnant rats than in estrous controls. A significant decrease in striatal and frontal cortex 5-hydroxyindole-3-acetic acid (5-HIAA) concentration was observed in 15 day pregnant rats. Significant increases in hypothalamic and hippocampal NA levels were observed at 4 days post-partum. Frontal cortex serotonin S2 receptorKd was reduced in 4 day post-partum rats. There was no significant change in S2 receptorB max during pregnancy. Levels of progesterone were negatively correlated with striatal DA, homovanillic acid (HVA), 5-HT, and 5-HIAA levels, hypothalamic DA, hippocampal 5-HT, and frontal cortex 5-HIAA values as well as striatal HVA to DA, and HVA to 3,4-dihydroxyphenylacetic acid (DOPAC) ratios and amygdaloid HVA to DOPAC ratios. The limbic neurotransmitter changes might possibly contribute to mood changes which occur during pregnancy and post-partum.  相似文献   

20.
The influence of central substance P (SP) administration on alcohol intake and brain dopamine metabolism within mesocortico-limbic and nigrostiatal systems of rats exposed to ethanol, was studied. During 6 months, the rats consumed 15% ethanol solution instead of water. Central administration of SP (3 mcg/kg) decreased alcohol consumption by 41% in alcohol-preference animals. After long-term ethanol exposure ratios DOPAC/DA and HVA/DA were reduced in striatum and accumbens. SP in dose 3 mcg/kg increased content of DOPAC by 17% and HVA by 23% as well as DOPAC/DA by 9%, HVA/DA by 19% in accumbens. Whereas in striatum only increased DOPAC (28%) and HVA (29%) were observed as compared with saline-treated rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号