首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vivo and in vitro efficacy of tetracyclines was studied with respect to anthracic infection induced by a tetracycline-resistant resistant strain containing plasmid pBC16. The plasmid-containing strain was resistant to tetracycline, doxycycline and minocycline, the MICs exceeding those for the initial strain 500, 640 and 80 times, respectively. There was no therapeutic effect of tetracycline and doxycycline in the treatment and urgent prophylaxis of anthracic infection caused by the tetracycline-resistant strain of Bacillus anthracis. High therapeutic efficacy of minocycline in the average therapeutic concentrations was shown irrespective of the contaminating doses and strains. Minocycline was recommended for treatment and urgent prophylaxis of anthracic infection caused by tetracycline-resistant B. anthracis strains.  相似文献   

2.
In guinea pigs and noninbred white mice, infected subcutaneously with anthrax which resulted in their death, characteristic generalized infection with the hematogenic contamination of their organs and the signs of intoxication and shock could be observed. In inbred white rats (Fisher 344) the invasion and dissemination of B. anthracis are relatively slightly pronounced, the phenomena of intoxication and shock being clearly prevalent.  相似文献   

3.
In this work the influence of Bacillus anthracis toxin, introduced intraperitoneally in a dose of LD100, on the content of prostaglandins E and F2 alpha, 6-ketoprostaglandin F1 alpha, thromboxane, cAMP and cGMP in the lungs, heart, liver and spleen of BALB/c mice in the time course of experimental intoxication has been studied. The concentration and proportion of prostaglandins and cyclic nucleotides have been shown to undergo-sharp changes in all organs under study in the process of intoxication. The level and proportion of prostaglandins in the lungs ensures the development of vaso- and bronchodilatation processes even at early stages of the action of the toxin. B. anthracis toxin sharply increases the content of cGMP in the organs under study and cAMP in the liver. The activating effect on the adenylate cyclase system of tissue cells is not linked with the action of the edematous factor of the toxin. The role of cyclic nucleotides and prostaglandins in the development of pulmonary edema in intoxication with B. anthracis toxin is discussed.  相似文献   

4.
Anthrax is an acute disease caused by Bacillus anthracis. Some animal species are relatively resistant to anthrax infection. This trait has been correlated to the extent of the local inflammatory reaction, suggesting innate immunity to be the first line of defense against B. anthracis infection in nonimmunized hosts. Group IIA secreted phospholipase A2 (sPLA2-IIA) is produced in particular by macrophages and possesses potent antibacterial activity especially against Gram-positive bacteria. We have previously shown in vitro that sPLA2-IIA kills both germinated B. anthracis spores and encapsulated bacilli. Here we show that sPLA2-IIA plays in vivo a protective role against experimental anthrax. Transgenic mice expressing human sPLA2-IIA are resistant to B. anthracis infection. In addition, in vivo administration of recombinant human sPLA2-IIA protects mice against B. anthracis infection. The protective effect was observed both with a highly virulent encapsulated nontoxinogenic strain and a wild-type encapsulated toxinogenic strain, showing that toxemia did not hinder the sPLA2-IIA-afforded protection. sPLA2-IIA, a natural component of the immune system, may thus be considered a novel therapeutic agent to be used in adjunct with current therapy for treating anthrax. Its anthracidal activity would be effective even against strains resistant to multiple antibiotics.  相似文献   

5.
Bacillus anthracis causes three forms of anthrax: inhalational, gastrointestinal, and cutaneous. Anthrax is characterized by both toxemia, which is caused by secretion of immunomodulating toxins (lethal toxin and edema toxin), and septicemia, which is associated with bacterial encapsulation. Here we report that, contrary to the current view of B. anthracis pathogenesis, B. anthracis spores germinate and establish infections at the initial site of inoculation in both inhalational and cutaneous infections without needing to be transported to draining lymph nodes, and that inhaled spores establish initial infection in nasal-associated lymphoid tissues. Furthermore, we found that Peyer's patches in the mouse intestine are the primary site of bacterial growth after intragastric inoculation, thus establishing an animal model of gastrointestinal anthrax. All routes of infection progressed to the draining lymph nodes, spleen, lungs, and ultimately the blood. These discoveries were made possible through the development of a novel dynamic mouse model of B. anthracis infection using bioluminescent non-toxinogenic capsulated bacteria that can be visualized within the mouse in real-time, and demonstrate the value of in vivo imaging in the analysis of B. anthracis infection. Our data imply that previously unrecognized portals of bacterial entry demand more intensive investigation, and will significantly transform the current perception of inhalational, gastrointestinal, and cutaneous B. anthracis pathogenesis.  相似文献   

6.
Although anthrax toxin was identified as a major Bacillus anthracis virulence factor over 50 years ago, defining the physiologically relevant targets has been challenging. Liu et?al. demonstrate that intoxication of myeloid-derived cells contributes to establishing infection but is not required for mortality resulting from high toxin concentrations associated with end-stage disease.  相似文献   

7.
In vivo induced antigen technology (IVIAT) is an immuno-screening technique that identifies bacterial antigens expressed during infection and not during standard in vitro culturing conditions. We applied IVIAT to Bacillus anthracis and identified PagA, seven members of a N-acetylmuramoyl-L-alanine amidase autolysin family, three P60 family lipoproteins, two transporters, spore cortex lytic protein SleB, a penicillin binding protein, a putative prophage holin, respiratory nitrate reductase NarG, and three proteins of unknown function. Using quantitative real-time PCR comparing RNA isolated from in vitro cultured B. anthracis to RNA isolated from BALB/c mice infected with virulent Ames strain B. anthracis, we confirmed induced expression in vivo for a subset of B. anthracis genes identified by IVIAT, including L-alanine amidases BA3767, BA4073, and amiA (pXO2-42); the bacteriophage holin gene BA4074; and pagA (pXO1-110). The exogenous addition of two purified putative autolysins identified by IVIAT, N-acetylmuramoyl-L-alanine amidases BA0485 and BA2446, to vegetative B. anthracis cell suspensions induced a species-specific change in bacterial morphology and reduction in viable bacterial cells. Many of the proteins identified in our screen are predicted to affect peptidoglycan re-modeling, and our results support significant cell wall structural remodeling activity during B. anthracis infection. Identification of L-alanine amidases with B. anthracis specificity may suggest new potential therapeutic targets.  相似文献   

8.
The soil bacterium Bacillus thuringiensis is a pathogen of insects and nematodes and is very closely related to, if not the same species as, Bacillus cereus and Bacillus anthracis. The defining characteristic of B. thuringiensis that sets it apart from B. cereus and B. anthracis is the production of crystal (Cry) proteins, which are pore-forming toxins or pore-forming proteins (PFPs). Although it is known that PFPs are important virulence factors since their elimination results in reduced virulence of many pathogenic bacteria, the functions by which PFPs promote virulence are incompletely understood. Here we study the effect of Cry proteins in B. thuringiensis pathogenesis of the nematode Caenorhabditis elegans. We find that whereas B. thuringiensis on its own is not able to infect C. elegans, the addition of the PFP Cry protein, Cry5B, results in a robust lethal infection that consumes the nematode host in 1-2 days, leading to a "Bob" or bag-of-bacteria phenotype. Unlike other infections of C. elegans characterized to date, the infection by B. thuringiensis shows dose-dependency based on bacterial inoculum size and based on PFP concentration. Although the infection process takes 1-2 days, the PFP-instigated infection process is irreversibly established within 15 minutes of initial exposure. Remarkably, treatment of C. elegans with Cry5B PFP is able to instigate many other Bacillus species, including B. anthracis and even "non-pathogenic" Bacillus subtilis, to become lethal and infectious agents to C. elegans. Co-culturing of Cry5B-expressing B. thuringiensis with B. anthracis can result in lethal infection of C. elegans by B. anthracis. Our data demonstrate that one potential property of PFPs is to sensitize the host to bacterial infection and further that C. elegans and probably other roundworms can be common hosts for B. cereus-group bacteria, findings with important ecological and research implications.  相似文献   

9.
There is a considerable body of evidence supporting the role of secretory type II-A phospholipase A(2) (sPLA(2)-IIA) as an effector of the innate immune response. This enzyme also exhibits bactericidal activity especially toward Gram-positive bacteria. In this study we examined the ability of sPLA(2)-IIA to kill Bacillus anthracis, the etiological agent of anthrax. Our results show that both germinated B. anthracis spores and encapsulated bacilli were sensitive to the bactericidal activity of recombinant sPLA(2)-IIA in vitro. In contrast, nongerminated spores were resistant. This bactericidal effect was correlated to the ability of sPLA(2)-IIA to hydrolyze bacterial membrane phospholipids. Guinea pig alveolar macrophages, the major source of sPLA(2)-IIA in an experimental model of acute lung injury, released enough sPLA(2)-IIA to kill extracellular B. anthracis. The production of sPLA(2)-IIA was significantly inhibited by B. anthracis lethal toxin. Human bronchoalveolar lavage fluids from acute respiratory distress syndrome patients are known to contain sPLA(2)-IIA; bactericidal activity against B. anthracis was detected in a high percentage of these samples. This anthracidal activity was correlated to the levels of sPLA(2)-IIA and was abolished by an sPLA(2)-IIA inhibitor. These results suggest that sPLA(2)-IIA may play a role in innate host defense against B. anthracis infection and that lethal toxin may help the bacteria to escape from the bactericidal action of sPLA(2)-IIA by inhibiting the production of this enzyme.  相似文献   

10.
11.
In experiments on inbred mice infected with B. anthracis capsular strain 71/12 of Tsenkovsky's second vaccine B. anthracis lethal toxin introduced in mixture with spores has been shown to aggravate anthrax infection in CBA mice susceptible to anthrax, while producing a faint effect on the infectious process in BALB mice with hereditary resistance to anthrax. B. anthracis purified edema toxin has been found to produce a weaker aggravating effect with respect to anthrax infection than the lethal toxin. As revealed in these experiments, the capacity of the lethal toxin to suppress the activity of peritoneal macrophages in vitro is the more pronounced, the more resistant to anthrax are the mice used as the donors of these macrophages. The mechanism of hereditary immunity which may ensure resistance to infection in the presence of immunosuppression is discussed.  相似文献   

12.
13.
Bacillus anthracis spores cause natural infections and are used as biological weapons. Inhalation infection with B. anthracis, the etiological agent of anthrax, is almost always lethal, yet cutaneous infections usually remain localized and resolve spontaneously. Neutrophils are typically recruited to cutaneous but seldom to other forms of anthrax infections, raising the possibility that neutrophils kill B. anthracis. In this study we infected human neutrophils with either spores or vegetative bacteria of a wild-type strain, or strains, expressing only one of the two major virulence factors. The human neutrophils engulfed B. anthracis spores, which germinated intracellularly and were then efficiently killed. Interestingly, neutrophil killing was independent of reactive oxygen species production. We fractionated a human neutrophil granule extract by high-performance liquid chromatography and identified alpha-defensins as the component responsible for B. anthracis killing. These data suggest that the timely recruitment of neutrophils can control cutaneous infections and possibly other forms of B. anthracis infections, and that alpha-defensins play an important role in the potent anti-B. anthracis activity of neutrophils.  相似文献   

14.
Anthrax toxins and the host: a story of intimacy   总被引:4,自引:0,他引:4  
Although the dramatic events of the year 2001 have revitalized the interest in anthrax, research on Bacillus anthracis and its major virulence factors is one of the oldest theme in microbiology and started with the early works of Robert Koch and Louis Pasteur. The anthrax toxins are central to anthrax pathogenesis. They were discovered in the mid-1950s and since then there has been an enormous amount of work to elucidate both the molecular and physiopathological details of their mode of action. In this review, after a brief introduction of B. anthracis, we will focus on the latest findings that concern two aspects of anthrax toxin research: the environmental signals and the molecular mechanisms that regulate toxin synthesis, and the mechanisms of intoxication. We hope to convince the reader that the anthrax toxins are highly specialized determinants of B. anthracis pathogenicity: their synthesis is integrated within a global virulence programme and they target key eukaryotic cell proteins. We conclude with a consideration of the therapeutic perspectives arising from our current knowledge of how the toxins work.  相似文献   

15.
Bacillus anthracis kills through a combination of bacterial infection and toxemia. Anthrax toxin working via the CMG2 receptor mediates lethality late in infection, but its roles early in infection remain unclear. We generated myeloid-lineage specific CMG2-deficient mice to examine the roles of macrophages, neutrophils, and other myeloid cells in anthrax pathogenesis. Macrophages and neutrophils isolated from these mice were resistant to anthrax toxin. However, the myeloid-specific CMG2-deficient mice remained fully sensitive to both anthrax lethal and edema toxins, demonstrating that targeting of myeloid cells is not responsible for anthrax toxin-induced lethality. Surprisingly, the myeloid-specific CMG2-deficient mice were completely resistant to B. anthracis infection. Neutrophil depletion experiments suggest that B. anthracis relies on anthrax toxin secretion to evade the scavenging functions of neutrophils to successfully establish infection. This work demonstrates that anthrax toxin uptake through CMG2 and the resulting impairment of myeloid cells are essential to anthrax infection.  相似文献   

16.
Bacillus anthracis, the spore-forming agent of anthrax, requires iron for growth and is capable of scavenging heme-iron during infection. We show here that the B. anthracis iron-regulated surface determinants (isd) locus encompasses isdC, specifying a heme-iron binding surface protein. Anchoring of IsdC to the cell wall envelopes of vegetative bacilli requires srtB, which encodes sortase B. Purified sortase B cleaves IsdC between the threonine and the glycine of its NPKTG motif sorting signal. B. anthracis variants lacking either isdC or srtB display defects in heme-iron scavenging, suggesting that IsdC binding to heme-iron in the cell wall envelope contributes to bacterial uptake of heme.  相似文献   

17.
The objective of this study is to determine whether DNA signature recovery of Bacillus anthracis strains from different environmental substrates correlates with pathogen cell surface hydrophobicity and induction of host cell death. We compared recovery of DNA signatures from a panel of B. anthracis strains collected from two environmental substrates, non-porous surfaces and soil, using real-time qPCR. We further assessed both cell surface hydrophobicity of the B. anthracis strains by contact angle measurements and host cell viability in response to B. anthracis infection in a mouse macrophage cell model system. Our studies demonstrated correlation between reduced B. anthracis sample recovery from environmental substrates and increased cell surface hydrophobicity. Surprisingly, the most hydrophilic strain, K4596, which exhibited the highest level of recovery from the environmental surfaces, induced the highest level of host cell cytotoxicity compared to more hydrophobic B. anthracis strains in the panel. Our results suggest that cell surface hydrophobicity may play a leading role in mediating pathogen adherence to environmental surfaces. These findings can contribute to the optimization of pathogen detection efforts by understanding how bacterial parameters such as hydrophobicity and induction of host cell death affect bacterial adherence to environmental surfaces.  相似文献   

18.
Liu X  Wang D  Wang H  Feng E  Zhu L  Wang H 《PloS one》2012,7(1):e29875
The large plasmid pXO1 encoding the anthrax toxin is important for the virulence of Bacillus anthracis. It is essential to cure pXO1 from B. anthracis to evaluate its role in the pathogenesis of anthrax infection. Because conventional methods for curing plasmids (e.g., curing agents or growth at elevated temperatures) can induce mutations in the host chromosomal DNA, we developed a specific and reliable method to eliminate pXO1 from B. anthracis using plasmid incompatibility. Three putative replication origins of pXO1 were inserted into a temperature-sensitive plasmid to generate three incompatible plasmids. One of the three plasmids successfully eliminated the large plasmid pXO1 from B. anthracis vaccine strain A16R and wild type strain A16. These findings provided additional information about the replication/partitioning of pXO1 and demonstrated that introducing a small incompatible plasmid can generate plasmid-cured strains of B. anthracis without inducing spontaneous mutations in the host chromosome.  相似文献   

19.
Germination of Bacillus anthracis spores within alveolar macrophages   总被引:16,自引:3,他引:13  
The fatal character of the infection caused by inhalation of Bacillus anthracis spores results from a complex pathogenic cycle involving the synthesis of toxins by the bacterium. We have shown using immunofluorescent staining, confocal scanning laser microscopy and image cytometry analysis that the alveolar macrophage was the primary site of B. anthracis germination in a murine inhalation infection model. Bacillus anthracis germinated inside murine macrophage-like RAW264.7 cells and murine alveolar macrophages. Germination occurred in vesicles derived from the phagosomal compartment. We have also demonstrated that the toxin genes and their trans -activator, AtxA, were expressed within the macrophages after germination.  相似文献   

20.
Bacillus anthracis secretes two critical virulence factors, lethal toxin (LT) and edema toxin (ET). In this study, we show that murine bone marrow-derived dendritic cells (DC) infected with B. anthracis strains secreting ET exhibit a very different cytokine secretion pattern than DC infected with B. anthracis strains secreting LT, both toxins, or a nontoxinogenic strain. ET produced during infection selectively inhibits the production of IL-12p70 and TNF-alpha, whereas LT targets IL-10 and TNF-alpha production. To confirm the direct role of the toxins, we show that purified ET and LT similarly disrupt cytokine secretion by DC infected with a nontoxinogenic strain. These effects can be reversed by specific inhibitors of each toxin. Furthermore, ET inhibits in vivo IL-12p70 and IFN-gamma secretion induced by LPS. These results suggest that ET produced during infection impairs DC functions and cooperates with LT to suppress the innate immune response. This may represent a new strategy developed by B. anthracis to escape the host immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号