首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vocal potentials were recorded in hippocampal area CA1 and dentate fascia in unanesthetized rabbits aged from 1 to 50 days during stimulation of Schaffer's collaterals and the perforant path, respectively, with paired (interval 15–100 msec) and repetitive (20–40 Hz for 3–5 sec) electric pulses. Short-term potentiation of focal potentials during paired stimulation and post-tetanic potentiation lasting from a few minutes to 3 h were shown to be reproduced in the hippocampus from the first days after birth, whereas in the dentate fascia, which matures later, reproduction began on the 8th–10th day, when neurons first began to respond to stimulation of the corresponding afferent pathways.  相似文献   

2.
The course of functional maturation with age of mossy fiber synapses on pyramidal cells in areas CA3,4 of the dorsal hippocampus was investigated by extracellular recording of focal potentials and single unit responses of the hippocampus to electrical stimulation of the dentate fascia in waking, unimmobilized rabbits aged from 1 to 14 days. After the 4th day of postnatal life focal potentials appeared in response to single stimulation, in the form of a biphasic short-latency wave, characteristic of responses of the mature hippocampus, accompanied by spike discharges with a latent period of 3 to 10 msec and inhibitory responses of the hippocampal neurons. During the next 10 days the amplitude of the focal potentials increased from several hundred millivolts, with the sharpest increase observed from the 4th through the 7th days. In early age periods global and unitary responses were shown to be capable of frequency potentiation and also of short-term after-potentiation.Brain Institute, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 12, No. 3, pp. 246–254, May–June, 1980.  相似文献   

3.
The efficiency of synapses of the perforant path located on terminals of apical dendrites of CA1 and CA3 neurons was investigated in sections of the guinea pig hippocampus in vitro. Neurons of both areas were shown to respond to stimulation of the perforant path by action potential generation. Responses of most CA1 neurons appeared to repetitive stimulation with a frequency of up to 30–80/sec. Neurons in area CA3 respond only to low-frequency stimulation (under 5/sec). Posttetanic potentiation of responses to stimulation of the perforant path was found in both areas of the hippocampus.Institute of Biophysics, Academy of Sciences of the USSR, Pushchino-on-Oka. Translated from Neirofiziologiya, Vol. 11, No. 4, pp. 303–310, July–August, 1979.  相似文献   

4.
In chronic experiments on rabbits using extracellular recording of unit activity in hippocampal area CA1 the effects of stimulation of the subiculum, posterior cingulate cortex, and anterior and posterior nonprimary areas of the neocortex were investigated. The effects of such stimulation were compared in the intact and chronically isolated hippocampus. It is concluded from the results that direct two-way connections exist between CA1 and the subiculum. Polysynaptic influences of the subiculum on CA1 are realized through the entorhinal cortex, for they are not present in the isolated hippocampus. Influences of the neocortical areas studied on CA1 are transmitted to some extent through a relay in the subiculum. The entorhinal cortex plays no part in the realization of polysynaptic effects. The effectiveness of these influences increases with removal of the principal hippocampal afferent systems.Institute of Biological Physics, Academy of Sciences of the USSR, Pushchino-on-Oka. Translated from Neirofiziologiya, Vol. 14, No. 3, pp. 315–323, May–June, 1982.  相似文献   

5.
Changes in the EEG induced by a single spike were recorded in the hippocampus of an unanesthetized rabbit. Summation of focal electrical activity synchronous with spontaneous single unit discharges at the symmetrical point of contralateral hemisphere revealed no stable potentials which could reflect these changes. In two cases discharges identified as activity of Shaffer's collaterals were recorded in area CA1. Summation of post-spike changes in evoked activity recorded by the same microelectrode showed stable negative waves with an amplitute of 40–60 µV, which could have been evoked by single spikes. The curve of amplitude of the averaged evoked potentials versus near-threshold current strength stimulating the intrahippocampal pathways was not smooth in most experiments but stepwise in character. It is suggested that the minimal evoked potential corresponding to the first step (amplitude 40–80 µV) reflects a response to stimulation of one fiber. After above-threshold tetanization prolonged posttetanic potentiation of the minimal evoked potentials did not arise in CA1 in response to stimulation of Shaffer's collaterals. Minimal evoked potentials recorded in area CA3 in response to stimulation of the dentate fascia showed clear potentiation. The results are in agreement with the hypothesis of the synaptic localization of the mechanisms responsible for prolonged posttetanic potentiation.Brain Institute, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 9, No. 2, pp. 124–134, March–April, 1977.  相似文献   

6.
By extracellular recording of unit activity and electrical stimulation of unanesthetized rabbits the character of the following principal intrinsic hippocampal connections was investigated: fascia dentata with area CA3 (series FD-CA3) and area CA3 with area CA1 (series CA3-CA1). Differences between the functional characteristics of these two systems of connections were shown. The CA3-CA1 system was highly efficient, with a sharply defined boundary between subthreshold and threshold intensities of stimulation and with a wide range of active frequencies; recruiting was negligible and no sign of prolonged potentiation was present. The FD-CA3 system was characterized by low efficiency, a wide threshold zone, and narrow range of active frequencies, slow recruiting, and long preservation of incoming influences. The probability that these functional differences depend on the morphological characteristics of the systems of connections and their possible role in the function of the hippocampus are discussed.Institute of Biological Physics, Academy of Sciences of the USSR, Pushchino-on-Oka. Translated from Neirofiziologiya, Vol. 8, No. 3, pp. 259–266, May–June, 1976.  相似文献   

7.
Evoked potentials were recorded in the caudate nucleus of adult rabbits and young rabbits aged 2–30 days in response to stimulation of the ipsilateral motor cortex. The response of the caudate nucleus in the adult rabbit consisted of a positive-negative complex with latent period of 3–5 msec. Maximal amplitude of the response was observed in the dorsorostral region of the nucleus. As the recording electrode was inserted deeper, the amplitude of the response gradually decreased but without reversal of its polarity. Responses of the caudate nucleus to stimulation of the motor cortex were recorded as early as on the 3rd day after birth. These responses were indistinguishable in configuration from responses of the nucleus of adult rabbits. Their latent period was about 10 msec. Between the 16th and 20th day after birth the latent period of the response decreased considerably — from 9 to 5 msec, and by the 30th day of life it had reached its definitive value. With age the amplitude of the response increased but the threshold of stimulation decreased, The results indicate early functional maturation of connections of the motor cortex with the caudate nucleus and they agree with the results of morphological investigations of the structural development of the afferent systems of this nucleus.Brain Institute, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 14, No. 3, pp. 284–289, May–June, 1982.  相似文献   

8.
The reaction of field CA1 hippocampal neurons to stimulation of the reticular formation (RF) with impulses of different frequencies was investigated in experiments on unanesthetized rabbits. The effect of electrical and sensory stimuli was compared and the effect of reticular stimulation on the sensory responses was determined. With an increase in the frequency of RF stimulation, the number of neurons of field CA1 responding with inhibition of the activity increases. Multimodal neurons of the hippocampus depend on the reticular input to a greater degree than unimodal neurons. Neurons whose activity does not change in response to the effect of sensory stimuli also do not respond to stimulation of the RF. Neurons responding with inhibitory reactions to sensory stimulation show a higher correlation with the effects of RF stimulation than neurons with activation reactions and, especially those with "complex" responses to the effect of sensory stimuli. In a considerable number of hippocampal neurons the responses to sensory stimuli change in the course of 10–15 min after stimulation of the RF. The role of the RF in the organization of the reactions of hippocampal neurons is discussed.Division of Memory Problems, Institute of Biological Physics, Academy of Sciences of the USSR, Pushchino-on-Oke. Translated from Neirofiziologiya, Vol. 3, No. 3, pp. 227–235, May–June, 1971.  相似文献   

9.
A comparative analysis was made of the functional characteristics of connections between hippocampal areas CA3 and CA1 (Schaffer's collaterals) in experiments in vivo on unanesthetized rabbits and in vitro on surviving slices of guinea pig hippocampus, with extracellular recording in area CA1. In the case of electrical stimulation of the collaterals in vitro, post-activational inhibition was weak, responses of inhibition of spontaneous discharges were absent, and low frequencies of stimulation were more effective than in vivo. Posttetanic changes were found more frequently in experiments in vitro and they lasted longer than in vivo. The predominant effect of tetanization under normal conditions was depression, but during incubation it was facilitation of responses. The possible causes of these differences are discussed.Institute of Biophysics, Academy of Sciences of the USSR, Puschino-on-Oka. Translated from Neirofiziologiya, Vol. 11, No. 3, pp. 208–217, May–June, 1979.  相似文献   

10.
A conditioned defensive reflex to photic stimulation was produced in rabbits in computer-controlled experiments during regular electrical stimulation of the septum. During reflex formation spectral-correlation analysis was undertaken of sensomotor and visual cortical potentials and hippocampal potentials. In each rabbit the reflex to light was produced during septal stimulation at a definite frequency (2, 4, 7, and 9 Hz). Regular electrical stimulation of the septum at frequencies of 7 and 9 Hz accelerated conditioning whereas stimulation at a frequency of 2 Hz prevented formation of the temporary connection (the reflex appeared at the 35th combination). By changing the frequency of electrical stimulation of the septum, the speed of learning can thus be influenced. It is suggested that the role of the septum is to set a definite level of synchronization of brain processes at the optimal value for conduction of excitation from its afferent to its effector system.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 10, No. 3, pp. 239–244, May–June, 1978.  相似文献   

11.
Actions of PGE1 and indomethacin on electrically induced vasoconstriction in isolated ear arteries of rabbits were studied. PGE1 (8.5 × 10−9 M) reduced the vasoconstriction; this inhibition was inversely related to the rate of stimulation. Indomethacin (1.5 × 10−6 M) potentiated the constrictor responses to nerve stimulation. The degree of this potentiation was also frequency-dependent being greater at low (1 – 2 Hz) than at high (8 – 16 Hz) rate of stimulation. These findings support the view that prostaglandins, in addition to their action on vascular smooth muscle cells, play a functional role in the regulation of tone of the rabbit ear artery by a negative feed-back control of adrenergic neurotransmission.  相似文献   

12.
Electrical activity of the sensomotor and visual areas of the neocortex during stimulation of the caudate nucleus was recorded in young rabbits aged 3–60 days and in adults. Single stimulation of the caudate nucleus was found to cause the appearance of characteristic bursts of spindle-like rhythmic activity ("caudate spindles"), described previously in cats and monkeys, in the adult rabbit cortex. The latent period of the caudate spindle was about 200 msec, its duration 1–3 sec, and the frequency of its oscillations of the order of 12 Hz. Caudate spindles were most marked in the sensomotor cortex of the ipsilateral hemisphere. In rabbits under 10 days old caudate spindles were not found even if the intensity of stimulation was increased many times. Starting from the age of 15 days bursts of rhythmic activity resembling caudate spindles, but with lower frequency (about 8 Hz), longer latent period (up to 350 msec), and also with a higher threshold, appeared in the sensomotor cortex. The definitive type of caudate spindles was established toward the end of the first month of postnatal life, corresponding to the time of formation and complication of conditioned-reflex activity in developing animals.Brain Institute, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 17, No. 1, pp. 11–15, March, 1985.  相似文献   

13.
The effect of noradrenalin (NA) and serotonin (5-HT) on responses of area CA3 cells evoked by electrical stimulation of mossy fibers was studied in slices of guinea pig hippocampus survivingin vitro. Both substances, which modify the general level and organization of spontaneous activity, also affected responses of area CA3 cells. Changes in magnitude and structure of the response usually correlated with corresponding changes in spontaneous activity. In certain cases NA, which lowered the frequency of spontaneous activity but increased its relative content of "complex discharges" and also the number of reduced action potentials in the complex discharge, also led to an increase in the response to stimulation. 5-HT evoked periodic grouped activity in some cells and led to the appearance of such grouped discharges for the first time in the responses of other cells. Unlike NA, 5-HT caused prolonged (up to 40 min) after-facilitation of the response and an increase in spontaneous discharge frequency.Institute of Biological Physics, Academy of Sciences of the USSR, Pushchino-on-Oka. Translated from Neirofiziologiya, Vol. 14, No. 4, pp. 410–417, July–August, 1982.  相似文献   

14.
The effect of electrical stimulation of the medial nucleus of the septum and of hippocampal area CA1 on subicular neurons with three different types of spontaneous activity (with theta-modulation, with delta-modulation and complex spikes, and with irregular single-spike activity) was studied in unanesthetized rabbits by extracellular recording of unit activity. Cells with theta-activity were found to respond in a distinctive functional manner to stimulation of the medial nucleus of the septum: Their reactivity was higher but latent periods of their responses were much shorter than those of cells with delta-activity and irregular discharges. Stability of modulation of theta-cell activity increased both during and after stimulation of the medial septal nucleus. Electrical stimulation of hippocampal area CA1, on the other hand, led to disappearance of rhythm modulation. Average response latencies of all three types of cells to stimulation of area CA1 were equal. The results indicate special properties of the septal input to subicular cells with theta-modulation.Institute of Biological Physics, Academy of Sciences of the USSR, Pushchino-on-Oka. Translated from Neirofiziologiya, Vol. 17, No. 3, pp. 326–333, May–June, 1985.  相似文献   

15.
Research carried out by the author and his collaborators, devoted to analysis of the properties and neurophysiological mechanisms of long-term (for several hours) potentiation, is surveyed. Long-term potentiation of focal potentials and unitary responses of strictly hippocampal structures (areas CA1 and CA3) in the unanesthetized rabbit is described. Enhancement of excitatory (EPSPs) and inhibitory (IPSPs) postsynaptic potentials was found after tetanization. No corresponding changes of sensitivity to acetylcholine or acetylcholinesterase activity were found by microiontophoretic and histochemical methods during long-term potentiation. Statistical analysis of EPSPs evoked by microstimulation, based on the quantal hypothesis of synaptic transmission, showed an increase in the number of quanta of transmitter release during potentiation. Long-term potentiation of focal potentials during stimulation of the subcortical white matter in surviving neocortical slices and also long-term potentiation of focal and unitary responses of the sensomotor cortex of the unanesthetized rabbit are described. Potentiation of the "indirect" component of the global response of the pyramidal tract was found. The data suggest the presence of long-term potentiation of monosynaptic neocortical responses. It is concluded that the main mechanism of both hippocampal and neocortical long-term potentiation is increased efficiency of excitatory synapses. It is postulated that synapses modified in this way are used in the formation of memory traces.Brain Institute, All-Union Mental Health Research Center, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 16, No. 5, pp. 651–665, September–October, 1984.  相似文献   

16.
A spectral-correlation analysis was made of the EEG recorded from the motor and visual cortex, hippocampus, and septum (in some series of experiments, the lateral geniculate body and mesencephalic reticular formation also) of rabbits in the presence or absence (background) of sensory stimulation. To investigate the functional role of the septum as a pacemaker the method of "rhythm binding" by electrical stimulation of the septum (lateral and medial nuclei) was used. By electrical stimulation of the medial nucleus of the septum at a frequency of 4–30 Hz rhythm binding was successfully obtained in all regions studied. Maximal rhythm binding was observed in cortical potentials. It is postulated that cortical rhythmic activity is generated as a result of physiological interaction between cortex and septum.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 8, No. 3, pp. 267–275, May–June, 1976.  相似文献   

17.
Rhythmic stimulation of the dorsal hippocampus causes a long-lasting (2–6 sec) depression of both the fast and the electrotonic dorsal root potentials. The depression depends on the intensity of the stimulation of the hippocampus and on the time interval between the stimulation of the hippocampus and the nerve. The sortest time interval producing the depression was within 15–20 msec. The action of afferent impulsation is depressed during both the ipsilateral and contralateral stimulation of the hippocampus. The stimulation of the fornix also exerts a depressing influence on the dorsal root potentials; however, it is not so prolonged as the stimulation of the hippocampus (500–600 msec).A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 2, pp. 186–193, September–October, 1969.  相似文献   

18.
Synaptic responses of neurons in segments C2 and C3 to stimulation of locomotor points in the medulla or midbrain were recorded extracellularly in mesencephalic cats. Neurons generating responses with an index of 0.4–0.6 to stimulation with a frequency of 2 Hz maintained this same index at frequencies of 20–60 Hz. The discharge index of many neurons during stimulation at 2 Hz was low, and it increased to 0.4–0.6 when high-frequency stimulation was used. More than half of the cells were excited by stimulation of both ipsilateral and contralateral locomotor points; one-quarter of the neurons responded to stimulation of locomotor points in both medulla and midbrain. The cells studied were located 1.8–4.2 mm from the dorsal surface of the spinal cord. The mean latencies of responses with an index of not less than 0.5 lay within the range 2–30 msec, with a mode of 2–8 msec. Considerable fluctuations of latent period were observed for long-latency responses. The possibility that the neurons studied may participate in the transmission of activity from the locomotor region of the brain stem to stepping generators in the spinal cord is discussed.Institute for Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 15, No. 4, pp. 355–361, July–August, 1983.  相似文献   

19.
Heterosynaptic interactions between synapses located at a considerable distance from the cell body (perforant path) and lying close to the body of the neuron (synapses of Schaffer's collaterals and axons of the dentate fascia) on guinea pig hippocampal neurons were investigatedin vitro. It was shown by the paired stimulus method that, using stimulation of subthreshold intensity for action potential generation, spatiotemporal summation takes place in both pairs of synaptic systems. If above-threshold stimulation was used, afferents lying close to the cell body suppressed responses evoked by stimulation of distant afferents for a longer time (up to 20 msec in area CA1 and up to 300 msec in area CA3) than during the opposite combination of stimuli (up to 3–8 msec). After tetanization of the dentate fascia depression of responses of area CA3 neurons to stimulation of the perforant path was observed for 2–30 min. In the remaining cases, no significant prolonged heterosynaptic posttetanic changes were observed. The possible mechanisms of these interactions are discussed.Institute of Biophysics, Academy of Sciences of the USSR, Pushchino-on-Oka. Translated from Neirofiziologiya, Vol. 11, No. 6, pp. 524–532, November–December, 1979.  相似文献   

20.
Evoked potentials (EP) and neuronal responses produced by tooth pulp stimulation and a clicking sound were recorded at different hippocampal sites using microelectrodes in unrestrained rats. Spatial distribution of EP was found to be the same for both types of stimulation. Averaged EP consisted of a high amplitude negative preceded by a low-amplitude positive component (N1 and P1, respectively). Latency of the N1 wave reached its minimum (of 27 msec) at the middle third of the molecular layer of the dentate gyrus and the outer portion of the CA3 apical dendrites. Latency of N1 was considerably longer in the stratum radiatum layer of the CA1. Laminar profiles of the amplitude of the N1 componenent of EP produced in the dentate gyrus and the CA3 by tooth pulp stimulation resemble those observed during perforant path stimulation; in the CA1 they are similar to those evoked by stimulating the Schaffer collaterals. Maximum amplitude of the P1 component was observed above the pyramidal layer of the CA1 and the hilus. Neuronal discharge pattern changed in all hippocampal regions under the effects of both tooth pulp stimulation and the clicking sound. It is deduced that information can reach the hippocampus by two routes: via a "fast" (inhibitory) pathway through the fimbria and the fornix and a slower (excitatory) path through the entorhinal cortex.P. Flexig Institute for Brain Research, Karl Marx University, Leipzig, DR. Institute of Physiology, Pecs University Medical School, Pecs, Hungary. Translated from Neirofiziologiya, Vol. 19, No. 1, pp. 36–46, January–February, 1987.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号