首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In eukaryotic cells, S phase can be reversibly arrested by drugs that inhibit DNA synthesis or DNA damage. Here we show that recovery from such treatments is under genetic control and is defective in fission yeast rqh1 mutants. rqh1+, previously known as hus2+, encodes a putative DNA helicase related to the Escherichia coli RecQ helicase, with particular homology to the gene products of the human BLM and WRN genes and the Saccharomyces cerevisiae SGS1 gene. BLM and WRN are mutated in patients with Bloom's syndrome and Werner's syndrome respectively. Both syndromes are associated with genomic instability and cancer susceptibility. We show that, like BLM and SGS1, rqh1+ is required to prevent recombination and that in fission yeast suppression of inappropriate recombination is essential for reversible S phase arrest.  相似文献   

4.
In Drosophila, sex is determined by the relative number of X chromosomes to autosomal sets (X:A ratio). The amount of products from several X-linked genes, called sisterless elements, is used to indicate to Sex-lethal the relative number of X chromosomes present in the cell. In response to the X:A signal, Sex-lethal is activated in females but remains inactive in males, being responsible for the control of both sex determination and dosage compensation. Here we find that the X-linked segmentation gene runt plays a role in this process. Reduced function of runt results in female-specific lethality and sexual transformation of XX animals that are heterozygous for Sxl or sis loss-of-function mutations. These interactions are suppressed by SxlM1, a mutation that constitutively expresses female Sex-lethal functions, and occur at the time when the X:A signal determines Sex-lethal activity. Moreover, the presence of a loss-of-function runt mutation masculinizes triploid intersexes. On the other hand, runt duplications cause a reduction in male viability by ectopic activation of Sex-lethal. We conclude that runt is needed for the initial step of Sex-lethal activation, but does not have a major role as an X-counting element.  相似文献   

5.
6.
7.
8.
CDC37 is required for p60v-src activity in yeast.   总被引:6,自引:0,他引:6       下载免费PDF全文
Mutations in genes encoding the molecular chaperones Hsp90 and Ydj1p suppress the toxicity of the protein tyrosine kinase p60v-src in yeast by reducing its levels or its kinase activity. We describe isolation and characterization of novel p60v-src-resistant, temperature-sensitive cdc37 mutants, cdc37-34 and cdc37-17, which produce less p60v-src than the parental wild-type strain at 23 degrees C. However, p60v-src levels are not low enough to account for the resistance of these strains. Asynchronously growing cdc37-34 and cdc37-17 mutants arrest in G1 and G2/M when shifted from permissive temperatures (23 degrees C) to the restrictive temperature (37 degrees C), but hydroxyurea-synchronized cdc37-34 and cdc37-17 mutants arrest in G2/M when released from the hydroxyurea block and shifted from 23 to 37 degrees C. The previously described temperature-sensitive cdc37-1 mutant is p60v-src-sensitive and produces wild-type amounts of p60v-src at permissive temperatures but becomes p60v-src-resistant at its restrictive temperature, 38 degrees C. In all three cdc37 mutants, inactivation of Cdc37p by incubation at 38 degrees C reduces p60v-src-dependent tyrosine phosphorylation of yeast proteins to low or undetectable levels. Also, p60v-src levels are enriched in urea-solubilized extracts and depleted in detergent-solubilized extracts of all three cdc37 mutants prepared from cells incubated at the restrictive temperature. These results suggest that Cdc37p is required for maintenance of p60v-src in a soluble, biologically active form.  相似文献   

9.
10.
11.
12.
13.
Lissencephaly is a severe congenital brain malformation resulting from incomplete neuronal migration. One causal gene, LIS1, is homologous to nudF, a gene required for nuclear migration in A. nidulans. We have characterized the Drosophila homolog of LIS1 (Lis1) and show that Lis1 is essential for fly development. Analysis of ovarian Lis1 mutant clones demonstrates that Lis1 is required in the germline for synchronized germline cell division, fusome integrity and oocyte differentiation. Abnormal packaging of the cysts was observed in Lis1 mutant clones. Our results indicate that LIS1 is important for cell division and differentiation and the function of the membrane cytoskeleton. They support the notion that LIS1 functions with the dynein complex to regulate nuclear migration or cell migration.  相似文献   

14.
The anion/cation symporter (ACS) family is a large subfamily of the major facilitator superfamily (MFS) of transporters. ACS family permeases are widely distributed in nature and transport either organic or inorganic anions in response to chemiosmotic cation gradients. The only protein in the ACS family to which a human disease has been linked, is sialin, the proton-driven lysosomal carrier for sialic acid. Genetic defects in sialin cause a lysosomal storage disease in humans. Here we have identified a group of conserved Drosophila ACS family genes related to sialin and studied their expression patterns throughout embryogenesis. Drosophila sialin-related genes are expressed in a wide variety of tissues. Expression is frequently observed throughout various parts of the intestinal tract, including Malpighian tubules and salivary glands. Additionally, some genes are expressed in vitellophages (yolk nuclei), nervous system, respiratory tract and a number of other embryonic tissues. These data will aid the establishment of a fruitfly model of human lysosomal storage disorders, the most common cause of neurodegeneration in childhood.  相似文献   

15.
Sanders C  Smith DP 《PloS one》2011,6(8):e24151
In animals, male fertility requires the successful development of motile sperm. During Drosophila melanogaster spermatogenesis, 64 interconnected spermatids descended from a single germline stem cell are resolved into motile sperm in a process termed individualization. Here we identify a putative double-stranded RNA binding protein LUMP that is required for male fertility. lump(1) mutants are male-sterile and lack motile sperm due to defects in sperm individualization. We show that one dsRNA binding domains (dsRBD) is essential for LUMP function in male fertility. These findings reveal LUMP is a novel factor required for late stages of male germline differentiation.  相似文献   

16.
Staufen, a gene required to localize maternal RNAs in the Drosophila egg.   总被引:25,自引:0,他引:25  
The posterior group gene staufen is required both for the localization of maternal determinants to the posterior pole of the Drosophila egg and for bicoid RNA to localize correctly to the anterior pole. We report the cloning and sequencing of staufen and show that staufen protein is one of the first molecules to localize to the posterior pole of the oocyte, perhaps in association with oskar RNA. Once localized, staufen is found in the polar granules and is required to hold other polar granule components at the posterior pole. By the time the egg is laid, staufen protein is also concentrated at the anterior pole, in the same region as bicoid RNA.  相似文献   

17.
18.
Cleavage of amino-terminal octapeptides, F/L/IXXS/T/GXXXX, by mitochondrial intermediate peptidase (MIP) is typical of many mitochondrial precursor proteins imported to the matrix and the inner membrane. We previously described the molecular characterization of rat liver MIP (RMIP) and indicated a putative homolog in the sequence predicted from gene YCL57w of yeast chromosome III. A new yeast gene, MIP1, has now been isolated by screening a Saccharomyces cerevisiae genomic library with an RMIP cDNA probe. MIP1 predicts a protein of 772 amino acids (YMIP), which is 54% similar and 31% identical to RMIP and includes a putative 37-residue mitochondrial leader peptide. RMIP and YMIP contain the sequence LFHEMGHAM HSMLGRT, which includes a zinc-binding motif, HEXXH, while the predicted YCL57w protein contains a comparable sequence with a lower degree of homology. No obvious biochemical phenotype was observed in a chromosomally disrupted ycl57w mutant. In contrast, a mip1 mutant was unable to grow on nonfermentable substrates, while a mip1 ycl57w double disruption did not result in a more severe phenotype. The mip1 mutant exhibited defects of complexes III and IV of the respiratory chain, caused by failure to carry out the second MIP-catalyzed cleavage of the nuclear-encoded precursors for cytochrome oxidase subunit IV (CoxIV) and the iron-sulfur protein (Fe-S) of the bc1 complex to mature proteins. In vivo, intermediate-size CoxIV was accumulated in the mitochondrial matrix, while intermediate-size Fe-S was targeted to the inner membrane. Moreover, mip1 mitochondrial fractions failed to carry out maturation of the human ornithine transcarbamylase intermediate (iOTC), specifically cleaved by RMIP. A CEN plasmid-encoded YMIP protein restored normal MIP activity along with respiratory competence. Thus, YMIP is a functional homolog of RMIP and represents a new component of the yeast mitochondrial import machinery.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号