首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell polarization along the axis of movement is required for migration. The localization of proteins and regulators of the migratory machinery to either the cell front or its rear results in a spatial asymmetry enabling cells to simultaneously coordinate cell protrusion and retraction. Protons might function as such unevenly distributed regulators as they modulate the interaction of focal adhesion proteins and components of the cytoskeleton in vitro. However, an intracellular pH (pH(i)) gradient reflecting a spatial asymmetry of protons has not been shown so far. One major regulator of pH(i), the Na(+)/H(+) exchanger NHE1, is essential for cell migration and accumulates at the cell front. Here, we test the hypothesis that the uneven distribution of NHE1 activity creates a pH(i) gradient in migrating cells. Using the pH-sensitive fluorescent dye BCECF, pH(i) was measured in five cell lines (MV3, B16V, NIH3T3, MDCK-F1, EA.hy926) along the axis of movement. Differences in pH(i) between the front and the rear end (ΔpH(i) front-rear) were present in all cell lines, and inhibition of NHE1 either with HOE642 or by absence of extracellular Na(+) caused the pH(i) gradient to flatten or disappear. In conclusion, pH(i) gradients established by NHE1 activity exist along the axis of movement.  相似文献   

2.
Cell migration is a dynamic phenomenon requiring a physical interaction between the internal cell motile machinery and the external substratum in which adhesion receptors, such as integrins, serve as the transmembrane link. To analyze quantitatively this interaction, we apply a modified Brownian dynamics algorithm to simulate cytoskeleton-mediated transport of integrin on the dorsal surfaces of migrating fibroblasts. Previously, we experimentally demonstrated that integrin is transported in an intermittent fashion, with directed excursions interspersed by diffusive periods, preferentially toward the cell edge where the integrin is likely used in the formation of nascent adhesions. Integrins containing mutations in the cytoskeleton-binding region of the cytoplasmic domain display statistically different degrees of directed transport, indicating that this phenomenon is dependent on cytoskeletal associations. In the present work, we develop a computer algorithm generating simulated integrin transport trajectories, given estimates for the rate constants defining coupling (kc) and uncoupling (ku) of integrin with cytoskeletal components. Other parameters supplied to the program, the diffusion coefficient (D) for integrin in the membrane and the instantaneous velocity (vi) of the integrin/cytoskeleton complex, have been measured independently in our experimental system. By comparing the simulated trajectories with those obtained experimentally, we are able to estimate the coupling and uncoupling rate constants for the interaction of integrin with cytoskeletal elements in vivo. We find that integrin couples with cytoskeletal elements at a rate approximately 10 times slower than its rate of uncoupling (kc = 0.3 s-1, ku = 3 s-1). Comparison of these rate constants with an equivalent rate constant for diffusion, k+ = 0.4 s-1, indicates that the coupling interaction is likely a diffusion-limited process, as is typically expected for membrane processes. We further show by calculation that directed transport is necessary for integrin to traverse the length of an extending lamellipod to its leading edge; diffusion alone is not sufficiently fast to supply adhesion receptors to points of new cell/substratum contact.  相似文献   

3.
Intracellular signaling events at the leading edge of migrating cells   总被引:4,自引:0,他引:4  
Cell migration is an important facet of the life cycle of immune and other cell types. A complex set of events must take place at the leading edge of motile cells before these cells can migrate. Chemokines induce the motility of various cell types by activating multiple intracellular signaling pathways. These include the activation of chemokine receptors, which are coupled to the heterotrimeric G proteins. The release of G beta gamma subunits from chemokine receptors results in the recruitment to the plasma membrane, with subsequent activation of various down-stream signaling molecules. Among these molecules are the pleckstrin homology domain-containing proteins and the phosphoinositide 3-kinase gamma which phosphorylates phospholipids and activates members of the GTP exchange factors (GEFs). These GEFs facilitate the exchange of GTP for GDP in members of GTPases. The latter are important for reorganizing the cell cytoskeleton, and in inducing chemotaxis. Chemokines also induce the mobilization of intracellular calcium from intracellular stores. Second messengers such as inositol 1,4,5 trisphosphate, and cyclic adenosine diphosphate ribose are among those induced by chemokines. In addition, the G beta gamma subunits recruit members of the G protein-coupled receptor kinases, which phosphorylate chemokine receptors, resulting in desensitization and termination of the motility signals. This review will discuss the intracellular signaling pathways induced by chemokines, particularly those activated at the leading edge of migrating cells which lead to cell polarization, cytoskeleton reorganization and motility.  相似文献   

4.
Summary Fibroblasts from rat, mouse and chick embryos cultured on poly-lysine/fibronectin- or poly-lysine/laminin-coated dishes were stained with antibodies directed to extracellular matrix molecules. The staining showed that cells had migrated during culture and deposited extracellular matrix components along their migration trails. Depending on the antigen, the staining of the matrix revealed fibrils, spots or a diffuse smear along the migration pathways. The major matrix components were fibronectin and heparan sulfate proteoglycan; however, laminin nidogen, tenascin, glia-derived nexin (GDN) and chondroitin-4-sulfate proteoglycan were also found. The migration trails were also detectable by scanning electron microscopy. Here, the fibrils were the prominent structures. The deposition of matrix was independent from the substratum: fibronectin was deposited on laminin, plain poly-lysine, basal lamina and even on fibronectin. Functional assays using anti-fibronectin or an antiserum to embryonic pigment epithelium basement membrane disturbed the formation of matrix fibrils, but did not inhibit cell attachment and translocation. Likewise, heparin in the culture medium only partially inhibited cell migration, despite the fact that it disturbed the formation of proper matrix fibrils. Our results suggest that the deposition of extracellular matrix by cells may not be mandatory for attachment and translocation. However, the deposition of matrix along defined trails might be important for the pathfinding of cells or nerve fibers that appear later in development.  相似文献   

5.
6.
Focal adhesions (FAs) are complex plasma membrane‐associated macromolecular assemblies that serve to physically connect the actin cytoskeleton to integrins that engage with the surrounding extracellular matrix (ECM). FAs undergo maturation wherein they grow and change composition differentially to provide traction and to transduce the signals that drive cell migration, which is crucial to various biological processes, including development, wound healing and cancer metastasis. FA‐related signalling networks dynamically modulate the strength of the linkage between integrin and actin and control the organization of the actin cytoskeleton. In this review, we have summarized a number of recent investigations exploring how FA composition is affected by the mechanical forces that transduce signalling networks to modulate cellular function and drive cell migration. Understanding the fundamental mechanisms of how force governs adhesion signalling provides insights that will allow the manipulation of cell migration and help to control migration‐related human diseases.  相似文献   

7.
8.
Intracellular cholesterol transport in synchronized human skin fibroblasts   总被引:4,自引:0,他引:4  
Fielding CJ  Bist A  Fielding PE 《Biochemistry》1999,38(8):2506-2513
  相似文献   

9.
IMR90 human fibroblasts were labelled by incubation of cells for 48 h in medium containing 10% serum and [3H]leucine. The labelled protein was degraded at a rate of 1%/h during a subsequent incubation in medium with 10% serum. Incubation in medium without serum caused a transient enhancement of the degradation of endogenous protein, which was also found in cells labelled in medium without serum. The degradation of micro-injected haemoglobin was enhanced by serum deprivation in a non-transient manner. These results suggest that enhanced degradation in serum-free medium occurs only for a subpopulation of cell proteins and that it appears transient because the major part of the pool of susceptible endogenous proteins is being degraded during the first 20-30 h in serum-free unlabelled medium. Protein turnover in various cell compartments was measured by a double-labelling technique. Most of the enhanced degradation in serum-deprived cultures (73-83%) was due to breakdown of cytosolic proteins. The enhanced degradation of cytosolic proteins seemed to affect several proteins irrespective of their molecular mass or metabolic stability.  相似文献   

10.
11.
The purpose of this study was to determine the capacity of Niemann-Pick type C (NPC) fibroblasts to transport cholesterol from the cell surface to intracellular membranes. This is relevant in light of the observations that NPC cells display a sluggish metabolism of LDL-derived cholesterol, a phenomenon which could be explained by a defective intracellular transport of cholesterol. Treatment of NPC cells for 4 h with 0.1 mg/ml of LDL failed to increase the incorporation of [14C]oleic acid into cholesterol [14C]oleate, an observation consistent with previous reports on this cell type (Pentchev et al. (1985) Proc. Natl. Acad. Sci. USA 82, 8247). Normal fibroblasts, however, displayed the classical upregulation (6-fold over control) of the endogenous esterification reaction in response to LDL exposure. Incubation of normal or NPC fibroblasts with sphingomyelinase (100 mU/ml; Staphylococcus aureus) led to a rapid and marked increase (9- and 10-fold for normal and NPC fibroblasts, respectively, after 4 h) in the esterification of plasma-membrane-derived [3H]cholesterol suggesting that sphingomyelin degradation forced a net transfer of cholesterol from the cell surface to the endoplasmic reticulum. The similar response in normal and mutant fibroblasts to the degradation of sphingomyelin suggests that plasma membrane cholesterol can be transported into the substrate pool of ACAT to about the same extent in these two cell types. Degradation of cell sphingomyelin in NPC fibroblasts also resulted in the movement of 20-25% of the cellular cholesterol from a cholesterol oxidase susceptible pool into oxidase-resistant pools, implying that a substantial amount of plasma membrane cholesterol was internalized after sphingomyelin degradation. This cholesterol internalization was not accompanied by an increased rate of membrane internalization, as measured by [3H]sucrose uptake. Although NPC cells showed a relative accumulation of unesterified cholesterol and a sluggish esterification of LDL-derived cholesterol when exposed to LDL, these cells responded like normal fibroblasts with regard to their capacity to transport cholesterol from the cell surface into intracellular sites in response to sphingomyelin degradation. It therefore appears that NPC cells, in contrast to the impaired intracellular movement of lipoprotein-derived cholesterol, do not display a general impairment of cholesterol transport between the cell surface and the intracellular regulatory pool of cholesterol.  相似文献   

12.
We have used laser optical trapping and nanometer-level motion analysis to investigate the cytoskeletal associations and surface dynamics of beta 1 integrin, a cell-substrate adhesion molecule, on the dorsal surfaces of migrating fibroblast cells. A single-beam optical gradient trap (laser tweezers) was used to restrain polystyrene beads conjugated with anti-beta 1 integrin mAbs and place them at desired locations on the cell exterior. This technique was used to demonstrate a spatial difference in integrin-cytoskeleton interactions in migrating cells. We found a distinct increase in the stable attachment of beads, and subsequent rearward flow, on the lamellipodia of locomoting cells compared with the retracting portions. Complementary to the enhanced linkage of integrin at the cell lamellipodium, the membrane was more deformable at the rear versus the front of moving cells while nonmotile cells did not exhibit this asymmetry in membrane architecture. Video microscopy and nanometer-precision tracking routines were used to study the surface dynamics of integrin on the lamellipodia of migrating cells by monitoring the displacements of colloidal gold particles coated with anti-beta 1 integrin mAbs. Small gold aggregates were rapidly transported preferentially to the leading edge of the lamellipod where they resumed diffusion restricted along the edge. This fast transport was characterized by brief periods of directed movement ("jumps") having an instantaneous velocity of 37 +/- 15 microns/min (SD), separated by periods of diffusion. In contrast, larger aggregates of gold particles and the large latex beads underwent slow, steady rearward movement (0.85 +/- 0.44 micron/min) (SD) at a rate similar to that reported for other capping events and for migration of these cells. Cell lines containing mutated beta 1 integrins were used to show that the cytoplasmic domain is essential for an asymmetry in attachment of integrin to the underlying cytoskeletal network and is also necessary for rapid, intermittent transport. However, enhanced membrane deformability at the cell rear does not require integrin-cytoskeletal interactions. We also demonstrated that posttranslational modifications of integrin could potentially play a role in these phenomena. These results suggest a scheme for the role of dynamic integrin-mediated adhesive interactions in cell migration. Integrins are transported preferentially to the cell front where they form nascent adhesions. These adhesive structures grow in size and associate with the cytoskeleton that exerts a rearward force on them. Dorsal aggregates more rearward while those on the ventral side remain fixed to the substrate allowing the cell body to move forward. Detachment of the cell rear occurs by at least two modes: (a) weakened integrin- cytoskeleton interactions, potentially mediated by local modifications of linkage proteins, which lead to weakened cell-substratum interactions and (b) ripping of integrins and the highly deformable membrane from the cell body.  相似文献   

13.
14.
The possibility that membrane depolarization of synovialfibroblasts caused by interleukin-1 (IL-1) was mediated byprotein kinase C (PKC) and Ca2+influx was studied using inhibitor and activator analysis. The effectof IL-1 was blocked by bisindolylmaleimide I, an inhibitor of PKC,and by the Ca2+ channel blockersnifedipine and verapamil. In other experiments, PKC was activated usingphorbol 12-myristate 13-acetate, andCa2+ influx was increased by meansof a Ca2+ ionophore. Simultaneousapplication of phorbol ester andCa2+ ionophore in the absence ofIL-1 mimicked the depolarization caused by IL-1. The results wereconsistent with the hypothesis that, under the conditions studied,activation of PKC and Ca2+ influxare necessary and sufficient processes in the transduction of IL-1by synovial cells leading to membrane depolarization. Theessential role of protein phosphorylation andCa2+ influx in the earlyelectrophysiological response of synovial fibroblasts to IL-1 wastherefore established. The role of IL-1-induced depolarization inregulating protein expression by the cells remains to be determined,but the results reported here, taken together with observations thatprotein phosphorylation and Ca2+influx also mediate the effect of IL-1 on protease production (1, 2), suggest that electrophysiological changes are actually part of thepathway for expression of proteases in response to IL-1.

  相似文献   

15.
Mechanical interactions between cell and substrate are involved in vital cellular functions from migration to signal transduction. A newly developed technique, traction force microscopy, makes it possible to visualize the dynamic characteristics of mechanical forces exerted by fibroblasts, including the magnitude, direction, and shear. In the present study such analysis is applied to migrating normal and transformed 3T3 cells. For normal cells, the lamellipodium provides almost all the forces for forward locomotion. A zone of high shear separates the lamellipodium from the cell body, suggesting that they are mechanically distinct entities. Timing and distribution of tractions at the leading edge bear no apparent relationship to local protrusive activities. However, changes in the pattern of traction forces often precede changes in the direction of migration. These observations suggest a frontal towing mechanism for cell migration, where dynamic traction forces at the leading edge actively pull the cell body forward. For H-ras transformed cells, pockets of weak, transient traction scatter among small pseudopods and appear to act against one another. The shear pattern suggests multiple disorganized mechanical domains. The weak, poorly coordinated traction forces, coupled with weak cell-substrate adhesions, are likely responsible for the abnormal motile behavior of H-ras transformed cells.  相似文献   

16.
The relationship between cytosolic free calcium concentration ([Ca2+]i) and human neutrophil motility was studied by video microscopy. Neutrophils stimulated by a uniform concentration of an N-formylated peptide chemoattractant (f-Met-Leu-Phe) were tracked during chemokinetic migration on albumin, fibronectin, and vitronectin. [Ca2+]i buffering with quin2 resulted in significant decreases in mean speed on albumin. To further characterize the relationship between [Ca2+]i changes and motility we carried out a cross-correlation analysis of [Ca2+]i with several motility parameters. Cross-correlations between [Ca2+]i and each cell's speed, angle changes, turn strength, and persistent forward motion revealed (i) a positive correlation between [Ca2+]i and cell speed (p < 0.05), (ii) no significant correlation between turns and calcium spikes, and (iii) the occurrence of turns during periods of low speed. Significant negative correlations between [Ca2+]i and angle change were noted on the high adhesion substrates vitronectin and fibronectin but not on the low adhesion substrate albumin. These data imply that there is a general temporal relationship between [Ca2+]i, speed, and persistent motion. However, the correlations are not sufficiently strong to imply that changes in [Ca2+]i are required proximal signals for velocity changes.  相似文献   

17.
Human fetal lung fibroblasts grown in the presence of dansyl-paromomycin (DNS-Pm), a fluorescent derivative of the aminoglycoside antibiotic, paromomycin, probably accumulate DNS-Pm in the lysosomes. The intracellular concentration of DNS-Pm is proportional to the extracellular concentration and to the length of time cells are exposed to the compound. The accumulation of DNS-Pm by human fibroblasts continued to increase for several days, reaching a saturation after 7 days. The kinetic data are consistent with the establishment of a steady state in the cell between fluid-phase pinocytosis and exocytosis of DNS-Pm. About 80% of the intracellular DNS-Pm was released in 24 hr when fresh medium without the analogue was added. The residual 20% remained within the cells, suggesting that it may be irreversibly bound to the lysosomes, endoplasmic reticulum, or ribosonius. The uptake of paromomycin by cells in culture may be a useful means to study error propagation during growth and lifespan of cells in vitro.  相似文献   

18.
In migrating fibroblasts, rearward movement of the nucleus orients the centrosome toward the leading edge. Nuclear movement results from coupling rearward-moving, dorsal actin cables to the nucleus by linear arrays of nesprin-2G and SUN2, termed transmembrane actin-associated nuclear (TAN) lines. A-type lamins anchor TAN lines, prompting us to test whether emerin, a nuclear membrane protein that interacts with lamins and TAN line proteins, contributes to nuclear movement. In fibroblasts depleted of emerin, nuclei moved nondirectionally or completely failed to move. Consistent with these nuclear movement defects, dorsal actin cable flow was nondirectional in cells lacking emerin. TAN lines formed normally in cells lacking emerin and were coordinated with the erratic nuclear movements, although in 20% of the cases, TAN lines slipped over immobile nuclei. Myosin II drives actin flow, and depletion of myosin IIB, but not myosin IIA, showed similar nondirectional nuclear movement and actin flow as in emerin-depleted cells. Myosin IIB specifically coimmunoprecipitated with emerin, and emerin depletion prevented myosin IIB localization near nuclei. These results show that emerin functions with myosin IIB to polarize actin flow and nuclear movement in fibroblasts, suggesting a novel function for the nuclear envelope in organizing directional actin flow and cytoplasmic polarity.  相似文献   

19.
We have analysed protein degradation in primary cultures of normal and dystrophic chick muscle, in fibroblasts derived from normal and dystrophic chicks, and in human skin fibroblasts from normal donors and from patients with Duchenne muscular dystrophy (DMD). Our results indicate that degradative rates of both short- and long-lived proteins are unaltered in dystrophic muscle cells and in dystrophic fibroblasts. Longer times in culture and co-culturing chick fibroblasts with the chick myotubes do not expose any dystrophy-related abnormalities in protein catabolism. Furthermore, normal and dystrophic muscle cells and fibroblasts are equally able to regulate proteolysis in response to serum and insulin. We conclude that cultures of chick myotubes, chick fibroblasts, and fibroblasts derived from humans afflicted with DMD are not appropriate models for studying the enhanced protein degradation observed in dystrophy.  相似文献   

20.
Ohashi T  Hagiwara M  Bader DL  Knight MM 《Biorheology》2006,43(3-4):201-214
The present study utilised pipette aspiration and simultaneous confocal microscopy to test the hypothesis that chondrocyte deformation is associated with distortion of intracellular organelles and activation of calcium signalling. Aspiration pressure was applied to isolated articular chondrocytes in increments of 2 cm of water every 60 seconds up to a maximum of 10 cm of water. At each pressure increment, confocal microscopy was used to visualise the mitochondria and nucleus labelled with JC-1 and Syto-16, respectively. To investigate intracellular calcium signalling, separate cells were labelled with Fluo 4, rapidly aspirated to 5 cm of water and then imaged for 5 minutes at a tare pressure of 0.1 cm of water. Partial cell aspiration was associated with distortion of the mitochondrial network, elongation of the nucleus and movement towards the pipette mouth. Treatment with cytochalasin D or nocodazole produced an increase in cell aspiration indicating that both the actin microfilaments and microtubules provide mechanical integrity to the cell. When the data was normalised to account for the increased cell deformation, both actin microfilaments and microtubules were shown to be necessary for strain transfer to the intracellular organelles. Mitochondria and nucleus deformation may both be involved in chondrocyte mechanotransduction as well as cellular and intracellular mechanics. In addition, pipette aspiration induced intracellular calcium signalling which may also form part of a mechanotransduction pathway. Alternatively calcium mobilisation may serve to modify actin polymerisation, thereby changing cell mechanics and membrane rigidity in order to facilitate localised cell deformation. These findings have important implications for our understanding of cell mechanics and mechanotransduction as well as interpretation and modelling of pipette aspiration data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号