首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ancans J  Thody AJ 《FEBS letters》2000,478(1-2):57-60
In this study, we describe the activation of melanogenesis by selective vacuolar type H(+)-ATPase inhibitors (bafilomycin A1 and concanamycin A) in amelanotic human and mouse melanoma cells which express tyrosinase but show no melanogenesis. Addition of the inhibitors activated tyrosinase within 4 h, and by 24 h the cells contained measurable amounts of melanin. These effects were not inhibited by cycloheximide (2 microgram/ml) which is consistent with a post-translational mechanism of activation. Our findings suggest that melanosomal pH could be an important and dynamic factor in the control of melanogenesis in mammalian cells.  相似文献   

2.
When we studied the effects of polyphenols from apple fruits on melanogenesis in B16 mouse melanoma cell lines, phloridzin had dose-dependent progressive effects on melanogenesis between 10 and 500 μg/ml without inhibiting cell growth. At a concentration of 500 μg/ml, phloridzin increased the melanin content in the cells to 181% of that in control cells. In contrast, phloretin, the aglycon of phloridzin, did not activate melanogenesis in the cells and was cytotoxic at a concentration of 5 μg/ml. Phloridzin increased the activity of tyrosinase to 223% of that in control cells. Furthermore, phloridzin inhibited the activity of protein kinase C (PKC), which is recognized to regulate tyrosinase activity. The inhibition of PKC activity continued for 120min from the addition of phloridzin. Therefore, we estimated that the activation of melanogenesis by phloridzin resulted from the increase of tyrosinase activity caused by the inhibition of PKC activity.  相似文献   

3.
4.
5.
Melanogenesis is one of the characteristic functional activities of melanocyte/melanoma and is regulated via mitogen-activated protein kinase (MAPK) and Akt/protein kinase B (PKB) pathways. Placental total lipid fraction (PTLF), prepared from a hydroalcoholic extract of fresh term human placenta contains sphingolipids and was recently shown to stimulate melanogenesis via up-regulation of the key enzyme tyrosinase in B16F10 mouse melanoma cells. How such lipids mediate their effects on pigmentation and tyrosinase expression is a particularly important aspect of melanogenesis. To study the signaling that leads to tyrosinase expression, we have investigated the roles of the MAPK and Akt/PKB pathways in B16F10 melanoma cells in melanogenesis in response to PTLF. Treatment of cells with PTLF led to the time dependent phosphorylation of p38 MAPK. SB203580, a p38 MAPK inhibitor, completely blocked the PTLF-induced melanogenesis by inhibiting promoter activity and subsequent expression of tyrosinase. Phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002 a blocker of the Akt signaling pathway, or an inhibitor of MEK (MAPK/ERK Kinase), PD98059 when included along with PTLF was found to potentiate PTLF-induced phosphorylation of p38 MAPK together with tyrosinase expression and melanogenesis. The results suggest that the activation of p38 MAPK plays a crucial role in PTLF-induced B16F10 melanogenesis by up-regulating tyrosinase expression.  相似文献   

6.
Melanogenesis in melanoma cells can be enhanced by psoralens in the absence of UV light. Melanin biosynthesis is regulated by a number of melanocyte-specific proteins, including tyrosinase, DOPAchrome tautomerase (DCT), and tyrosinase-related protein-1 (TRP-1, gp75). To get more insight on the molecular mechanisms involved in psoralens-induced melanogenesis, we determined tyrosinase and DCT activities as well as mRNA and protein levels of tyrosinase, DCT, and TRP-1 in S91 mouse melanoma cells treated by 5-MOP. High concentration of 5-MOP (5 × 10-5 M) induced a time-dependent increase of tyrosinase activity and melanin content, which was correlated to an increase of both mRNA and protein levels of tyrosinase. These results demonstrate that the 5-MOP stimulation of melanogenesis is related to increased tyrosinase synthesis. In addition, 5-MOP stimulated TRP-1 synthesis and induced a dose-dependent decrease of DCT activity without any modification in the expression of the protein. We explored then the signalling pathways involved in 5-MOP-induced melanogenesis and, particularly, the role of cyclic AMP and protein kinase C (PKC). A small stimulation of cyclic AMP production was observed in presence of 5-MOP. Furthermore, 1-oleoyl-2-acetylglycerol (OAG), a PKC activator, potentiated the 5-MOP stimulation of tyrosinase activity, while calphostin, a specific PKC inhibitor, inhibited the 5-MOP induction of tyrosinase activity. Phorbol-myristate acetate (PMA), described as a strong activator of PKC, inhibited also the effect of 5-MOP when used at long term. Taken together, these results demonstrate that in murine melanoma cells 5-MOP stimulates melanogenesis by increasing activity and synthesis of tyrosinase. Tyrosinase and TRP-1 expression are coordinately regulated by 5-MOP Furthermore, a negative correlation between melanogenesis and DCT activity was observed under 5-MOP stimulation. At least, PKA and PKC systems appear to play an important role in the melanogenic effect of 5-MOP.  相似文献   

7.
8.
Although a number of melanogenesis inhibitors have recently been reported and used as cosmetic additives, none is completely satisfactory, leaving a need for novel skin-depigmenting agents. Thus, to develop a novel skin-depigmenting agent from natural sources, the inhibition of melanogenesis by Chinese plants was evaluated. A methanolic extract of Nigella glandulifera Freyn was found to inhibit the melanin synthesis of murine B16F10 melanoma cells by 43.7% and exhibited a low cytotoxicity (8.1 %) at a concentration of 100 microg/ml. Thus, to identify the melanogenesis-inhibiting mechanism, the inhibitory activity towards tyrosinase, the key enzyme of melanogenesis, was further evaluated, and the results showed inhibitory effects on the activity of intracellular tyrosinase yet not on mushroom tyrosinase. Finally, to isolate the compounds with a hypopigmenting capability, activity-guided isolation was performed, and Dioctyl phthalate identified as inhibiting melanogenesis.  相似文献   

9.
(-)-Cubebin showed a melanogenesis stimulation activity in a concentration-dependent manner in murine B16 melanoma cells without any significant effects on cell proliferation. Tyrosinase activity was increased at 24-72 h after addition of cubebin to B16 cells, and then intracellular melanin amount was increased at 48-96 h after the treatment. The expression levels of tyrosinase were time-dependently enhanced after the treatment with cubebin. At the same time, the expression levels of tyrosinase mRNA were also increased after addition of cubebin. Furthermore Western blot analysis revealed that cubebin elevated the level of phosphorylation of p38 mitogen-activated protein kinase (MAPK). SB203580, a selective inhibitor of p38 MAPK, completely blocked cubebin-induced expression of tyrosinase mRNA in B16 cells. These results suggested that cubebin increased melanogenesis in B16 cells through the enhancement of tyrosinase expression mediated by activation of p38 MAPK.  相似文献   

10.

Background

Excessive melanin production and accumulation are characteristics of a large number of skin diseases, including melasma, and post-inflammatory hyperpigmentation. During our on-going search for new agents with an inhibitory effect on tyrosinase, we synthesized a new type of tyrosinase inhibitor, 4-(thiazolidin-2-yl)benzene-1,2-diol (MHY-794), which directly inhibits mushroom tyrosinase.

Methods

The inhibitory effect of MHY-794 on tyrosinase activity and nitric oxide (NO) scavenging activity was evaluated in cell free system. Additional experiments were performed using B16F10 melanoma cells to demonstrate the effects of MHY-794 in vitro. HRM2 hairless mice were used to evaluate anti-melanogenic effects of MHY-794 in vivo.

Results

MHY-794 effectively inhibited mushroom tyrosinase activity in cell free system. In silico docking simulation also supported the inhibitory effects of MHY-794 on mushroom tyrosinase. MHY-794 also proved to be effective at scavenging nitric oxide (NO), which serves as an important modulator in the melanogenesis signaling pathway. In addition, MHY-794 effectively inhibited SNP (NO donor)-induced melanogenesis by directly inhibiting tyrosinase and diminishing NO-mediated melanogenesis signaling in B16 melanoma cells. The anti-melanogenic effects of MHY-794 were further confirmed in HRM2 hairless mice. Ultraviolet light (UV) significantly up-regulated NO-mediated melanogenesis signaling in HRM2 hairless mice, but MHY-794 effectively inhibited both melanogenesis and diminished UV-induced NO-signaling.

Conclusions

Our results indicate that MHY-794 is highly effective at inhibiting NO-mediated melanogenesis in vitro and in vivo by direct NO scavenging and directly inhibiting tyrosinase activity, and suggest that MHY-794 be considered a new developmental candidate for the treatment of hyper-pigmentation disorders.

General significance

MHY-794, which showed great efficacy on NO-mediated melanogenesis by direct NO scavenging as well as direct inhibition of tyrosinase catalytic activity, might be utilized for the development of a new candidate for treatment of the hyper-pigmentation disorders.  相似文献   

11.
Melanin is a natural polymer pigment which provides skin photoprotection against ultraviolet radiation. An excessive synthesis of melanin leads to hyperpigmentation disorders. Tyrosinase catalyzes the rate limiting steps on melanogenesis. Therefore, tyrosinase inhibitors have potential applications in medicine and cosmetic fields. We carried out herein the screening of a family of cyclic Morita-Baylis-Hillman adducts (MBH) to find out their effects on tyrosinase activity and on melanogenesis in murine melanoma B16F10 cell line. Kinetic analysis of tyrosinase inhibition showed that compounds 1a (2-hydroxymethyl) cyclohex-2-enone) and 3f (diethyl (1-(6-oxocyclohex-1-en-1-yl) ethyl-phosphonate) were competitive inhibitors, whereas the compound 2b (6-oxocyclohex-1-en-1-yl) ethyl acetate) was a non-competitive one. Additionally we have found that (1a, 2b and 3f) compounds had a strong melanogenesis inhibition effect in isobutylmethylxanthine (IBMX)-treated murine melanoma B16F10 cells when tested at low and non cytotoxic dose (10–50 µM), by attenuating the melanin production, intracellular tyrosinase activity and tyrosinase expression. Thus, we suggest that these compounds could be used as effective skin-whitening agents.  相似文献   

12.
13.
Radix Polygoni multiflori is a herb used effectively to prevent graying and treat skin depigmentation diseases in traditional Chinese medicine but its active ingredients have not been discovered yet. In this investigation, we tested six compounds isolated from Radix Polygoni multiflori, to discover the active component on melanogenesis. Three experiments were performed in the present investigation: mushroom tyrosinase activity, melanin content B16 cell proliferation assay. Among all the six components tested, THSG showed the most potent effects on tyrosinase activation and melanogenesis; it was shown to be a potent tyrosinase activator and a melanogenesis stimulator in this study. On the other hand, we found that gallic acid significantly inhibited tyrosinase and, in addition, anthraquinones were cytotoxic to melanoma cells. They were both harmful to melanogenesis. Therefore, we propose that THSG acts as the active ingredient of Radix Polygoni multiflori on melanogenesis.  相似文献   

14.
15.
16.
Radix Polygoni multiflori is a herb used effectively to prevent graying and treat skin depigmentation diseases in traditional Chinese medicine but its active ingredients have not been discovered yet. In this investigation, we tested six compounds isolated from Radix Polygoni multiflori, to discover the active component on melanogenesis. Three experiments were performed in the present investigation: mushroom tyrosinase activity, melanin content B16 cell proliferation assay. Among all the six components tested, THSG showed the most potent effects on tyrosinase activation and melanogenesis; it was shown to be a potent tyrosinase activator and a melanogenesis stimulator in this study. On the other hand, we found that gallic acid significantly inhibited tyrosinase and, in addition, anthraquinones were cytotoxic to melanoma cells. They were both harmful to melanogenesis. Therefore, we propose that THSG acts as the active ingredient of Radix Polygoni multiflori on melanogenesis.  相似文献   

17.
18.
Most of our knowledge of the mammalian tyrosinase related protein (TRP) activities is derived from studies using murine melanoma models, such as B16 or Cloudman S-91 melanocytes. Owing to the high degree of homology between the murine and human enzymes, it has been assumed that their kinetic behavior could be similar. However, the protein sequences at the metal binding sites of the murine and human enzymes show some differences of possible functional relevance. These differences are more significant in the metal-A site than in the metal-B site. By using three human melanoma cell lines (HBL, SCL, and BEU), we have studied the catalytic abilities of the human melanogenic enzymes in comparison to those obtained for the counterpart murine enzymes isolated from B16 melanoma. We have found that TRP2 extracted from all cell lines show dopachrome tautomerase activity, although the activity levels in human malignant melanocytes are much lower than in mouse cells. Reconstitution experiments of the human enzyme indicate that TRP2 has Zn at its metal binding-sites. Although mouse tyrosinase does not show DHICA oxidase activity, and this step of the melanogenesis pathway is specifically catalyzed by mouse TRP1, the human enzyme seems to recognize carboxylated indoles. Thus, human tyrosinase could display some residual DHICA oxidase activity, and the function of human TRP1 could differ from that of the murine protein. Attempts to clarify the nature of the metal cofactor in TRP1 were unsuccessful. The enzyme contains mostly Fe and Cu, but the reconstitution of the enzymatic activity from the apoprotein with these ions was not possible.  相似文献   

19.
In response to alpha-melanocyte-stimulating hormone (alpha-MSH) or cAMP-elevating agents (forskolin and isobutylmethylxanthine), mouse B16 melanoma cells underwent differentiation characterized by increased melanin biosynthesis. However, the mechanism(s) underlying the regulation of melanogenesis during differentiation has not yet been clearly understood. Phospholipase D (PLD) has been reported to be involved in differentiation. This enzyme cleaves phosphatidylcholine upon stimulation with stimuli to generate phosphatidic acid. In the current study, the involvement of PLD in the regulation of melanogenesis characteristic of differentiation was examined using mouse B16 melanoma cells. Treatment of B16 cells with alpha-MSH was found to cause marked decreases in the PLD1 activity concurrent with its reduced protein level. Moreover, treatment of exogenous bacterial PLD also inhibited alpha-MSH-induced melanogenesis. To further investigate the role of PLD1 in the regulation of melanogenesis, we examined the effects of overexpression of PLD1 on melanogenesis in B16 melanoma cells. The B16 cells overexpressing PLD were prepared by transfection with the vector containing the cDNA encoding PLD1. The melanin contents in PLD1-overexpressing cells (B16/PLD1) were observed to be lower compared with those in the vector control cells (B16/Vec), concomitant with the decreases in both activity and protein level of tyrosinase, a key regulatory enzyme in melanogenesis. Moreover, overexpression of PLD1 resulted in a marked inhibition of melanogenesis induced by alpha-MSH. The inhibition of melanogenesis was well correlated with the decrease in the tyrosinase activity associated with its expression. These results indicated that PLD1 negatively regulated the melanogenic signaling by modulating the expression of tyrosinase in mouse B16 melanoma cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号