首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidation of [2,3-14C]succinate in the intramitochondrial Krebs cycle was used as a probe to investigate the effect of ammonia on protein incorporation and Krebs cycle oxidation of succinate carbons in isolated rat hepatocytes. At low concentrations of ammonium chloride (0.1 to 0.5 mM) a slight increase in14CO2 formation from [2,3-14C]succinate was observed, however, the stimulatory effect of insulin was significantly reduced. Insulin failed to cause any stimulation of succinate carbons incorporation into hepatocyte protein in the presence of ammonium chloride. Addition of ammonium chloride also depressed the movement of tracer carbons into the gluconeogenesis pathway. The activity of the amphibolic amino acid pool was significantly enhanced by ammonia. The data presented in this paper lend strong support to the Krebs-cycle depletion theory of hepatic coma. They also suggest that reduced mitochondrial Krebs cycle activity caused by increased amphibolic depletion of substrates results in loss of insulin sensitivity in ammonia toxicity.Special issue dedicated to Dr. Santiago Grisolia.  相似文献   

2.
Isolated rat hepatocytes were prepared in KHB buffer, pH 7.4; were centrifuged and washed twice in KHB buffer containing various amounts of phosphate and calcium; and were incubated at 30 degrees in the presence of tracer [2,3-14C]succinate and a 0.5 mM concentration of each of the 20 natural amino acids. Hepatocytes washed and incubated in KHB buffer containing less than 0.1 mM phosphate failed to show any insulin stimulation of [2,3-14C]succinate oxidation or protein incorporation of tracer carbons. The absence or presence of extracellular phosphate did not alter the specific activity of 32P-adenine nucleotides; they remained the same in the presence or absence of insulin. The maximal insulin stimulatory effect on succinate oxidation and tracer incorporation into protein was observed in the presence of 1.18 mM phosphate and 1.9 mM calcium ion. The lack of external phosphate did not prevent the stimulation of succinate oxidation by either glucagon on epinephrine, whereas removal of calcium from the medium abolished their hormonal effects. The lack of medium calcium also prevented the insulin stimulation of succinate oxidation and protein synthesis. Our data indicate that a diminished insulin responsiveness in hypophosphatemic patients may be due to the insensitivity of mitochondria to insulin in the hypophosphatemic state.  相似文献   

3.
It has long been known that the carbons of pyruvate are converted to CO2 at different points in the metabolic process. This report deals with the observation that insulin affects the oxidation of carbons 2 and 3 primarily and has little effect on the oxidation of the carboxyl carbon. Oxidation of different carbons of pyruvate and their incorporation into various metabolic components was studied in isolated rat hepatocytes. Insulin stimulated the 14CO2 production from [2-14C]- and [3-14C]pyruvate and from [U-14C]alanine. However, it had little or no effect on the activity of the pyruvate dehydrogenase complex as measured by the evolution of 14CO2 from [1-14C]pyruvate or [1-14C] alanine. Insulin also stimulated the incorporation of carbons 2 and 3 of pyruvate into protein but had no effect on the incorporation of carbon 1. Incorporation of [1-14C]- and [U-14C]alanine into protein was differentially enhanced by insulin in a manner similar to that of the pyruvate carbons. The fact that insulin stimulates the incorporation of [1-14C]alanine into protein but not [1-14C]pyruvate suggests the possibility of a compartmentation of pyruvate metabolism in the isolated hepatocytes. These studies show that the stimulation of [2-14C]- and [3-14C]pyruvate incorporation into protein involves the stimulatory effect of insulin on the activity of the Krebs cycle which is evident from the fact that insulin did not stimulate the pyruvate carbons to enter protein via alanine but the incorporation via glutamate was increased by about 40%.  相似文献   

4.
Rat liver hepatocytes isolated from a 30-31% percoll density gradient at 10,000g are refractory toward insulin stimulation of 14CO2 formation and 14C-incorporation into protein from [2,3-14C]succinate. Basal hepatocyte oxidation of succinate was not impaired by the presence of 5% percoll in the incubation medium nor was it impaired when percoll-free hepatocytes were used that had been isolated after centrifugation at 9000g; however, in both instances the stimulatory effect of insulin was lost. Hepatocyte damage may have occurred in these processes. This is in contrast to previous work which shows that insulin (10 mU/ml) will stimulate [2,3-14C]succinate oxidation and [2,3-14C]succinate carbon incorporation into protein in non-percoll-treated hepatocytes (isolated by centrifugation at 10g) by about 29%. We conclude that the latter procedure although more time consuming is the more gentle method of choice and leaves the hepatocyte in a form more closely related to an in vivo state than does treatment with a percoll density gradient at 10,000g.  相似文献   

5.
Our previous studies of insulin action have led us to the finding that insulin acts specifically on the mitochondrial Krebs cycle to stimulate, by 30%, the oxidation of carbons 2 and 3 of pyruvate to CO2. Insulin also stimulates the oxidation of both carbons of acetate. These carbons can be converted to CO2 only after passing through all of the reactions of the Krebs cycle more than once. Carboxyl groups, such as number 1 of pyruvate, are oxidized to CO2 without any effect of insulin, and can be converted to CO2 by extramitochondrial enzyme. We conclude that insulin must act on the complete intramitochondrial cycle and not on the four enzymes of the Krebs cycle which are present in the cytoplasm. The path taken by those carbons affected by insulin is traced through the complete Krebs cycle, and the necessity for this effect to be mitochondrial has been verified by demonstration of the same specific effect of insulin on the oxidation of the 2 and 3 carbons of succinate. The use of this phenomenon is proposed for the study not only of human diabetes, but of all mitochondrial disorders, by using 14C specifically labeled tracers in culture or biopsy material, or 13C labeled tracer material in vivo. (Mol Cell Biochem 174: 91–96, 1997)  相似文献   

6.
It has been a generally held view that insulin does not significantly affect the incorporation of amino acids into liver protein. This interpretation was based on data obtained from studies using the branched chain amino acids, which are poorly metabolized by the hepatic tissue. The effect of insulin on 14CO2 formation and protein incorporation of several 1-14C-labeled or U-14C-labeled amino acids was studied in isolated rat hepatocytes and diaphragm pieces. It was shown that insulin enhanced 14CO2 formation and protein incorporation primarily of those carbons of amino acids which are metabolized through the mitochondrial Krebs cycle. Using aminooxyacetic acid (0.5 mM), a potent inhibitor of the transamination reaction, it was shown that there exists an "insulin-sensitive" pool of glutamate which is preferentially utilized for protein synthesis in the presence of insulin. The insulin effect on protein incorporation of 14C-labeled glutamate generated in the Krebs cycle was abolished in the presence of aminooxyacetic acid. We interpret these results to signify that mitochondrial transamination of alpha-ketoglutarate to glutamate is essential for insulin stimulation of 14C incorporation into hepatocyte protein.  相似文献   

7.
The metabolism of succinate was examined in the housefly Musca domestica L. The labeled carbons from [2,3-14C]succinate were readily incorporated into cuticular hydrocarbon and internal lipid, whereas radioactivity from [1,4-14C]succinate was not incorporated into either fraction. Examination of the incorporation of [2,3-14C]succinate, [1-14C]acetate, and [U-14C]proline into hydrocarbon by radio-gas-liquid chromatography showed that each substrate gave a similar labeling pattern, which suggested that succinate and proline were converted to acetyl-CoA prior to incorporation into hydrocarbons. Carbon-13 nuclear magnetic resonance showed that the labeled carbons from [2,3-13C]succinate enriched carbons 1, 2, and 3 of hydrocarbons with carbon-carbon coupling showing that carbons 2 and 3 of succinate were incorporated as an intact unit. Radio-high-performance liquid chromatographic analysis of [2,3-14C]succinate metabolism by mitochondrial preparations showed that in addition to labeling fumarate, malate, and citrate, considerable radioactivity was also present in the acetate fraction. The data show that succinate was not converted to methylmalonate and did not label hydrocarbon via a methylmalonyl derivative. Malic enzyme was assayed in sonicated mitochondria prepared from the abdomens and thoraces of 1- and 4-day-old insects; higher activity was obtained with NAD+ in mitochondria prepared from thoraces, whereas NADP+ gave higher activity with abdomen preparations. These data document the metabolism of succinate to acetyl-CoA and not to a methylmalonyl unit prior to incorporation into lipid in the housefly and establish the role of the malic enzyme in this process.  相似文献   

8.
13C-nuclear magnetic resonance (NMR) spectroscopy was used to investigate the products of glycerol and acetate metabolism released by Leishmania braziliensis panamensis promastigotes and also to examine the interaction of each of these substrates with glucose or alanine. The NMR data were supplemented by measurements of the rates of oxygen consumption and substrate utilization, and of 14CO2 production from 14C-labeled substrate. Cells incubated with [2-13C]glycerol released acetate, succinate and D-lactate in addition to CO2. Cells incubated with acetate released only CO2. More succinate C-2/C-3 than C-1/C-4 was released from both [2-13C]glycerol and [2-13C]glucose, indicating that succinate was formed predominantly by CO2 fixation followed by reverse flux through part of the Krebs cycle. Some redistribution of the position of labeling was also seen in alanine and pyruvate, suggesting cycling through pyruvate/oxaloacetate/phosphoenolpyruvate. Cells incubated with combinations of 2 substrates consumed oxygen at the same rate as cells incubated with 1 or no substrate, even though the total substrate utilization had increased. When promastigotes were incubated with both glycerol and glucose, the rate of glucose consumption was unchanged but glycerol consumption decreased about 50%, and the rate of 14CO2 production from [1,(3)-14C]glycerol decreased about 60%. Alanine did not affect the rates of consumption of glucose or glycerol, but decreased 14CO2 production from these substrates by increasing flow of label into alanine. Although glucose decreased alanine consumption by 70%, it increased the rate of 14CO2 production from [U-14C]- and [l-14C]alanine by about 20%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The pentose cycle and insulin release in mouse pancreatic islets   总被引:35,自引:17,他引:18  
1. Rates of insulin release, glucose utilization (measured as [(3)H]water formation from [5-(3)H]glucose) and glucose oxidation (measured as (14)CO(2) formation from [1-(14)C]- or [6-(14)C]-glucose) were determined in mouse pancreatic islets incubated in vitro, and were used to estimate the rate of oxidation of glucose by the pentose cycle pathway under various conditions. Rates of oxidation of [U-(14)C]ribose and [U-(14)C]xylitol were also measured. 2. Insulin secretion was stimulated fivefold when the medium glucose concentration was raised from 3.3 to 16.7mm in the absence of caffeine; in the presence of caffeine (5mm) a similar increase in glucose concentration evoked a much larger (30-fold) increase in insulin release. Glucose utilization was also increased severalfold as the intracellular glucose concentration was raised over this range, particularly between 5 and 11mm, but the rate of oxidation of glucose via the pentose cycle was not increased. 3. Glucosamine (20mm) inhibited glucose-stimulated insulin release and glucose utilization but not glucose metabolism via the pentose cycle. No evidence was obtained for any selective effect on the metabolism of glucose via the pentose cycle of tolbutamide, glibenclamide, dibutyryl 3':5'-cyclic AMP, glucagon, caffeine, theophylline, ouabain, adrenaline, colchicine, mannoheptulose or iodoacetamide. Phenazine methosulphate (5mum) increased pentose-cycle flux but inhibited glucose-stimulated insulin release. 4. No formation of (14)CO(2) from [U-(14)C]ribose could be detected: [U-(14)C]xylitol gave rise to small amounts of (14)CO(2). Ribose and xylitol had no effect on the rate of oxidation of glucose; ribitol and xylitol had no effect on the rate of glucose utilization. Ribose, ribitol and xylitol did not stimulate insulin release under conditions in which glucose produced a large stimulation. 5. It is concluded that in normal mouse islets glucose metabolism via the pentose cycle does not play a primary role in insulin-secretory responses.  相似文献   

10.
11.
The CO2-ratios method is applied to the analysis of abnormalities of TCA (tricarboxylic acid)-cycle metabolism in AS-30D rat ascites-hepatoma cells. This method utilizes steady-state 14CO2-production rates from pairs of tracers of the same compound to evaluate TCA-cycle flux patterns. Equations are presented that quantitatively convert CO2 ratios into estimates of probability of flux through TCA-cycle-related pathways. Results of this study indicated that the ratio of 14CO2 produced from [1,4-14C]succinate to 14CO2 produced from [2,3-14C]succinate was increased by the addition of glutamine (5 mM) to the medium. An increase in the succinate CO2 ratio is quantitatively related to an increased flux of unlabelled carbon into the TCA-cycle-intermediate pools. Analysis of 14C distribution in [14C]citrate derived from [2,3-14C]succinate indicated that flux from the TCA cycle to the acetyl-CoA-derived carbons of citrate was insignificant. Thus the increased succinate CO2 ratio observed in the presence of glutamine could only result from an increased flux of carbon into the span of the TCA cycle from citrate to oxaloacetate. This result is consistent with increased flux of glutamine to alpha-oxoglutarate in the incubation medium containing exogenous glutamine. Comparison of the pyruvate CO2 ratio, steady-state 14CO2 production from [2-14C]pyruvate versus [3-14C]pyruvate, with the succinate 14CO2 ratio detected flux of pyruvate to C4 TCA-cycle intermediates in the medium containing glutamine. This result was consistent with the observation that [14C]aspartate derived from [2-14C]pyruvate was labelled in C-2 and C-3. 14C analysis also produced evidence for flux of TCA-cycle carbon to alanine. This study demonstrates that the CO2-ratios method is applicable in the analysis of the metabolic properties of AS-30D cells. This methodology has verified that the atypical TCA-cycle metabolism previously described for AS-30D-cell mitochondria occurs in intact AS-30D rat hepatoma cells.  相似文献   

12.
Viable tissue slices from rat liver and Morris hepatoma 3924A were compared as to their ability to incorporate carbons from [U-14 C]pyruvate into newly synthesized cholesterol versus CO2. By 4 h, the tumor slice incubation had incorporated over 6-fold more pyruvate carbons into the sterol than into CO2, relative to the normal liver slice incubation, per g tissue protein. However, the presence of the mitochondrial citrate exchange carrier inhibitor 1,2,3-benzenetricarboxylate in the incubation inhibited the formation of [14C]cholesterol, while simultaneously leading to an increase in the rate of 14CO2 production in the tumor. In the normal liver system by contrast, benzenetricarboxylate also inhibited [14C]cholesterol formation, but had hardly any effect on the already high rate of 14CO2 production. The ability of benzenetricarboxylate to inhibit the rapid carbon flux from pyruvate to cholesterol, and to steer the metabolic flow of carbons toward oxidative decarboxylation via the Krebs cycle in whole, viable tumor tissue, indirectly emphasizes the importance of the mitochondrial citrate exchange carrier in supporting the decontrol of cholesterogenesis de novo in tumors by accelerating the supply of lipogenic precursor carbons to the tumor cytosol. These studies may be therefore interpreted as extensions, to the level of whole-cell metabolism, of the concept of a persistent 'truncated' Krebs cycle in the mitochondria of metastatic cancer tissue. This concept states, in part, that a rapid efflux of mitochondrially generated citrate would operate preferentially in tumors, and thus provide carbons continuously to the cytoplasmic compartment where the well-established deregulated pathway of cholesterogenesis occurs (Parlo, R.A. and Coleman, P.S. (1984) J. Biol. Chem. 259, 9997-10003; Coleman, P.S. and Lavietes, B.B. (1981) CRC Crit. Rev. Biochem. 11, 341-393).  相似文献   

13.
13C NMR of isotopically enriched metabolites has been used to study the metabolism of Microbacterium ammoniaphilum, a bacterium which excretes large quantities of L-glutamic acid into the medium. Biosynthesis from 90% [1-13C]glucose results in relatively high specificity of the label, with [2,4-13C2]glutamate as the major product. The predominant biosynthetic pathway for synthesis of glutamate from glucose was determined to be the Embden Meyerhof glycolytic pathway followed by P-enolpyruvate carboxylase and the first third of the Krebs cycle. Different metabolic pathways are associated with different correlations in the enrichment of the carbons, reflected in the spectrum as different 13C-13C scalar multiplet intensities. Hence, intensity and 13C-13C multiplet analysis allows quantitation of the pathways involved. Although blockage of the Krebs cycle at the alpha-ketoglutarate dehydrogenase step is the basis for the accumulation of glutamate, significant Krebs cycle activity was found in glucose grown cells, and extensive Krebs cycle activity in cells metabolizing [1-13C]acetate. In addition to the observation of the expected metabolites, the disaccharide alpha, alpha-trehalose and alpha, beta-glucosylamine were identified from the 13C NMR spectra.  相似文献   

14.
Succinic acid methyl esters are potent insulin secretagogues in rat pancreatic islets, but they do not stimulate insulin release in mouse islets. Unlike rat and human islets, mouse islets lack malic enzyme and, therefore, are unable to form pyruvate from succinate-derived malate for net synthesis of acetyl-CoA. Dimethyl-[2,3-(14)C]succinate is metabolized in the citric acid cycle in mouse islets to the same extent as in rat islets, indicating that endogenous acetyl-CoA condenses with oxaloacetate derived from succinate. However, without malic enzyme, the net synthesis from succinate of the citric acid cycle intermediates citrate, isocitrate, and alpha-ketoglutarate cannot occur. Glucose and other nutrients that augment alpha-ketoglutarate formation are secretagogues in mouse islets with potencies similar to those in rat islets. All cycle intermediates can be net-synthesized from alpha-ketoglutarate. Rotenone, an inhibitor of site I of the electron transport chain, inhibits methyl succinate-induced insulin release in rat islets even though succinate oxidation forms ATP at sites II and III of the respiratory chain. Thus generating ATP, NADH, and anaplerosis of succinyl-CoA plus the four-carbon dicarboxylic acids of the cycle and its metabolism in the citric acid cycle is insufficient for a fuel to be insulinotropic; it must additionally promote anaplerosis of alpha-ketoglutarate or two intermediates interconvertible with alpha-ketoglutarate, citrate, and isocitrate.  相似文献   

15.
1. The effects of fasting on the neutral lipid synthesis to insulin and/or epinephrine in isolated fat cells have been examined using [1-14C]glucose. 2. The ability of adipocytes from starved rats to synthesize fatty acids from both labeled substrates was markedly diminished compared to adipocytes from control rats. 3. The response of lipogenic stimulation to insulin at all concentrations tested was greatly diminished in adipocytes from 24 hr starved rats. 4. [1-14C]glucose utilization rates in the absence or in the presence of insulin were not significantly different in adipocytes from 24 hr starved rats as compared with control adipocytes, although basal and insulin stimulated glyceride-glycerol synthesis were significantly higher in starved adipocytes. 5. Epinephrine acutely inhibited [1-14C]acetate incorporation into fatty acids for insulin-stimulated lipogenesis in control adipocytes, in contrast, this lipolytic agent strongly increased [1-14C]glucose conversion to triacylglycerols. 6. In both cases, the differences in lipid synthesis capacities found in both nutritional states were abolished by epinephrine.  相似文献   

16.
Isolated rat adrenal cells were used to study the possible pathways of intramitochondrial NADPH generation for 11β-hydroxylation of 11-deoxycorticosterone. Pyruvate was efficiently utilized by the mitochondria as shown by evolution of 14CO2 from [1-14C]- and [2-14C]pyruvate. Citrate, isocitrate, succinate, and malate were not utilized by intact cells due to their inability to permeate the plasma membrane. For every mole of corticosterone formed, 1.9 and 0.8 moles of 14CO2 were formed from [1-14C]- and [2-14C]pyruvate, respectively, indicating that pyruvate dehydrogenase was quite active and supplied acetyl C?oA to the Krebs cycle. Fluorocitrate and 2,4-dinitrophenol inhibited 11β-hydroxylation of 11-deoxycorticosterone as well as the production of 14CO2 from [2-14C]pyruvate. Comparison of data with the two inhibitors showed that for the same percentage of inhibition of 14CO2 production, the inhibition of 11β-hydroxylation was greater with 2,4-dinitrophenol than with fluorocitrate. It is concluded that operation of the Krebs cycle may be essential for 11β-hydroxylation to occur primarily because NADH generated by the cycle provides ATP, via the respiratory chain, as well as the substrate for the energy-linked transhydrogenase that forms NADPH. The NADPH required for 11β-hydroxylation seems to be derived to a large extent via the energy-linked transhydrogenase.  相似文献   

17.
Drosophila melanogaster has become a prominent and convenient model for analysis of insulin action. However, to date very little is known regarding the effect of insulin on glucose uptake and metabolism in Drosophila. Here we show that, in contrast to effects seen in mammals, insulin did not alter [(3)H]2-deoxyglucose uptake and in fact decreased glycogen synthesis ( approximately 30%) in embryonic Drosophila Kc cells. Insulin significantly increased ( approximately 1.5-fold) the production of (14)CO(2) from D-[1-(14)C]glucose while the production of (14)CO(2) from D-[6-(14)C]glucose was not altered. Thus, insulin-stimulated glucose oxidation did not occur via increasing Krebs cycle activity but rather by stimulating the pentose phosphate pathway. Indeed, inhibition of the oxidative pentose phosphate pathway by 6-aminonicotinamide abolished the effect of insulin on (14)CO(2) from D-[U-(14)C]glucose. A corresponding increase in lactate production but no change in incorporation of D-[U-(14)C]glucose into total lipids was observed in response to insulin. Glucose metabolism via the pentose phosphate pathway may provide an important source of 5'-phosphate for DNA synthesis and cell replication. This novel observation correlates well with the fact that control of growth and development is the major role of insulin-like peptides in Drosophila. Thus, although intracellular signaling is well conserved, the metabolic effects of insulin are dramatically different between Drosophila and mammals.  相似文献   

18.
Flux through the glucose/glucose 6-phosphate cycle in cultured hepatocytes was measured with radiochemical techniques. Utilization of [2-3H]glucose was taken as a measure of glucokinase flux. Liberation of [14C]glucose from [U-14C]glycogen and from [U-14C]lactate, as well as the difference between the utilization of [2-3H]glucose and of [U-14C]glucose, were taken as measures of glucose-6-phosphatase flux. At constant 5 mM-glucose and 2 mM-lactate concentrations insulin increased glucokinase flux by 35%; it decreased glucose-6-phosphatase flux from glycogen by 50%, from lactate by 15% and reverse flux from external glucose by 65%, i.e. overall by 40%. Glucagon had essentially no effect on glucokinase flux; it enhanced glucose-6-phosphatase flux from glycogen by 700%, from lactate by 45% and reverse flux from external glucose by 20%, i.e. overall by 110%. At constant glucose concentrations cellular glucose 6-phosphate concentrations were essentially not altered by insulin, but were increased by glucagon by 230%. In conclusion, under basic conditions without added hormones the glucose/glucose 6-phosphate cycle showed only a minor net glucose uptake, of 0.03 mumol/min per g of hepatocytes; this flux was increased by insulin to a net glucose uptake of 0.21 mumol/min per g and reversed by glucagon to a net glucose release of 0.22 mumol/min per g. Since the glucose 6-phosphate concentrations after hormone treatment did not correlate with the glucose-6-phosphatase flux, it is suggested that the hormones influenced the enzyme activity directly.  相似文献   

19.
The acute effect of palmitate on glucose metabolism in rat skeletal muscle was examined. Soleus muscles from Wistar male rats were incubated in Krebs-Ringer bicarbonate buffer, for 1 h, in the absence or presence of 10 mU/ml insulin and 0, 50 or 100 microM palmitate. Palmitate increased the insulin-stimulated [(14)C]glycogen synthesis, decreased lactate production, and did not alter D-[U-(14)C]glucose decarboxylation and 2-deoxy-D-[2,6-(3)H]glucose uptake. This fatty acid decreased the conversion of pyruvate to lactate and [1-(14)C]pyruvate decarboxylation and increased (14)CO(2) produced from [2-(14)C]pyruvate. Palmitate reduced insulin-stimulated phosphorylation of insulin receptor substrate-1/2, Akt, and p44/42 mitogen-activated protein kinases. Bromopalmitate, a non-metabolizable analogue of palmitate, reduced [(14)C]glycogen synthesis. A strong correlation was found between [U-(14)C]palmitate decarboxylation and [(14)C]glycogen synthesis (r=0.99). Also, palmitate increased intracellular content of glucose 6-phosphate in the presence of insulin. These results led us to postulate that palmitate acutely potentiates insulin-stimulated glycogen synthesis by a mechanism that requires its metabolization (Randle cycle). The inhibitory effect of palmitate on insulin-stimulated protein phosphorylation might play an important role for the development of insulin resistance in conditions of chronic exposure to high levels of fatty acids.  相似文献   

20.
The activity of acetyl-CoA carboxylase, measured in various ways, was studied in 15000g extracts of rat liver hepatocytes and compared with the rate of fatty acid synthesis in intact hepatocytes incubated with insulin or glucagon. Hepatocyte extracts were prepared by disruption of cells with a Dounce homogenizer or by solubilization with 1.5% (v/v) Triton X-100. Sucrose-density-gradient centrifugation demonstrated that the sedimentation coefficient of acetyl-CoA carboxylase from cell extracts was 30-35S, regardless of the conditions of incubation or disruption of hepatocytes. Solubilization of cells with 1.5% Triton X-100 yielded twice as much enzyme activity (measured by [14C]bicarbonate fixation) in the sucrose-gradient fractions as did cell disruption by the Dounce homogenizer. Analysis by high-performance liquid chromatography of acetyl-CoA carboxylase reaction mixtures showed that [14C]malonyl-CoA accounted for 10-60% of the total acid-stable radioactivity, depending on the method for disrupting hepatocytes and on the preincubation of the 15000g extract, with or without citrate, before assay. Under conditions in which incubation of cells with insulin or glucagon caused an activation or inhibition, respectively, of acetyl-CoA carboxylase, only 25% of the acid-stable radioactivity was [14C]malonyl-CoA and enzyme activity was only 13% (control), 16% (insulin), and 57% (glucagon) of the rate of fatty acid synthesis. Under conditions when up to 60% of the acid-stable radioactivity was [14C]malonyl-CoA and acetyl-CoA carboxylase activity was comparable with the rate of fatty acid synthesis, there was no effect of insulin or glucagon on enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号