首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jeon B  Zhang Q 《Journal of bacteriology》2007,189(20):7399-7407
Campylobacter jejuni is an important bacterial pathogen causing gastroenteritis in humans. C. jejuni is capable of natural transformation, which is considered a major mechanism mediating horizontal gene transfer and generating genetic diversity. Despite recent efforts to elucidate the transformation mechanisms of C. jejuni, the process of DNA binding and uptake in this organism is still not well understood. In this study, we report a previously unrecognized DNA-binding protein (Cj0011c) in C. jejuni that contributes to natural transformation. Cj0011c is a small protein (79 amino acids) with a partial sequence homology to the C-terminal region of ComEA in Bacillus subtilis. Cj0011c bound to both single- and double-stranded DNA. The DNA-binding activity of Cj0011c was demonstrated with a variety of DNAs prepared from C. jejuni or Escherichia coli, suggesting that the DNA binding of Cj0011c is not sequence dependent. Deletion of the cj0011c gene from C. jejuni resulted in 10- to 50-fold reductions in the natural transformation frequency. Different from the B. subtilis ComEA, which is an integral membrane protein, Cj0011c is localized in the periplasmic space of C. jejuni. These results indicate that Cj0011c functions as a periplasmic DNA receptor contributing to the natural transformation of C. jejuni.  相似文献   

2.
A putative iron- and Fur-regulated hemin uptake gene cluster, composed of the transport genes chuABCD and a putative heme oxygenase gene (Cj1613c), has been identified in Campylobacter jejuni NCTC 11168. Mutation of chuA or Cj1613c leads to an inability to grow in the presence of hemin or hemoglobin as a sole source of iron. Mutation of chuB, -C, or -D only partially attenuates growth where hemin is the sole iron source, suggesting that an additional inner membrane (IM) ABC (ATP-binding cassette) transport system(s) for heme is present in C. jejuni. Genotyping experiments revealed that Cj1613c is highly conserved in 32 clinical isolates. One strain did not possess chuC, though it was still capable of using hemin/hemoglobin as a sole iron source, supporting the hypothesis that additional IM transport genes are present. In two other strains, sequence variations within the gene cluster were apparent and may account for an observed negative heme utilization phenotype. Analysis of promoter activity within the Cj1613c-chuA intergenic spacer region revealed chuABCD and Cj1613c are expressed from separate iron-repressed promoters and that this region also specifically binds purified recombinant Fur(Cj) in gel retardation studies. Absorbance spectroscopy of purified recombinant His(6)-Cj1613c revealed a 1:1 heme:His(6)-Cj1613c binding ratio. The complex was oxidatively degraded in the presence of ascorbic acid as the electron donor, indicating that the Cj1613c gene product functions as a heme oxygenase. In conclusion, we confirm the involvement of Cj1613c and ChuABCD in heme/hemoglobin utilization in C. jejuni.  相似文献   

3.
Campylobacter jejuni, a microaerophilic bacterium, is the most frequent cause of human bacterial gastroenteritis. C. jejuni is exposed to harmful reactive oxygen species (ROS) produced during its own normal metabolic processes and during infection from the host immune system and from host intestinal microbiota. These ROS will damage DNA and proteins and cause peroxidation of lipids. Consequently, identifying ROS defense mechanisms is important for understanding how Campylobacter survives this environmental stress during infection. Construction of a ΔCj1386 isogenic deletion mutant and phenotypic assays led to its discovery as a novel oxidative stress defense gene. The ΔCj1386 mutant has an increased sensitivity toward hydrogen peroxide. The Cj1386 gene is located directly downstream from katA (catalase) in the C. jejuni genome. A ΔkatAΔ Cj1386 double deletion mutant was constructed and exhibited a sensitivity to hydrogen peroxide similar to that seen in the ΔCj1386 and ΔkatA single deletion mutants. This observation suggests that Cj1386 may be involved in the same detoxification pathway as catalase. Despite identical KatA abundances, catalase activity assays showed that the ΔCj1386 mutant had a reduced catalase activity relative to that of wild-type C. jejuni. Heme quantification of KatA protein from the ΔCj1386 mutant revealed a significant decrease in heme concentration. This indicates an important role for Cj1386 in heme trafficking to KatA within C. jejuni. Interestingly, the ΔCj1386 mutant had a reduced ability to colonize the ceca of chicks and was outcompeted by the wild-type strain for colonization of the gastrointestinal tract of neonate piglets. These results indicate an important role for Cj1386 in Campylobacter colonization and pathogenesis.  相似文献   

4.
Flagellins from Campylobacter jejuni 81-176 and Campylobacter coli VC167 are heavily glycosylated. The major modifications on both flagellins are pseudaminic acid (Pse5Ac7Ac), a nine carbon sugar that is similar to sialic acid, and an acetamidino-substituted analogue of pseudaminic acid (PseAm). Previous data have indicated that PseAm is synthesized via Pse5Ac7Ac in C. jejuni 81-176, but that the two sugars are synthesized using independent pathways in C. coli VC167. The Cj1293 gene of C. jejuni encodes a putative UDP-GlcNAc C6-dehydratase/C4-reductase that is similar to a protein required for glycosylation of Caulobacter crescentus flagellin. The Cj1293 gene is expressed either under the control of a sigma 54 promoter that overlaps the coding region of Cj1292 or as a polycistronic message under the control of a sigma 70 promoter upstream of Cj1292. A mutant in gene Cj1293 in C. jejuni 81-176 was non-motile and non-flagellated and accumulated unglycosylated flagellin intracellularly. This mutant was complemented in trans with the homologous C. jejuni gene, as well as the Helicobacter pylori homologue, HP0840, which has been shown to encode a protein with UDP-GlcNAc C6-dehydratase/C4-reductase activity. Mutation of Cj1293 in C. coli VC167 resulted in a fully motile strain that synthesized a flagella filament composed of flagellin in which Pse5Ac7Ac was replaced by PseAm. The filament from the C. coli Cj1293 mutant displayed increased solubility in SDS compared with the wild-type filament. A double mutant in C. coli VC167, defective in both Cj1293 and ptmD, encoding part of the independent PseAm pathway, was also non-motile and non-flagellated and accumulated unglycosylated flagellin intracellularly. Collectively, the data indicate that Cj1293 is essential for Pse5Ac7Ac biosynthesis from UDP-GlcNAc, and that glycosylation is required for flagella biogenesis in campylobacters.  相似文献   

5.
The PEB4 protein is an antigenic virulence factor implicated in host cell adhesion, invasion, and colonization in the food-borne pathogen Campylobacter jejuni. peb4 mutants have defects in outer membrane protein assembly and PEB4 is thought to act as a periplasmic chaperone. The crystallographic structure of PEB4 at 2.2-? resolution reveals a dimer with distinct SurA-like chaperone and peptidyl-prolyl cis/trans isomerase (PPIase) domains encasing a large central cavity. Unlike SurA, the chaperone domain is formed by interlocking helices from each monomer, creating a domain-swapped architecture. PEB4 stimulated the rate of proline isomerization limited refolding of denatured RNase T(1) in a juglone-sensitive manner, consistent with parvulin-like PPIase domains. Refolding and aggregation of denatured rhodanese was significantly retarded in the presence of PEB4 or of an engineered variant specifically lacking the PPIase domain, suggesting the chaperone domain possesses a holdase activity. Using bioinformatics approaches, we identified two other SurA-like proteins (Cj1289 and Cj0694) in C. jejuni. The 2.3-? structure of Cj1289 does not have the domain-swapped architecture of PEB4 and thus more resembles SurA. Purified Cj1289 also enhanced RNase T(1) refolding, although poorly compared with PEB4, but did not retard the refolding of denatured rhodanese. Structurally, Cj1289 is the most similar protein to SurA in C. jejuni, whereas PEB4 has most structural similarity to the Par27 protein of Bordetella pertussis. Our analysis predicts that Cj0694 is equivalent to the membrane-anchored chaperone PpiD. These results provide the first structural insights into the periplasmic assembly of outer membrane proteins in C. jejuni.  相似文献   

6.
Campylobacter jejuni produces multiple glycoproteins whose glycans contain 4-amino 6-deoxy sugars or their derivatives, such as diacetamidobacillosamine or pseudaminic acid. Because the proteoglycans contribute to bacterial virulence and their constitutive sugars are not commonly found in humans, inhibitors developed against the enzymes that are responsible for their biosynthesis could be novel therapeutic targets to fight this important food-borne pathogen. The biosynthesis of diacetamidobacillosamine is anticipated to involve a sugar nucleotide C6 dehydratase, a C4 aminotransferase and an acetyltransferase. We have identified a set of genes (cj1293, cj1294, and cj1298) potentially encoding one of each enzymatic activity, and demonstrated earlier that Cj1293 was a UDP-GlcNAc-specific C6 dehydratase. Others have shown that Cj1293 was involved in protein glycosylation. Here, we report on our investigation of the potential activity of Cj1294 as a sugar nucleotide C4 aminotransferase. Our biochemical characterization of overexpressed and purified protein shows that Cj1294 is a pyridoxal phosphate-dependent aminotransferase specific for UDP-4-keto-6-deoxy-GlcNAc that uses preferentially glutamic acid as an amino donor. A detailed physicokinetic study of Cj1294 was performed to determine the K(m) of 1.28 +/- 0.2 mm and k(cat) of 11.5 +/- 1.3 min(-1). Also, two residues essential for protein stability and activity, Arg(228) and Lys(181), respectively, were identified by site-directed mutagenesis. Finally, we demonstrated by NMR analysis of purified reaction product that Cj1294 produces UDP-4-amino-4,6-dideoxy-GalNAc. These results indicate that Cj1294 is involved in the biosynthesis of diacetamidofucosamine, a C4 epimer of diacetamidobacillosamine not yet described in C. jejuni proteoglycans, suggesting that the composition of C. jejuni proteoglycans is more variable than anticipated.  相似文献   

7.
8.
9.
The food-borne pathogen Campylobacter jejuni possesses no known tungstoenzymes, yet encodes two ABC transporters (Cj0300–0303 and Cj1538–1540) homologous to bacterial molybdate (ModABC) uptake systems and the tungstate transporter (TupABC) of Eubacterium acidaminophilum respectively. The actual substrates and physiological role of these transporters were investigated. Tryptophan fluorescence spectroscopy and isothermal titration calorimetry of the purified periplasmic binding proteins of each system revealed that while Cj0303 is unable to discriminate between molybdate and tungstate ( K D values for both ligands of 4–8 nM), Cj1540 binds tungstate with a K D of 1.0 ± 0.2 pM; 50 000-fold more tightly than molybdate. Induction-coupled plasma mass spectroscopy of single and double mutants showed that this large difference in affinity is reflected in a lower cellular tungsten content in a cj1540 ( tupA ) mutant compared with a cj0303c ( modA ) mutant. Surprisingly, formate dehydrogenase (FDH) activity was decreased ∼50% in the tupA strain, and supplementation of the growth medium with tungstate significantly increased FDH activity in the wild type, while inhibiting known molybdoenzymes. Our data suggest that C. jejuni possesses a specific, ultra-high affinity tungstate transporter that supplies tungsten for incorporation into FDH. Furthermore, possession of two MoeA paralogues may explain the formation of both molybdopterin and tungstopterin in this bacterium.  相似文献   

10.
The food-borne pathogen Campylobacter jejuni is dependent on a functional flagellum for motility and the export of virulence proteins that promote maximal host cell invasion. Both the flagellar and non-flagellar proteins exported via the flagellar type III secretion system contain a sequence within the amino-terminus that directs their export from the bacterial cell. Accordingly, we developed a genetic screen to identify C. jejuni genes that encode a type III secretion amino-terminal sequence that utilizes the flagellar type III secretion system of Yersinia enterocolitica and a phospholipase reporter ( yplA ). We screened a library of 321 C. jejuni genes and identified proteins with putative type III secretion amino-terminal sequences. One gene identified by the screen was Cj1242. We generated a mutation in Cj1242 , and performed growth rate, motility, secretion and INT 407 cell adherence and internalization assays. The C. jejuni Cj1242 mutant was not altered in growth rate or motility when compared with the wild-type strain, but displayed an altered secretion profile and a reduction in host cell internalization. Based on the phenotype of the C. jejuni Cj1242 mutant, we designated the protein Campylobacter invasion antigen C (CiaC). Collectively, our findings indicate that CiaC is a potentially important virulence factor.  相似文献   

11.
12.
13.
14.
Campylobacter jejuni is the leading cause of food- and water-borne illness world-wide. The membrane-associated proteome of a recent C. jejuni gastrointestinal isolate (JHH1) was generated by sodium carbonate precipitation and ultracentrifugation followed by 2-DE and MALDI-TOF MS as well as 2-DLC (strong cation exchange followed by RP chromatography) of trypsin digests coupled to MS/MS (2-DLC/MS/MS). 2-DE/MS identified 77 proteins, 44 of which were predicted membrane proteins, while 2-DLC/MS/MS identified 432 proteins, of which 206 were predicted to be membrane associated. A total of 453 unique proteins (27.4% of the C. jejuni theoretical proteome), including 187 bona fide membrane proteins were identified in this study. Membrane proteins were also compared between C. jejuni JHH1 and ATCC 700297 to identify factors potentially associated with increased gastrointestinal virulence. We identified 28 proteins that were significantly (>two-fold) more abundant in, or unique to, JHH1, including eight proteins involved in chemotaxis signal transduction and flagellar motility, the amino acid-binding surface antigens CjaA and CjaC, and four outer membrane proteins (OMPs) of unknown function (Cj0129c, Cj1031, Cj1279c, and Cj1721c). Immunoblotting using convalescent patient sera generated post-gastrointestinal infection revealed 13 (JHH1) and 12 (ATCC 700297) immunoreactive proteins. These included flagellin (FlaA) and CadF as well as Omp18, Omp50, Cj1721c, PEB1A, PEB2, and PEB4A. This study provides a comprehensive analysis of membrane-associated proteins from C. jejuni.  相似文献   

15.
Helicobacter pylori and Campylobacter jejuni have been shown to modify their flagellins with pseudaminic acid (Pse), via O-linkage, while C. jejuni also possesses a general protein glycosylation pathway (Pgl) responsible for the N-linked modification of at least 30 proteins with a heptasaccharide containing 2,4-diacetamido-2,4,6-trideoxy-alpha-D-glucopyranose, a derivative of bacillosamine. To further define the Pse and bacillosamine biosynthetic pathways, we have undertaken functional characterization of UDP-alpha-D-GlcNAc modifying dehydratase/aminotransferase pairs, in particular the H. pylori and C. jejuni flagellar pairs HP0840/HP0366 and Cj1293/Cj1294, as well as the C. jejuni Pgl pair Cj1120c/Cj1121c using His(6)-tagged purified derivatives. The metabolites produced by these enzymes were identified using NMR spectroscopy at 500 and/or 600 MHz with a cryogenically cooled probe for optimal sensitivity. The metabolites of Cj1293 (PseB) and HP0840 (FlaA1) were found to be labile and could only be characterized by NMR analysis directly in aqueous reaction buffer. The Cj1293 and HP0840 enzymes exhibited C6 dehydratase as well as a newly identified C5 epimerase activity that resulted in the production of both UDP-2-acetamido-2,6-dideoxy-beta-L-arabino-4-hexulose and UDP-2-acetamido-2,6-dideoxy-alpha-D-xylo-4-hexulose. In contrast, the Pgl dehydratase Cj1120c (PglF) was found to possess only C6 dehydratase activity generating UDP-2-acetamido-2,6-dideoxy-alpha-D-xylo-4-hexulose. Substrate-specificity studies demonstrated that the flagellar aminotransferases HP0366 and Cj1294 utilize only UDP-2-acetamido-2,6-dideoxy-beta-L-arabino-4-hexulose as substrate producing UDP-4-amino-4,6-dideoxy-beta-L-AltNAc, a precursor in the Pse biosynthetic pathway. In contrast, the Pgl aminotransferase Cj1121c (PglE) utilizes only UDP-2-acetamido-2,6-dideoxy-alpha-D-xylo-4-hexulose producing UDP-4-amino-4,6-dideoxy-alpha-D-GlcNAc (UDP-2-acetamido-4-amino-2,4,6-trideoxy-alpha-D-glucopyranose), a precursor used in the production of the Pgl glycan component 2,4-diacetamido-2,4,6-trideoxy-alpha-D-glucopyranose.  相似文献   

16.
Among strains of Campylobacter jejuni, levels of ferrous iron (Fe2+) uptake was comparable. However, C. jejuni showed a lower level of ferrous iron uptake than Escherichia coli. Consistent with studies of E. coli, Fe2+ uptake in C. jejuni was significantly enhanced by low Mg2+ concentration. The C. jejuni genome sequence contains a single known ferrous iron uptake gene, feoB, whose product shares 50% amino acid identity to Helicobacter pylori FeoB and 29% identity to E. coli FeoB. However, Fe2+ uptake could not be attributed to FeoB for several reasons. Site-directed mutations in feoB caused no defect in 55Fe2+ uptake. Among C. jejuni strains, various nucleotide alterations were found in feoB, indicating that some C. jejuni feoB genes are defective. In addition, uptake could not be attributed to the magnesium transporter CorA, since no reduction in 55Fe2+ uptake was observed in the presence of a CorA-specific inhibitor.  相似文献   

17.
Amino acids are key carbon and energy sources for the asaccharolytic food-borne human pathogen Campylobacter jejuni . During microaerobic growth in amino acid rich complex media, aspartate, glutamate, proline and serine are the only amino acids significantly utilized by strain NCTC 11168. The catabolism of aspartate and glutamate was investigated. An aspartase ( aspA ) mutant (unable to utilize any amino acid except serine) and a Cj0762 c ( aspB ) mutant lacking aspartate:glutamate aminotransferase (unable to utilize glutamate), were severely growth impaired in complex media, and an aspA sdaA mutant (also lacking serine dehydratase) failed to grow in complex media unless supplemented with pyruvate and fumarate. Aspartase was shown by activity and proteomic analyses to be upregulated by oxygen limitation, and aspartate enhanced oxygen-limited growth of C. jejuni in an aspA -dependent manner. Stoichiometric aspartate uptake and succinate excretion involving the redundant DcuA and DcuB transporters indicated that in addition to a catabolic role, AspA can provide fumarate for respiration. Significantly, an aspA mutant of C. jejuni 81-176 was impaired in its ability to persist in the intestines of outbred chickens relative to the parent strain. Together, our data highlight the dual function of aspartase in C. jejuni and suggest a role during growth in the avian gut.  相似文献   

18.
An oxidative stress-sensitive protein was found in the microaerophile Campylobacter jejuni. A novel 27-kDa protein was found to decrease concomitantly with a decrease in viability from either exogenous H(2)O(2) stress or endogenous oxidative stresses in aerobic conditions. Sequence analyses revealed that the 27-kDa protein was identical to Cj0012c in C. jejuni NCTC11168 and its deduced 215 amino acid sequence has similarity to two non-heme iron proteins found in other bacteria, rubredoxin oxidoreductase (Rbo) and rubrerythrin (Rbr). Thus, we designated the protein as Rrc (Rbo/Rbr-like protein of C. jejuni). In H(2)O(2)-treated cells, Western blot analysis showed some bands smaller than Rrc, and RT-PCR showed similar expression of Rrc mRNA to the control without treatment, suggesting that the sensitive response of Rrc to oxidative stress is due to degradation of the protein.  相似文献   

19.
20.
Oligosaccharyltransferases (OTases) are responsible for the transfer of carbohydrates from lipid carriers to acceptor proteins and are present in all domains of life. In bacteria, the most studied member of this family is PglB from Campylobacter jejuni (PglB(Cj)). This enzyme is functional in Escherichia coli and, contrary to its eukaryotic counterparts, has the ability to transfer a variety of oligo- and polysaccharides to protein carriers in vivo. Phylogenetic analysis revealed that in the delta proteobacteria Desulfovibrio sp., the PglB homolog is more closely related to eukaryotic and archaeal OTases than to its Campylobacter counterparts. Genetic analysis revealed the presence of a putative operon that might encode all enzymes required for N-glycosylation in Desulfovibrio desulfuricans. D. desulfuricans PglB (PglB(Dd)) was cloned and successfully expressed in E. coli, and its activity was confirmed by transferring the C. jejuni heptasaccharide onto the model protein acceptor AcrA. In contrast to PglB(Cj), which adds two glycan chains to AcrA, a single oligosaccharide was attached to the protein by PglB(Dd). Site-directed mutagenesis of the five putative N-X-S/T glycosylation sites in AcrA and mass spectrometry analysis showed that PglB(Dd) does not recognize the "conventional bacterial glycosylation sequon" consisting of the sequence D/E-X(1)-N-X(2)-S/T (where X(1) and X(2) are any amino acid except proline), and instead used a different site for the attachment of the oligosaccharide than PglB(Cj.). Furthermore, PglB(Dd) exhibited relaxed glycan specificity, being able to transfer mono- and polysaccharides to AcrA. Our analysis constitutes the first characterization of an OTase from delta-proteobacteria involved in N-linked protein glycosylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号