首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mycelium of Agaricus bisporus strain Horst U1 was grown in batch cultures on different concentrations of ammonium, glutamate, and glucose to test the effect of these substrates on the activities of NADP-dependent glutamate dehydrogenase (NADP-GDH, EC 1.4.1.4), NAD-dependent glutamate dehydrogenase (NAD-GDH, EC 1.4.1.2.), and glutamine synthetase (GS, EC 6.3.1.2.). When grown on ammonium, the activities of NADP-GDH and GS were repressed. NAD-GDH activity was about 10 times higher than the activities of NADP-GDH and GS. At concentrations below 8 mM ammonium, NADP-GDH and GS were slightly derepressed. When glutamate was used as the nitrogen source, activities of NADP-GDH and GS were derepressed; compared with growth on ammonium, the activities of these two enzymes were about 10 times higher. Activities of GDHs showed no variation at different glutamate concentrations. Activity of GS was slightly derepressed at low glutamate concentrations. Growth of A. bisporus on both ammonium and glutamate as nitrogen sources resulted in enzyme activities comparable to growth on ammonium alone. Activities of NADP-GDH, NAD-GDH, and GS were not influenced by the concentration of glucose in the medium. In mycelium starved for nitrogen, the activities of NADP-GDH, NAD-GDH, and GS were derepressed, while in carbon-starved mycelium the activity of GS and both GDHs was repressed.  相似文献   

2.
3.
Ammonium assimilation enzymes from several strains of ectendo- and ectomycorrhizal fungi were assayed after three weeks culture on a buffered synthetic medium containing ammonium as sole nitrogen source. Activity of NADP-dependent glutamate dehydrogenase (GDH, EC 1.4.1.4) of ectomycorrhizal strains was very low despite excellent mycelial growth. Only ectendomycorrhizal fungus MrgX isolated from roots of Pinus sylvestris showed high GDH activity. Similar results were obtained when the enzyme extracts were subjected to starch gel electrophoresis. Growth of the fungi, except ectendomycorrhizal MrgX, was arrested when inhibitors of glutamine synthetase (GS, EC 6.3.1.2) or glutamate synthase (GOGAT. EC 1.4.7.1) (methionine sulphoximine or albizine, respectively) were included in the culture medium. Glutamine synthetase activity was found in all fungi tested. The results suggest that the GS pathway for ammonium assimilation is potentially operative in ectomycorrhizal fungi and imply only a minor role for GDH in ammonium assimilation by the studied ectomycorrhizal symbionts of pine. Some physiological and ecological implications of these results are discussed.  相似文献   

4.
Specific enzymes of ammonium assimilation were measured in cell-free extracts ofNocardia asteroides grown in a synthetic medium with glutamate as the nitrogen source. Cell-free extracts had active glutamine synthetase (GS) and glutamate synthase (GOGAT) and alanine dehydrogenase (ADH) but glutamate dehydrogenase (GDH) could not be detected in the enzyme preparation. This shows that GS/GOGAT is the major pathway of ammonium assimilation inN. asteroides.  相似文献   

5.
Ammonia assimilation has been investigated in four strains of Saccharomyces cerevisiae by measuring, at intervals throughout the growth cycle, the activities of several enzymes concerned with inorganic ammonia assimilation. Enzyme activities in extracts of cells were compared after growth in complete and defined media. The effect of shift from growth in a complete to growth in a defined medium (and the reverse) was also determined. The absence of aspartase (EC 4.3.1.1, l-aspartate-ammonia lyase) activity, the low specific activities of alanine dehydrogenase, glutamine synthetase [EC 6.3.1.2, l-glutamate-ammonia ligase (ADP)], and the marked increase in activity of the nicotinamide adenine dinucleotide phosphate-linked glutamate dehydrogenase (NADP-GDH) [EC 1.4.1.4, l-glutamate:NADP-oxidoreductase (deaminating)] during the early stages of growth support the conclusion that yeasts assimilate ammonia primarily via glutamate. The NADP-GDH showed a rapid increase in activity just before the initiation of exponential growth, reached a maximum at the mid-exponential stage, and then gradually declined in activity in the stationary phase. The NADP-GDH reached a higher level of activity when the yeasts were grown on the defined medium as compared with complete medium. The nicotinamide adenine dinucleotide-linked glutamate dehydrogenase (NAD-GDH) [EC 1.4.1.2, l-glutamate:NAD-oxidoreductase (deaminating)] showed only slight increases in activity during the exponential phase of growth. There was an inverse relationship in that the NADP-GDH increased in activity as the NAD-GDH decreased. The NAD-GDH activity was higher after growth on the complete medium. The glutamate-oxaloacetate transaminase (EC 2.6.1.1. l-aspartate:2-oxoglutarate aminotransferase) activity rose and fell in parallel with the NADP-GDH, although its specific activity was somewhat lower. Although other ammonia-assimilatory enzymes were demonstrable, it seems unlikely that their combined activities could account for the remainder of the ammonia-assimilatory capacity not accounted for by the NADP-GDH. The ability of aspartate to serve as effectively as glutamate as the sole source of nitrogen for the growth of yeast apparently resides in their ability to utilize aspartate for amino acid biosynthesis via transamination.  相似文献   

6.
Glutamate dehydrogenase (GDH E.C. 1.4.1.2.4), glutamine synthetase (GS E.C. 6.3.1.2) and glutamate synthase (glutamine oxoglutarate amino transferase, GOGAT E.C. 2.6.1.53) activities, protein and organic nitrogen contents and growth of roots and shoots of maize seedlings raised in dark at 25±2°C in half strength Hoagland’s solution containing different ammonium salts as source of nitrogen, were determined to assess the contribution of alternate pathways in ammonium assimilation. Ammonium nitrate or in some cases ammonium chloride appeared to be the best source for both root and shoot growth and for increase in protein, total nitrogen and the enzymes of ammonium assimilation. In roots, NH4-nitrogen appeared to be assimilated by both GDH as well as GS-GOGAT pathways specially in the dark grown seedlings, while in shoots it was primarily by GS-GOGAT pathway.  相似文献   

7.
The unicellular cyanobacterium Synechocystis sp. strain PCC 6803 has two putative pathways for ammonium assimilation: the glutamine synthetase-glutamate synthase cycle, which is the main one and is finely regulated by the nitrogen source; and a high NADP-dependent glutamate dehydrogenase activity (NADP-GDH) whose contribution to glutamate synthesis is uncertain. To investigate the role of the latter, we used two engineered mutants, one lacking and another overproducing NADP-GDH. No major disturbances in the regulation of nitrogen-assimilating enzymes or in amino acids pools were detected in the null mutant, but phycobiline content, a sensitive indicator of the nutritional state of cyanobacterial cells, was significantly reduced, indicating that NADP-GDH plays an auxiliary role in ammonium assimilation. This effect was already prominent in the initial phase of growth, although differences in growth rate between the wild type and the mutants were observed at this stage only at low light intensities. However, the null mutant was unable to sustain growth at the late stage of the culture at the point when the wild type showed the maximum NADP-GDH activity, and died faster in ammonium-containing medium. Overexpression of NADP-GDH improved culture proliferation under moderate ammonium concentrations. Competition experiments between the wild type and the null mutant confirmed that the presence of NADP-GDH confers a selective advantage to Synechocystis sp. strain PCC 6803 in late stages of growth.  相似文献   

8.
Cell-free extracts of nitrate-grown as well as of ammonium-grown cells of the filamentous non-nitrogen-fixing cyanobacterium Phormidium laminosum (strain OH-1-p.Cl1) showed detectable levels of both glutamine synthetase (GS, EC 6.3.1.2) and NADPH-dependent glutamate dehydrogenase (GDH, EC 1.4.1.4) activities. The GS level of nitrate-grown cells was higher than that of ammonium-grown cells, whereas the GDH level was higher in ammonium-grown cells and depended on the external ammonium concentration. When nitrate-grown cells were transferred to an ammonium-containing medium, a decrease of GS and an increase of GDH specific activities occurred, even in the presence of nitrate. Conversely, when ammonia-grown cells were transferred to a nitrate-containing medium, an increase of GS and a decrease of GDH-specific activities took place. Both these effects were inhibited by chloramphenicol and were probably mediated by de novo protein synthesis. When either cell type was transferred to a medium without nitrogen source, the specific activities of both enzymes increased. When nitrate-grown cells were transferred to nitrate medium with L-methionine-DL-sulphoximine (MSX) added, the specific activity of GDH also increased. Here we present some evidence that, under certain conditions of nitrogen availability, GDH would play a minor role in ammonium assimilation.  相似文献   

9.
Abstract Although Bacillus fastidiosus assimilates ammonium formed internally during growth on urate, allantoin or allantoate via NADP-dependent glutamate dehydrogenase (NADP-GDH), growth on exogenous ammonium as nitrogen source has not been observed. Growth on ammonium, urea and ureidoglycolate, intermediates of the urate degradative pathway, was found to occur if the mineral growth medium containing glycerol as a carbon source was supplemented with both allantoin (0.5 mM) and brain heart infusion (BHI, 0.1%, w/v) or yeast extract. Neither allantoin nor BHI supported growth alone or in combination unless ammonium was present. NADP-GDH activity appeared to be regulated only by the extracellular concentration of allantoin or allantoate. Enzyme activity was not influenced by other nitrogen sources or the intracellular ammonium concentration.  相似文献   

10.
The anaerobic fungusPiromyces sp. strain E2 appeared restricted in nitrogen utilization. Growth was only supported by ammonium as source of nitrogen. Glutamine also resulted in growth, but this was due to release of ammonia rather than to uptake and utilization of the amino acid. The fungus was not able to grow on other amino acids, albumin, urea, allantoin, or nitrate. Assimilation of ammonium is very likely to be mediated by NADP-linked glutamate dehydrogenase (NADP-GDH) and glutamine synthetase (GS). One transaminating activity, glutamate-oxaloacetate transaminase (GOT), was demonstrated. Glutamate synthase (GOGAT), NAD-dependent glutamate dehydrogenase (NAD-GDH), and the transaminating activity glutamate-pyruvate transaminase (GPT) were not detected in cell-free extracts ofPiromyces sp. strain E2. Specific enzyme activities of both NADP-GDH and GS increased four-to sixfold under nitrogen-limiting conditions.Abbreviations GDH Glutamate dehydrogenase - GOGAT Glutamate synthase - GOT Glutamate-oxaloacetate transaminase - GPT Glutamate-pyruvate transaminase - GS Glutamine synthetase  相似文献   

11.
Evidence from in vitro and in vivo studies showed that in Rhizobium phaseoli ammonium is assimilated by the glutamine synthetase (GS)-glutamate synthase NADPH pathway. No glutamate dehydrogenase activity was detected. R. phaseoli has two GS enzymes, as do other rhizobia. The two GS activities are regulated on the basis of the requirement for low (GSI) or high (GSII) ammonium assimilation. When the 2-oxoglutarate/glutamine ratio decreases, GSI is adenylylated. When GSI is inactivated, GSII is induced. However, induction of GSII activity varied depending on the rate of change of this ratio. GSII was inactivated after the addition of high ammonium concentrations, when the 2-oxoglutarate/glutamine ratio decreased rapidly. Ammonium inactivation resulted in alteration of the catalytic and physical properties of GSII. GSII inactivation was not relieved by shifting of the cultures to glutamate. After GSII inactivation, ammonium was excreted into the medium. Glutamate synthase activity was inhibited by some organic acids and repressed when cells were grown with glutamate as the nitrogen source.  相似文献   

12.
The biosynthetic activities of the polypeptide subunits alpha and beta of glutamine synthetase (GS) were inhibited in vitro by glycine and serine. These amino acids inhibited the growth of a mutant strain with partial GS activity when grown on glutamate as the nitrogen source and also blocked the synthesis of the glutamine in vivo, thus demonstrating the inhibitory effect on GS activity in vivo. Glycine and serine lowered the intracellular glutamine pool and regulated GS beta synthesis. A preferential induction of synthesis of the GS beta polypeptide was observed when either of these amino acids was present in the medium. On this basis, we obtained a glycine-sensitive mutant which showed a structural alteration of the GS beta polypeptide. The double regulatory effect of either glycine or serine on glutamine synthesis may be considered an example of the regulation of glutamine synthesis by alpha-amino nitrogen. It may be a mechanism that regulates the assimilation of ammonium into glutamate versus glutamine.  相似文献   

13.
NADP-glutamate dehydrogenase (NADP-GDH) along with glutamine synthetase plays a pivotal role in ammonium assimilation. Specific inhibitors were valuable in defining the importance of glutamine synthetase in nitrogen metabolism. Selective in vivo inhibition of NADP-GDH has so far been an elusive desideratum. Isophthalate, a potent in vitro inhibitor of Aspergillus niger NADP-GDH [Noor S, Punekar NS. Allosteric NADP-glutamate dehydrogenase from aspergilli: purification, characterization and implications for metabolic regulation at the carbon-nitrogen interface. Microbiology 2005;151:1409-19], was evaluated for its efficacy in vivo. Dimethyl ester of isophthalate (DMIP), but not isophthalate, inhibited A. niger growth on agar as well as in liquid culture. This was ascribed to the inability of isophthalate to enter fungal mycelia. Subsequent to DMIP addition however, intracellular isophthalate could be demonstrated. Apart from NAD-GDH, no other enzyme including NAD-glutamate synthase was inhibited by isophthalate. A cross-over at NADP-GDH step of metabolism was observed as a direct consequence of isophthalate (formed in vivo from DMIP) inhibiting this enzyme. Addition of ammonium to DMIP-treated A. niger mycelia resulted in intensive vacuolation, retraction of cytoplasm and autolysis. Taken together, these results implicate glutamate dehydrogenase and NADP-GDH in particular, as a key target of in vivo isophthalate inhibition during ammonium assimilation.  相似文献   

14.
Two pathways of ammonium assimilation are known in bacteria, one mediated by glutamate dehydrogenase, the other by glutamine synthetase and glutamate synthase. The activities of these three enzymes were measured in crude extracts from four Rhizobium meliloti wild-type strains, 2011, M15S, 444 and 12. All the strains had active glutamine synthetase and NADP-linked glutamate synthase. Assimilatory glutamate dehydrogenase activity was present in strains 2011, M15S, 444, but not in strain 12. Three glutamate synthase deficient mutants were isolated from strain 2011. They were unable to use 1 mM ammonium as a sole nitrogen source. However, increased ammonium concentration allowed these mutants to assimilate ammonium via glutamate dehydrogenase. It was found that the sole mode of ammonium assimilation in strain 12 is the glutamine synthetase-glutamate synthase route; whereas the two pathways are functional in strain 2011.Abbreviations GS glutamine synthetase - GOGAT glutamate synthase - GDH glutamate dehydrogenase  相似文献   

15.
The mechanism of adaptation of the acrylamide producing strain Rhodococcus rhodochrous M8 to changes in ammonium concentrations in the medium was studied. An increase in the content of ammonium in the medium changed the activity of glutamine synthetase (GS) (EC 6.3.1.2) and glutamine dehydrogenase (GD) (EC 1.4.1.4), the enzymes of ammonium assimilation, as well as the activities of enzymes responsible for nitrile utilization: nitrile hydratase (EC 4.2.1.84) and amidase (EC 3.5.1.4). This also caused inhibition of activation of GS induced by phosphodiesterase (EC 3.1.4.1). Increases in the activities of nitrile hydratase and amidase and resistance of these enzymes to ammonium were observed in mutant of R. rhodichrous resistant to phosphotricine, an inhibitor of GS. An important role of GS in the mechanism of adaptation is suggested.  相似文献   

16.
用RT-PCR方法从小球藻(Chlorella sorokiniana)中克隆了铵诱导表达的以辅酶Ⅱ为辅基的谷氨酸脱氢酶(NADP-GDH)基因的cDNA片段,DNA测序分析表明与已报道的该基因c DNA序列同源性为94%.将NADP-GDH基因先插入到SPDK621质粒的2CaMV35S启动子和Ω增强序列之后,然后将2CaMV35S-Ω-GDH-NOS表达单元构建到RokⅡ质粒的HindⅢ与Eco RⅠ之间,从而获得高效植物表达载体.将RokⅡ-GDH质粒转移到根癌土壤杆菌(Agro bacterium tumefaciens (Smith et Townsend) Conn) EHA105中,对烟草(Nico tiana tabacum L.)进行转化并得到阳性转化后代.对转基因烟草分析表明,在低氮培养基或在低氮蛭石中其生长速度和叶片数明显高于对照;铵毒性实验表明,无论在低铵或高铵条件下,接种在MS固化培养基上的转基因绿叶圆片存活时间长,叶绿素含量高.这些结果说明外源NADP-GDH增强了植物对氮素的吸收和利用.另外,转化后代还表现了对除草剂膦化麦黄酮(PPT)具有较强的抗性;培养在含有不同浓度PPT的MS固化培养基上的转基因绿叶圆片,其愈伤化程度明显高于对照;在MS培养基中用0.5 μg/mL 的PPT可以代替卡那霉素对转化后代进行筛选,这暗示 NADP-GDH基因可以作为一种新的选择标记用于植物基因工程的研究.  相似文献   

17.
Calli derived from leaves and radicles of B. ternifolia were grown on Murashige and Skoog (MS) basal medium, and the effects of different nitrogen sources on the rate of callus growth and on the enzymes related to nitrogen assimilation were studied. Ammonium alone did not support callus growth unless a Krebs-cycle intermediate was added to the medium. The activities of glutamine synthetase (EC 6.3.1.2), glutamate synthase (EC 1.4.7.1), and glutamate dehydrogenase (EC 1.4.1.2) were measured in homogenates of callus grown on media supplied with different nitrogen sources. The results indicate that leaf and root calli have similar levels of these enzymes when grown on MS medium (Murashige and Skoog 1962. Physiol. Plant. 15, 473–497). However, when the calli were supplied with glutamine as the sole nitrogen source, the activity of glutamate synthase increased in leaf callus but was almost completely inhibited in root callus. The results indicate that calli originated from different B. ternifolia tissues do not have the same biochemical dedifferentiated state.  相似文献   

18.
Glutamine synthetase (GS) and NADP-dependent glutamate dehydrogenase (NADP-GDH) play a key role in nitrogen assimilation in the ectomycorrhizal fungus Laccaria laccata (Scop. ex Fr. Cke) strain S 238. The two enzymes were purified to apparent electrophoretic homogeneity by a three-step procedure involving diethylaminoethyl (DEAE)-Trisacryl and affinity chromatography, and DEAE-5PW fast protein liquid chromatography. This purification scheme resulted in a 23 and 62% recovery of the initial activity for GS and NADP-GDH, respectively. Purified GS had a specific activity of 713 nanomoles per second per milligram protein and a pH optimum of 7.2. Michaelis constants (millimolar) for the substrates were NH4+ (0.024), glutamate (3.2), glutamine (30), ATP (0.18), and ADP (0.002). The molecular weight (Mr) of native GS was approximately 380,000; it was composed of eight identical subunits of Mr 42,000. Purified NADP-GDH had a specific activity of 4130 nanomoles per second per milligram protein and a pH optimum of 7.2 (amination reaction). Michaelis constants (millimolar) for the substrates were NH4+ (5), 2-oxoglutarate (1), glutamate (26), NADPH (0.01), and NADP (0.03). Native NADP-GDH was a hexamer with a Mr of about 298,000 composed of identical subunits with Mr 47,000. Polyclonal antibodies were produced against purified GS and NADP-GDH. Immunoprecipitation tests and immunoblot analysis showed the high reactivity and specificity of the immune sera against the purified enzymes.  相似文献   

19.
NADP-dependent glutamate dehydrogenase (EC 1.4.1.4) extracted from Sphaerostilbe repens was purified to homogeneity by using ammonium sullate fractionation hydroxyapatite and DEAE-cellulose column chromatography and, finally, preparative polyacrylamide gel electrophoresis. The turnover number of the enzyme for the amination reaction was about 66000 mol substrate transformed min-1 (molecule of GDH)-1. Molecular weight of the native enzyme was estimated to be 280000 dalton by polyacrylamide gradient gel electrophoresis. The same technique in the presence of sodium dodecyl sulfatc gave a single protein band that corresponded to the subunit molecular weight of 48000 dalton. Thus, it is concluded that NADP-GDH is composed of six identical polypeptidic chains.
The pH optimums were 6.9 and 8.4 for the forward and reverse reactions respectively. The NADP-GDH lost practically none of its activity for ten days at 4°C and for 15 h at room temperature, but was inactivated by higher temperatures. Thiol compounds such as 2-mercaptoethanol and dithiolhrcitol protected the enzyme from rapid inactivation. The Michaelis constants for GDH were 0.64, 0.049. 0.043 and 5.5 m M for α-ketoglutaratc. NADPH, NADP and glutamate, respectively. The enzyme had a negative cooperativity for ammonium (Hill number of 0.66), and its Km value increased from 2.6 to 21.2 m M when the ammonium concentration exceeded 16 m M . The deamination reaction was highly sensitive to inhibition by ammonium, while the amination reaction was only slightly inhibited by glutamate. These results, considered together with the Km values, indicate that the NADP-GDH in Sphaerostilbe repens is primarily concerned with glutamate biosynthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号