首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used different cell markers to trace the development of the sensory cells of the thoracic microchaete. Our results dictate a revision in the currently accepted model for cell lineage within the mechanosensory bristle. The sensory organ progenitor divides to form two secondary progenitors: PIIa and PIIb. PIIb divides first to give rise to a tertiary progenitor-PIII and a glial cell. This is followed by division of PIIa to form the shaft and socket cells as described before. PIII expresses high levels of Elav and low levels of Prospero and divides to produce neuron and sheath. Its sibling cell expresses low Elav and high Prospero and is recognized by the glial marker, Repo. This cell migrates away from the other cells of the lineage following differentiation. The proposed modification in lineage has important implications for previous studies on sibling cell fate choice and cell fate specification in sensory systems.  相似文献   

2.
3.
The Drosophila antenna has a diversity of chemosensory organs within a single epidermal field. We have some idea from recent studies of how the three broad categories of sense-organs are specified at the level of progenitor choice. However, little is known about how cell fates within single sense-organs are specified. Selection of individual primary olfactory progenitors is followed by organization of groups of secondary progenitors, which divide in a specific order to form a differentiated sensillum. The combinatorial expression of Prospero Elav, and Seven-up allows us to distinguish three secondary progenitor fates. The lineages of these cells have been established by clonal analysis and marker distribution following mitosis. High Notch signaling and the exclusion of these markers identifies PIIa; this cell gives rise to the shaft and socket. The sheath/neuron lineage progenitor PIIb, expresses all three markers; upon division, Prospero asymmetrically segregates to the sheath cell. In the coeloconica, PIIb undergoes an additional division to produce glia. PIIc is present in multiinnervated sense-organs and divides to form neurons. An understanding of the lineage and development of olfactory sense-organs provides a handle for the analysis of how olfactory neurons acquire distinct terminal fates.  相似文献   

4.
The tumor suppressor genes lethal giant larvae (lgl) and discs large (dlg) act together to maintain the apical basal polarity of epithelial cells in the Drosophila embryo. Neuroblasts that delaminate from the embryonic epithelium require lgl to promote formation of a basal Numb and Prospero crescent, which will be asymmetrically segregated to the basal daughter cell upon division to specify cell fate. Sensory organ precursors (SOPs) also segregate Numb asymmetrically at cell division. Numb functions to inhibit Notch signaling and to specify the fates of progenies of the SOP that constitute the cellular components of the adult sensory organ. We report here that, in contrast to the embryonic neuroblast, lgl is not required for asymmetric localization of Numb in the dividing SOP. Nevertheless, mosaic analysis reveals that lgl is required for cell fate specification within the SOP lineage; SOPs lacking Lgl fail to specify internal neurons and glia. Epistasis studies suggest that Lgl acts to inhibit Notch signaling by functioning downstream or in parallel with Numb. These findings uncover a previously unknown function of Lgl in the inhibition of Notch and reveal different modes of action by which Lgl can influence cell fate in the neuroblast and SOP lineages.  相似文献   

5.
6.
7.
During Drosophila external sensory organ development, one sensory organ precursor (SOP) arises from a proneural cluster, and undergoes asymmetrical cell divisions to produce an external sensory (es) organ made up of different types of daughter cells. We show that phyllopod (phyl), previously identified to be essential for R7 photoreceptor differentiation, is required in two stages of es organ development: the formation of SOP cells and cell fate specification of SOP progeny. Loss-of-function mutations in phyl result in failure of SOP formation, which leads to missing bristles in adult flies. At a later stage of es organ development, phyl mutations cause the first cell division of the SOP lineage to generate two identical daughters, leading to the fate transformation of neurons and sheath cells to hair cells and socket cells. Conversely, misexpression of phyl promotes ectopic SOP formation, and causes opposite fate transformation in SOP daughter cells. Thus, phyl functions as a genetic switch in specifying the fate of the SOP cells and their progeny. We further show that seven in absentia (sina), another gene required for R7 cell fate differentiation, is also involved in es organ development. Genetic interactions among phyl, sina and tramtrack (ttk) suggest that phyl and sina function in bristle development by antagonizing ttk activity, and ttk acts downstream of phyl. It has been shown previously that Notch (N) mutations induce formation of supernumerary SOP cells, and transformation from hair and socket cells to neurons. We further demonstrate that phyl acts epistatically to N. phyl is expressed specifically in SOP cells and other neural precursors, and its mRNA level is negatively regulated by N signaling. Thus, these analyses demonstrate that phyl acts downstream of N signaling in controlling cell fates in es organ development.  相似文献   

8.
9.
We have studied the division of postembryonic neuroblasts (Nbs) in the outer proliferation center (OPC) and central brain anlagen of Drosophila. We focused our attention on three aspects of these processes: the pattern of cellular division, the topological orientation of those divisions, and the expression of asymmetric cell fate determinants. Although larval Nbs are of embryonic origin, our results indicate that their properties appear to be modified during development. Several conclusions can be summarized: (i) In early larvae, Nbs divide symmetrically to give rise to two Nbs while in the late larval brain most Nbs divide asymmetrically to bud off an intermediate ganglion mother cell (GMC) that very rapidly divides into two ganglion cells (GC). (ii) Symmetric and asymmetric divisions of OPC Nbs show tangential and radial orientations, respectively. (iii) This change in the pattern of division correlates with the expression of inscuteable, which is apically localized only in asymmetric divisions. (iv) The spindle of asymmetrically dividing Nb is always oriented on an apical-basal axis. (v) Prospero does not colocalize with Miranda in the cortical crescent of mitotic Nbs. (vi) Prospero is transiently expressed in one of the two sibling GCs generated by the division of GMCs. The implications of these results on cell fate specification and differentiation of adult brain neurons are discussed.  相似文献   

10.
11.
The asymmetric segregation of cell-fate determinants and the generation of daughter cells of different sizes rely on the correct orientation and position of the mitotic spindle. In the Drosophila embryo, the determinant Prospero is localized basally and is segregated equally to daughters of similar cell size during epidermal cell division. In contrast, during neuroblast division Prospero is segregated asymmetrically to the smaller daughter cell. This simple switch between symmetric and asymmetric segregation is achieved by changing the orientation of cell division: neural cells divide in a plane perpendicular to that of epidermoblast division. Here, by labelling mitotic spindles in living Drosophila embryos, we show that neuroblast spindles are initially formed in the same axis as epidermal cells, but rotate before cell division. We find that daughter cells of different sizes arise because the spindle itself becomes asymmetric at anaphase: apical microtubules elongate, basal microtubules shorten, and the midbody moves basally until it is positioned asymmetrically between the two spindle poles. This observation contradicts the widely held hypothesis that the cleavage furrow is always placed midway between the two centrosomes.  相似文献   

12.
Prospero is required in dividing longitudinal glia (LG) during axon guidance; initially to enable glial division in response to neuronal contact, and subsequently to maintain glial precursors in a quiescent state with mitotic potential. Only Prospero-positive LG respond to neuronal ablation by over-proliferating, mimicking a glial-repair response. Prospero is distributed unequally through the progeny cells of the longitudinal glioblast lineage. Just before axon contact the concentration of Prospero is higher in two of the four progeny cells, and after axon guidance Prospero is present only in six out of ten progeny LG. Here we ask how Prospero is distributed unequally in these two distinct phases. We show that before neuronal contact, longitudinal glioblasts undergo invaginating divisions, perpendicular to the ectodermal layer. Miranda is required to segregate Prospero asymmetrically up to the four glial-progeny stage. After neuronal contact, Prospero is present in only the LG that activate Notch signalling in response to Serrate provided by commissural axons, and Numb is restricted to the glia that do not contain Prospero. As a result of this dual regulation of Prospero deployment, glia are coupled to the formation and maintenance of axonal trajectories.  相似文献   

13.
14.
We have examined the process by which cell diversity is generated in neuroblast (NB) lineages in the central nervous system of Drosophila melanogaster. Thoracic NB6-4 (NB6-4t) generates both neurons and glial cells, whereas NB6-4a generates only glial cells in abdominal segments. This is attributed to an asymmetric first division of NB6-4t, localizing prospero (pros) and glial cell missing (gcm) only to the glial precursor cell, and a symmetric division of NB6-4a, where both daughter cells express pros and gcm. Here we show that the NB6-4t lineage represents the ground state, which does not require the input of any homeotic gene, whereas the NB6-4a lineage is specified by the homeotic genes abd-A and Abd-B. They specify the NB6-4a lineage by down-regulating levels of the G1 cyclin, DmCycE (CycE). CycE, which is asymmetrically expressed after the first division of NB6-4t, functions upstream of pros and gcm to specify the neuronal sublineage. Loss of CycE function causes homeotic transformation of NB6-4t to NB6-4a, whereas ectopic CycE induces reverse transformations. However, other components of the cell cycle seem to have a minor role in this process, suggesting a critical role for CycE in regulating cell fate in segment-specific neural lineages.  相似文献   

15.
16.
17.
During development of the Drosophila central nervous system, neuroblast 6-4 in the thoracic segment (NB6-4T) divides asymmetrically into a medially located glial precursor cell and a laterally located neuronal precursor cell. In this study, to understand the molecular basis for this glia-neuron cell-fate decision, we examined the effects of some known mutations on the NB6-4T lineage. First, we found that prospero (pros) mutations led to a loss of expression of Glial cells missing, which is essential to trigger glial differentiation, in the NB6-4T lineage. In wild-type embryos, Pros protein was localized at the medial cell cortex of dividing NB6-4T and segregated to the nucleus of the glial precursor cell. miranda and inscuteable mutations altered the behavior of Pros, resulting in failure to correctly switch the glial and neuronal fates. Our results suggested that NB6-4T used the same molecular machinery in the asymmetric cell division as other neuroblasts in cell divisions producing ganglion mother cells. Furthermore, we showed that outside the NB6-4T lineage most glial cells appeared independently of Pros.  相似文献   

18.
Asymmetric cell division generates two daughter cells of differential gene expression and/or cell shape. Drosophila neuroblasts undergo typical asymmetric divisions with regard to both features; this is achieved by asymmetric segregation of cell fate determinants (such as Prospero) and also by asymmetric spindle formation. The loss of genes involved in these individual asymmetric processes has revealed the roles of each asymmetric feature in neurogenesis, yet little is known about the fate of the neuroblast progeny when asymmetric processes are blocked and the cells divide symmetrically. We genetically created such neuroblasts, and found that in embryos, they were initially mitotic and then gradually differentiated into neurons, frequently forming a clone of cells homogeneous in temporal identity. By contrast, larval neuroblasts with the same genotype continued to proliferate without differentiation. Our results indicate that asymmetric divisions govern lineage length and progeny fate, consequently generating neural diversity, while the progeny fate of symmetrically dividing neuroblasts depends on developmental stages, presumably reflecting differential activities of Prospero in the nucleus.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号