首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using highly enriched membrane preparations from lactate-grown Saccharomyces cerevisiae cells, the subcellular and submitochondrial location of eight enzymes involved in the biosynthesis of phospholipids was determined. Phosphatidylserine decarboxylase and phosphatidylglycerolphosphate synthase were localized exclusively in the inner mitochondrial membrane, while phosphatidylethanolamine methyltransferase activity was confined to microsomal fractions. The other five enzymes tested in this study were common both to the outer mitochondrial membrane and to microsomes. The transmembrane orientation of the mitochondrial enzymes was investigated by protease digestion of intact mitochondria and of outside-out sealed vesicles of the outer mitochondrial membrane. Glycerolphosphate acyltransferase, phosphatidylinositol synthase, and phosphatidylserine synthase were exposed at the cytosolic surface of the outer mitochondrial membrane. Cholinephosphotransferase was apparently located at the inner aspect or within the outer mitochondrial membrane. Phosphatidate cytidylyltransferase was localized in the endoplasmic reticulum, on the cytoplasmic side of the outer mitochondrial membrane, and in the inner mitochondrial membrane. Inner membrane activity of this enzyme constituted 80% of total mitochondrial activity; inactivation by trypsin digestion was observed only after preincubation of membranes with detergent (0.1% Triton X-100). Total activity of those enzymes that are common to mitochondria and the endoplasmic reticulum was about equally distributed between the two organelles. Data concerning susceptibility to various inhibitors, heat sensitivity, and the pH optima indicate that there is a close similarity of the mitochondrial and microsomal enzymes that catalyze the same reaction.  相似文献   

2.
The concept that creatine phosphokinase is bound to the outer surface of the heart mitochondrial inner membrane originated from observations that the enzyme is retained by water-swollen heart mitochondria and by digitonintreated heart mitochondria suspended in isotonic sucrose. The present study establishes that digitonin-treated mitochondria release creatine phosphokinase in isotonic KCl, and other investigators have reported an identical response for the water-swollen organelles. These observations suggest that mitochondrial creatine phosphokinase is not bound to the outer surface of the inner membrane at a site adjacent to the adenine nucleotide translocase under physiologic conditions.  相似文献   

3.
Binding of [3H]Ro5-4864, a specific ligand for "peripheral type" benzodiazepine receptors, was determined in subcellular fractions of guinea pig lung. Even though the level of binding was predominant in the mitochondrial fraction, nuclear and cytosolic fractions also contained significantly measurable amounts of binding sites. The presence of binding sites in the microsomal fraction and in a fraction intermediate in density between the mitochondria and microsomes depended on which buffer was used to homogenize the tissue. If calcium-containing mannitol buffer was used, binding was negligible in the postmitochondrial organelles. However, in the case of sucrose buffer which did not contain any calcium, the postmitochondrial organelle fractions contained measurable amounts of binding sites. Most probably, these binding sites were of mitochondrial and nuclear origin. Furthermore, binding sites in the mitochondria were associated with the succinic dehydrogenase-enriched mitochondrial inner membrane, but not with the monoamine oxidase- and cholinephosphotransferase-enriched outer mitochondrial membrane. Furthermore, several proteolytic enzymes caused a decrease in binding of the ligand to the mitochondrial membrane only under hypotonic conditions and not under isotonic conditions, suggesting that the location of the receptors is inside the mitochondria.  相似文献   

4.
Adenosine diphosphatase (ADPase) activity was studied in rat liver with [beta-32P]ADP as a substrate. Mitochondria and outer mitochondrial membrane fractions were isolated and assayed for ADPase and various marker enzymes. ADPase activity was strikingly reduced when the outer membranes were removed from the mitochondria whether by digitonin treatment or osmotic shock. Addition of the inter-membrane space subfraction to the purified outer membranes resulted in enhanced ADPase activity. Addition of the inter-mitochondrial membrane enzyme adenylate kinase to outer membranes also produced a large stimulation of activity. The ADPase activity could also be reconstituted in vitro with adenylate kinase and either mitoplast ATPase or ouabain-sensitive (Na+ + K+ + Mg2+)-ATPase. Chloroform-released ATPase, however, was not capable of producing an ADPase activity when combined with adenylate kinase. Gel permeation chromatography of Triton-solubilised outer mitochondrial membranes was unable to resolve ADPase activity from contaminating ATPase. These results suggest that the majority of ADPase activity in rat liver mitochondria consists of the coupled activity of adenylate kinase and ATPase.  相似文献   

5.
Outer membrane preparations of rat liver mitochondria were isolated, after the mitochondria had been prepared by mild digitonin treatment under isotonic conditions. L-Kynurenine 3-hydroxylase [EC 1.14.13.9] was solubilized on a large scale from outer membrane by mixing with 1% digitonin or 1% Triton X-100, followed by fractionation into a minor fraction I and a major fraction II by DEAE-cellulose column chromatography. The distribution of total L-Dynurenine 3-hydroxylase was roughly 20 and 80% in fraction I and II, respectively. Fraction I consisted of crude enzyme loosely bound to anion exchanger. In the present investigation, fraction I was not used because of its low activity and rapid inactivation. In contrast, fraction II consisted of crude enzyme with high activity, excluded from DEAE-cellulose column chromatography in the presence of 1 M KC1. In addition, fraction II was purified by Sephadex G-200 gel filtration and DEAE-Sephadex A-50 column chromatography with linear gradient elution, adding 1 M KC1 and 1% Triton X-100 to 0.05 M Tris-acetate buffer, pH 8.1. After isoelectric focusing, the purified enzyme preparation was proved to be homogeneous, since the L-kynurenine 3-hydroxylase fraction gave a single band on disc gel electrophoresis. The molecular weight of this enzyme was estimated to be approximately 200,000 or more by SDS-polyacrylamide gel electrophoresis and from the elution pattern on Sephadex G-200 gel filtration. A 16-Fold increase of the enzyme activity was obtained compared with that of the mitochondrial outer membrane. The isoelectric point of the enzyme was determined to be pH 5.4 by Ampholine isoelectric focusing.  相似文献   

6.
Glucose catabolism in brain. Intracellular localization of hexokinase   总被引:1,自引:0,他引:1  
A major energy source in brain is glucose, which is committed to metabolism by hexokinase (Type I isozyme), an enzyme usually considered to be bound to the outer mitochondrial membrane. In this study, the subcellular location of hexokinase in brain has been rigorously investigated. Mitochondrial fractions containing hexokinase (greater than 500 milliunits/mg protein) were prepared by two different procedures, and then subjected to density gradient centrifugation before and after loading with barium phosphate, a technique designed to increase the density of the mitochondria. The gradient distribution patterns of both unloaded and loaded preparations show that brain hexokinase does not distribute exclusively with mitochondrial marker enzymes. This is particularly evident in the loaded preparations where there is a clear distinction between the peak activities of hexokinase and mitochondrial markers. The same observation was made when the mitochondrial fraction of either untreated or barium phosphate-loaded mitochondria was subjected to titration with digitonin. In fact, at concentrations of digitonin, which almost completely solubilize marker enzymes for both the inner and outer mitochondrial membranes, a significant fraction of the total hexokinase remains particulate bound. Electron microscopy confirmed that particulate material is still present under these conditions. Significantly, hexokinase is released from particulate material only at high concentrations of digitonin which solubilize the associated microsomal marker NADPH-cytochrome c reductase. Glucose 6-phosphate, which is known to release hexokinase from the brain "mitochondrial fraction" also releases hexokinase from this unidentified particulate component. These results on brain, a normal glucose utilizing tissue, differ from those obtained previously on highly glycolytic tumor cells where identical subfractionation procedures revealed a strictly outer mitochondrial membrane location for particulate hexokinase (Parry, D. M., and Pedersen, P. L. (1983) J. Biol. Chem. 258, 10904-10912). It is concluded that in brain, hexokinase has a greater propensity to localize at nonmitochondrial receptor sites than to those known to be associated with the outer mitochondrial membrane.  相似文献   

7.
F. Feo  R.A. Canuto  R. Garcea  O. Brossa 《BBA》1978,504(1):1-14
The phospholipid depletion of rat liver mitochondria, induced by acetone-extraction or by digestion with phospholipase A2 or phospholipase C, greatly inhibited the activity of NADH-cytochrome c reductase (rotenone-insensitive). A great decrease of the reductase activity also occurred in isolated outer mitochondrial membranes after incubation with phospholipase A2. The enzyme activity was almost completely restored by the addition of a mixture of mitochondrial phospholipids to either lipid-deficient mitochondria, or lipid-deficient outer membranes. The individual phospholipids present in the outer mitochondrial membrane induced little or no stimulation of the reductase activity. Egg phosphatidylcholine was the most active phospholipid, but dipalmitoyl phosphatidylcholine was almost ineffective. The lipid depletion of mitochondria resulted in the disappearance of the non-linear Arrhenius plot which characterized the native reductase activity. A non-linear plot almost identical to that of the native enzyme was shown by the enzyme reconstituted with mitochondrial phospholipids. Triton X-100, Tween 80 or sodium deoxycholate induced only a small activation of NADH-cytochrome c reductase (rotenone-insensitive) in lipiddeficient mitochondria. The addition of cholesterol to extracted mitochondrial phospholipids at a 1 : 1 molar ratio inhibited the reactivation of NADH-cytochrome c reductase (rotenone-insensitive) but not the binding of phospholipids to lipid-deficient mitochondria or lipid-deficient outer membranes.These results show that NADH-cytochrome c reductase (rotenone-insensitive) of the outer mitochondrial membrane requires phospholipids for its activity. A mixture of phospholipids accomplishes this requirement better than individual phospholipids or detergents. It also seems that the membrane fluidity may influence the reductase activity.  相似文献   

8.
The galactosylation steps in the biosynthesis of galactolipids involve two different enzymes; a UDP-Gal:diacylglycerol galactosyltransferase and a galactolipid:galactolipid galactosyltransferase. Previous localization studies have shown that in spinach these enzymes are located in the chloroplast envelope. Our results with peas (Pisum sativum var Laxton's Progress No. 9) confirm these results and extend the localization by providing evidence that the galactosyltransferases are in the outer membrane of the envelope. The specific activity of UDP-Gal:diacylglycerol galactosyltransferase in outer membrane preparations was 6 to 10 times greater than that exhibited by inner membrane preparations. In addition, using quantitative sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it was possible to show that the UDP-Gal:diacylglycerol galactosyltransferase activity associated with inner membrane preparations could be accounted for by outer membrane contamination. It is concluded from these results that this enzyme is located predominantly, if not exclusively, in the outer membrane of the envelope. An analysis of the galactolipid products synthesized by the highly purified outer membrane showed that the galactolipid:galactolipid galactosyltransferase is also present, suggesting that this enzyme is also an outer membrane enzyme. The implication of these results is that the final assembly of galactolipids is carried out on the outer membrane of the chloroplast envelope.  相似文献   

9.
Controlled osmotic lysis (water-washing) of rat liver mitochondria results in a mixed population of small vesicles derived mainly from the outer mitochondrial membrane and of larger bodies containing a few cristae derived from the inner membrane. These elements have been separated on Ficoll and sucrose gradients. The small vesicles were rich in monoamine oxidase, and the large bodies were rich in cytochrome oxidase. Separation of the inner and outer membranes has also been accomplished by treating mitochondria with digitonin in an isotonic medium and fractionating the treated mitochondria by differential centrifugation. Treatment with low digitonin concentrations released monoamine oxidase activity from low speed mitochondrial pellets, and this release of enzymatic activity was correlated with the loss of the outer membrane as seen in the electron microscope. The low speed mitochondrial pellet contained most of the cytochrome oxidase and malate dehydrogenase activities of the intact mitochondria, while the monoamine oxidase activity could be recovered in the form of small vesicles by high speed centrifugation of the low speed supernatant. The results indicate that monoamine oxidase is found only in the outer mitochondrial membrane and that cytochrome oxidase is found only in the inner membrane. Digitonin treatment released more monoamine oxidase than cytochrome oxidase from sonic particles, thus indicating that digitonin preferentially degrades the outer mitochondrial membrane.  相似文献   

10.
This paper reports on the discovery of a protein kinase activity associated with the inner membrane of mammalian mitochondria. The enzyme does not respond to addition of cyclic AMP or cyclic GMP and has a preference for whole histone as phosphate acceptor. Some standard assay systems for the cyclic nucleotide-dependent cytosol protein kinases would be unable to pick up this activity of the orthophosphate concentration is higher than 25 mM and the pH or the assay lower than pH 6.5. The enzyme described here has an apparent pH optimum of 8.5. Activity in liver mitochondria is not evident unless the mitochondria are disrupted by either sonication or freezing and thawing. Distribution of kinase activity in centrifugal fractions of both liver and heart mitochondrial sonicates was parallel to that of the two inner membrane marker enzymes succinic dehydrogenase and cytochrome oxidase and quite different from that of the matrix enzyme malic dehydrogenase. Experiments with preparations enriched in outer or inner membranes confirmed the contention that this enzyme is located on the inner membrane. Since disruption of the inner membrane by a freeze-thaw treatment (after the outer membrane had been disrupted by swelling in phosphate) was necessary for full expression of activity by this enzyme, the tentative conclusion was reached that substrate is accepted only from the matrix side of the inner membrane.  相似文献   

11.
Transverse-plane topography of mitochondrial outer-membrane long-chain acyl-CoA synthetase was investigated using proteases as probes for exposure of crucial domains, i.e. domains containing the active site or otherwise required for enzymatic activity. Incubation of intact mitochondria with the nonspecific proteases proteinase K and subtilisin resulted in a time-dependent loss of 90% or more of the long-chain acyl-CoA synthetase activity compared to control incubations. The integrity of the outer membrane before and during this treatment was shown by cytochrome c oxidase latency as well as the stability of adenylate kinase activity in the presence of protease. After a 15-min incubation in these conditions, site-specific proteases such as trypsin and chymotrypsin had only a limited inhibitory effect (29 and 58% loss of activity, respectively); however, treatment of hypotonically disrupted mitochondria with these proteases resulted in increased (71 and 77%, respectively) loss of activity. Exposure of trypsin-sensitive crucial domains on the inner surface of the membrane was directly demonstrated by incubation of trypsin-loaded outer-membrane vesicles. Together, these results suggest that mitochondrial long-chain acyl-CoA synthetase is a transmembrane enzyme, possessing crucial domains on both sides of the outer membrane. However, the cytosolic exposure of the enzyme does not appear to be affected by a change in the medium ionic strength as seen previously for other outer-membrane enzymes. In an experiment investigating the topography of the active site of the enzyme, an immobilized substrate analog, desulfo-CoA-agarose, was preincubated with intact mitochondria. This resulted in up to a 42% loss of the activity of long-chain acyl-CoA synthetase, consistent with a cytosolic exposure for at least the CoA-binding domain of the active site.  相似文献   

12.
Inner- and outer-membrane enzymes of mitochondria during liver regeneration   总被引:6,自引:2,他引:4  
1. Marker enzymes for the mitochondrial matrix, inner membrane, inter-membrane space and outer membrane were measured in mitochondria isolated from control and regenerating rat liver. The specific activity of these enzymes was then followed for up to 30 days after operation. 2. The specific activity of marker enzymes for the matrix, inner membrane and inter-membrane space remained constant during liver regeneration. 3. However, the specific activities of monoamine oxidase and kynurenine hydroxylase, both outer-membrane markers, fell by 67% and 49% respectively from their control values at 4 days after operation, and returned to normal by about 3 weeks. 4. The repression of kynurenine hydroxylase activity was shown to be unrelated to any independent variation in tryptophan catabolism, based on tryptophan pyrrolase assays. 5. These results are considered to indicate that enzymes of the inner and outer mitochondrial membranes are synthesized asynchronously during morphogenesis. 6. The enzyme complement of purified outer membrane at 4 days after operation was about 50% of that of the appropriate control. Thus the composition of the outer membrane itself may vary dramatically, and supports the concept that constitutive enzymes may turn over independently of a membrane's existence. 7. The behaviour of the rotenone-insensitive, NADH cytochrome c reductase did not parallel the other outer-membrane enzymes for intact mitochondria, but did so when assayed in highly purified fractions of outer membrane. This suggests a labile binding to the outer membrane during the early stages of morphogenesis. 8. Electrophoresis of inner- and outer-membrane proteins revealed little difference between control and experimental mitochondria at 4 days, except for an increase in several, high-molecular-weight components of the outer membrane. These bands closely correspond to similar bands derived from smooth endoplasmic reticulum. 9. The results are discussed in relation to the biogenesis and turnover of mitochondria, and are considered to provide evidence for turnover as a unit, at least for the matrix, inner membrane, inter-membrane space and possibly some form of primary outer membrane.  相似文献   

13.
Preparations enriched with plasmalemmal, outer mitochondrial, or Golgi complex membranes from rat liver were subfractionated by isopycnic centrifugation, without or after treatment with digitonin, to establish the subcellular distribution of a variety of enzymes. The typical plasmalemmal enzymes 5'-nucleotidase, alkaline phosphodiesterase I, and alkaline phosphatase were markedly shifted by digitonin toward higher densities in all three preparations. Three glycosyltransferases, highly purified in the Golgi fraction, were moderately shifted by digitonin in both this Golgi complex preparation and the microsomal fraction. The outer mitochondrial membrane marker, monoamine oxidase, was not affected by digitonin in the outer mitochondrial membrane marker, monoamine oxidase, was not affected by digitonin in the out mitochondrial membrane preparation, in agreement wit its behavior in microsomes. With the exception of NADH cytochrome c reductase (which was concentrated in the outer mitochondrial membrane preparation), typical microsomal enzymes (glucose-6-phosphatase, esterase, and NADPH cytochrome c reductase) displayed low specific activities in the three preparations; except for part of the glucose-6-phosphatase activity in the plasma membrane preparation, their density distributions were insensitive to digitonin, as they were in microsomes. The influence of digitonin on equilibrium densities was correlated with its morphological effects. Digitonin induced pseudofenestrations in plasma membranes. In Golgi and outer mitochondrial membrane preparations, a few similarly altered membranes were detected in subfractions enriched with 5'-nucleotidase and alkaline phosphodiesterase I. The alterations of Golgi membranes were less obvious and seemingly restricted to some elements in the Golgi preparation. No morphological modification was detected in digitonin-treated outer mitochondrial membranes. These results indicate that each enzyme is associated with the same membrane entity in all membrane preparations and support the view that there is little overlap in the enzymatic equipment of the various types of cytomembranes.  相似文献   

14.
Data on localization of nucleoside diphosphate kinase (NDPK) in the outer mitochondrial compartment are contradictory. We have demonstrated that repeated quintuple wash of a mitochondrial pellet (protein concentration is about 2 mg/ml) solubilized only 60% of total NDPK activity. Since no release of adenylate kinase, the marker enzyme of the intermembrane space, was observed, it was concluded that the solubilized NDPK activity was associated with the outer surface of the outer mitochondrial membrane. Treatment of mitochondria with digitonin solutions in low (sucrose, mannitol) or high (KCl) ionic strength media revealed that solubilization of remaining NDPK activity basically coincided with the solubilization curve of monoamine oxidase, the marker enzyme of the outer mitochondrial membrane, but differed from solubilization behavior of adenylate kinase and malate dehydrogenase. We concluded that the remaining NDPK activity was also associated with the outer mitochondrial membrane and electrostatic interactions were not essential for NDPK binding to mitochondrial membranes. Results of polarographic determination of remaining adenylate kinase and NDPK activities of mitochondria incubated in ice for different time intervals and subjected to subsequent centrifugation suggest that all NDPK activity of the outer compartment of rat liver mitochondria is associated with the outer surface of the outer mitochondrial membrane. We suggest the existence of at least three NDPK fractions. They represent 70, 15, and 15% of total NDPK activity of the outer compartment and differ by tightness of membrane binding.  相似文献   

15.
Summary Isolation of muscle mitochondria is made easier by using proteolytic treatment of the tissue before homogenization. Normally, the proteolytic enzyme is discarded with the supernatant of the first centrifugation. However, our results show that a fraction of enzyme activity remains associated with mitochondria. As shown in experiments described in this paper, mitochondrial hexokinase from tissue treated or not with the proteolytic enzyme exhibits similar properties except that the solubilized enzyme from protease treated tissue is no longer able to rebind to mitochondrial membrane. This modification of the binding ability of the enzyme results from a partial hydrolysis of hexokinase during solubilization experiments by the proteolytic enzyme. Since, as pointed out here, proteolytic enzyme can remain associated with mitochondria, [either adsorbed on mitochondrial membrane or included in the mitochondrial pellet] its use for the isolation of muscle mitochondria should be avoided.  相似文献   

16.
Nifurtimox and nitrofurantoin are reduced by intact rat liver mitochondria to nitro anion radicals whose autoxidation generates superoxide anion as detected by direct electron spin resonance spectroscopy and by spin-trapping experiments, respectively. Although nitroreduction occurred in the presence of respiratory substrates such as beta-hydroxybutyrate, malate-glutamate, succinate, or endogenous substrates, nitro anion radical formation activity was much greater on addition of exogenous reduced pyridine nucleotides. NAD(P)H generated from endogenous mitochondrial NAD(P)+ by intramitochondrial reactions could not be used for the NAD(P)H nitroreductase reactions unless the mitochondria were solubilized by detergent. In addition, NAD(P)H nitroreductase activity was detected in the crude mitochondrial outer membrane fraction, with a higher activity than in mitoplasts and intact mitochondria. These results provide direct evidence of a nitrofuran reductase activity associated with the mitochondrial outer membrane that is far more important than that of respiratory chain enzymes.  相似文献   

17.
In human pathology little is known about the activating enzymes for fatty acids of different carbon chain length. In order to have a better insight into disorders of lipid metabolism in human skeletal muscle, we studied the distribution of acyl-CoA synthetases in muscular subcellular fractions. We find that in muscle mainly long chain fatty acids are activated to CoA esters. Distribution of palmityl-CoA synthetase in subcellular fractions compared with marker enzymes suggested that this enzymatic activity is located only in the outer mitochondrial membrane, in contrast to human liver, where this enzyme is also located in the microsomes. In human skeletal muscle we also found low butyryl-CoA formation, which was limited to the mitochondrial matrix. This site of activation implies that short chain fatty acids may not depend on carnitine for their oxidation in the mitochondrial matrix, in contrast to long chain fatty acids activated in the outer mitochondrial membrane.  相似文献   

18.
The intracellular localization of the post-translationally inserted integral membrane protein, NADH-cytochrome b5 reductase, was investigated, using a quantitative radioimmunoblotting method to determine its concentration in rat liver subcellular fractions. Subcellular fractions enriched in rough or smooth microsomes, Golgi, lysosomes, plasma membrane and mitochondrial inner or outer membranes were characterized by marker enzyme analysis and electron microscopy. Reductase levels were determined both with the NADH-cytochrome c reductase activity assay, and by radioimmunoblotting, and the results of the two methods were compared. When measured as antigen, the reductase was relatively less concentrated in microsomal subfractions, and more concentrated in fractions containing outer mitochondrial membranes, lysosomes and plasma membrane than when measured as enzyme activity. Rough and smooth microsomes had 4-5-fold lower concentrations, on a phospholipid basis than did mitochondrial outer membranes. Fractions containing Golgi, lysosomes and plasma membrane had approximately 14-, approximately 16, and approximately 9-fold lower concentrations of antigen than did mitochondrial outer membranes, respectively, and much of the antigen in these fractions could be accounted for by cross-contamination. No enzyme activity or antigen was detected in mitochondrial inner membranes. Our results indicate that the enzyme activity data do not precisely reflect the true enzyme localization, and show an extremely uneven distribution of reductase among different cellular membranes.  相似文献   

19.
The subcellular localization of adenylate cyclase (ATP pyrophosphatelyase (cyclizing), EC 4.6.1.1) in bovine corpus luteum was studied using isotonic and hypotonic homogenization and fractionation conditions. All fractions prepared were assayed for adenylate cyclase, marker enzymes and DNA. Only plasma membrane marker enzyme, 5'-nucleotidase paralleled the distribution of adenylate cyclase under both isotonic and hypotonic conditions (conditionsoth isotonic and hypotonic conditions (coefficient of correlation = 0.95). Two main fractions prepared under hypotonic conditions were subfractionated by discontinuous sucrose gradient centrifugation. The highest amount of adenylate cyclase was found in a fraction having a density approximately equal to 1.13 g/cm3. The specific activity of this fraction was 4--6 times higher than that of the homogenate. The electron microscopic study of this fraction revealed the presence of a single type of particulate material consisting of small vesicles exhibiting a typical unit membrane structure. It is concluded that this adenylate cyclase is primarily localized in the plasma membranes. Basal adenylate cyclase activity of plasma membranes was stimulated 2--3 times by luteinizing hormone (10 mug/ml), 3--4 times by prostaglandin E2 (10 mug/ml), 4--6 times by NaF (0.01 M) and two times by methanol (0.2%).  相似文献   

20.
The mitochondrial proton-translocating nicotinamide nucleotide transhydrogenase is embedded in the inner membrane as a homodimer of monomer Mr = 109,288. Its N-terminal 430 residues and C-terminal 200 residues protrude into the matrix, whereas its central 400 residues appear to intercalate into the inner membrane as 14 hydrophobic clusters of about 20 residues each (Yamaguchi, M., and Hatefi, Y. (1991) J. Biol. Chem. 266, 5728-5735). Treatment of mitoplasts (mitochondria denuded of outer membrane) with several proteolytic enzymes cleaves the transhydrogenase into a 72-kDa N-terminal and a 37-kDa C-terminal fragment. The cleavage site of proteinase K was determined to be Ala690-Ala691, which is located in a small loop of the transhydrogenase exposed on the cytosolic side of the inner membrane. This paper shows that the bisected transhydrogenase can be purified from proteinase K-treated mitoplasts with retention of greater than or equal to 85% transhydrogenase activity. The inactivation rate of the bisected enzyme by trypsin and N-ethylmaleimide was altered in the presence of NADP and NADPH, suggesting substrate-induced conformation changes similar to those reported previously for the intact transhydrogenase. Also, like the intact enzyme, proteoliposomes of the bisected transhydrogenase were capable of membrane potential formation and internal acidification coupled to NADPH----NAD transhydrogenation. The properties of the bisected transhydrogenase have been discussed in relation to those of the two-subunit Escherichia coli transhydrogenase, the bisected lac permease (via gene restriction), and the fragmented and reconstituted bacteriorhodopsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号