首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The plant lectin concanavalin A (Con A) specifically inactivates the 5′ -nucleotidase of a plasma membrane-enriched fraction from lactating mammary gland. The lectin also causes an activation of the membrane Mg++ -ATPase, but does not affect galactosyltransferase or alkaline phosphatase. The enzyme perturbations are prevented by α-methylmannoside, an inhibitor of Con A binding, indicating that specific binding to carbohydrate structures rather than nonspecific protein-protein interaction is involved. Solubilization of the 5′ -nucleotidase in detergents (0.2% Triton X-100 or 1% deoxycholate) does not prevent Con A inactivation, indicating that incorporation into the membrane structure is not a requirement for the Con A effect. The results suggest that Con A inactivates the 5′ -nucleotidase by a direct interaction with the enzyme and that this enzyme is a Con A receptor site on the surface of mammary cells.  相似文献   

2.
The antihypercholesterolemic drug clofibrate (ethyl-α-p-chlorophenoxyisobutyrate) stimulated the latent ATPase activity and “superstimulated” the uncoupler-induced ATPase activity of rat-liver mitochondria. Addition of clofibrate decreased the turbidity of mitochondrial suspensions and released considerable amount of mitochondrial protein into solution. In these properties it closely resembled detergents like Triton X-100 and deoxycholate. However, unlike the detergents, clofibrate required the presence of a permeant cation for its disruptive action. Also, it was without any such effect on sonic submitochondrial particles. The drug enhanced the uptake of both Mg2 and Cl? by mitochondria suggesting that osmotic swelling precedes lysis. Sonic submitochondrial particles prepared in the presence of clofibrate showed a greater yield and comparable ATPase activity.  相似文献   

3.
The effects of detergents on the lysozyme-catalyzed hydrolysis of Micrococcus lysodeikticus cells were investigated by changing the concentration of Na-phosphate buffer and pH in the presence or absence of sucrose. Also, a parallel study of the hydrolysis of glycolchitin by lysozyme was conducted and compared to the lytic reaction. Electron microscopy was utilized to follow the changes in cell morphology during the various treatments.

None of the detergents changed turbidity of the cell suspension. However, they did affect the change in turbidity during lysis in unique ways. SDS, which is an anionic detergent, inhibited lysozyme activity and its addition to the reaction mixture caused a rapid and large decrease in the turbidity. Brij 35 and Triton X-100, which are non-ionic detergents, did not inhibit lysozyme activity, but their presence in the reaction mixture changed the rate of turbidity change. Apparently non-ionic detergents disrupt only the protoplast, while anionic detergents disrupt both the protoplast and the damaged cell. The lytic mechanism of M. lysodeikticus by lysozyme was discussed in detail.  相似文献   

4.
We have purified two plasma membrane populations using a Concanavalin A polymer. It was assumed that vesicles retained by the polymer were right side-out, whereas vesicles not retained were inside-out. 5′-nucleotidase and (Na+ + K+) stimulated Mg++ ATPase activities were at least two fold higher in inside-out than in right side-out vesicles, though recovered total activity was about 80 % for both enzymes together. Moreover, Concanavalin A modified 5′-nucleotidase activity of right side-out vesicles according to the dose used.  相似文献   

5.
Summary The effects produced by the detergents Triton X-100, sodium dodecylsulphate and sodium cholate on sarcoplasmic reticulum vesicles have been comparatively studied. In all cases, maximal effects are found 5 min after detergent addition. Triton X-100 and SDS are approximately ten times more effective than cholate in protein and phospholipid solubilization. Both Triton X-100 and SDS maintain Ca++ accumulation in SR vesicles at detergent concentrations below 10–3 M; higher concentrations cause a strong inhibition. On the other hand, cholate produces a gradual inhibition of Ca++ accumulation in the concentration range between 10–4 M and 2.5 × 10–2 M. Triton X-100 and SDS produce a gradual solubilization of the specific Ca++-ATPase activity up to a 10–3 M detergent concentration, above which a strong inactivation occurs, while the enzyme solubilization increases with the presence of cholate in the whole concentration range under study. The different behaviour of sodium cholate, when compared to SDS or Triton X-100, is discussed in relation to the surfactant molecular structures. The possibility of membrane lysis and reassembly in the presence of some detergents is also considered.Abbreviations SR sarcoplasmic reticulum - SDS sodium dodecylsulphate - DTT dithiothreitol - EGTA ethyleneglycoltetraacetate - PEP phosphoenolpyruvate  相似文献   

6.
Purified plasma membrane vesicles were isolated in the presence of 250 mM sucrose from 7-day-old roots of Triticum aestivum L. cv. Drabant by aqueous polymer two-phase partitioning. When added to a low-salt medium containing 9-aminoacridine (9-AA), the vesicles caused a much larger total decrease in 9-AA fluorescence when sucrose was absent than when sucrose was present. A slow component of the decrease was also larger in the absence of sucrose. Triton X-100 reduced the decrease in 9-AA fluorescence upon vesicle addition and abolished completely the slow component of the decrease. There was no correlation between the time-dependence of 9-AA fluorescence and that of the Mg2+-ATPase described below. The time course of Mg2+-ATPase activity was followed by sampling at short intervals (down to 10 s) and analyzing for P, released. In the absence of detergent, the rates of P, release were linear from zero minutes, whether 250 mM sucrose was present or not, but the rate was 10?50% higher in the absence of sucrose than in its presence. Sucrose (250 mM) added during a minus-sucrose assay lowered Mg2+-ATPase activity within 2 min to the level observed with 250 mM sucrose present from the start. The effect of 25-1 100 mM sucrose was tested and there was little or no effect below KM) mM. Above 100 mM sucrose the rate of P, release decreased drastically; at 1 100 mM sucrose the rate was ca 20% the rate at 25 mM sucrose. The inhibitory effect of sucrose was not alleviated by increased concentrations of Mg2+ and/or ATP. nor was it affected by the presence or absence of Triton X-100. We conclude that sucrose somehow inhibits the Mg2+-ATPase directly or affects the conformation of the plasma membrane in such a way as to inhibit the enzyme. The presence of detergents increased Mg2+-ATPase activity in the order Triton X-100 (4–5-fold) > Zwittergent 3–14 = Na-cholate = octylglucoside > digitonin (2-fold). In all cases optimal activity was observed at detergent concentrations at or below the critical micellar concentration. The detergent concentration curves could be simulated by the sum of a stimulatory and an inhibitory reaction. At the optimal concentration, digitonin gave a linear time-course of P, release, whereas all the other detergents showed a distinct lag of 1–3 min before maximal rates were attained. The problems of using detergents in polarity assays are discussed.  相似文献   

7.
The environmental Mg2+ used in preparation of Bacillus subtilis membranes was found to influence the responses of the associated ATPase to cetyltrimethylammonium bromide (CTAB). Membranes prepared using fluids containing higher Mg2+ levels exhibited lower control activity than was seen with low Mg2+ membranes. Increased environmental Mg2+ resulted in higher stimulations with lower doses of the agent. ATPase of all three membrane types was stimulated in two concentration ranges, but in the doses tested, CTAB inhibited the ATPase of only those membranes obtained using fluids containing high Mg2+ for every stage of the isolation. Sonication of membranes for 25 s at half maximum output yielded three fractions, consisting of a soluble form which was sensitive to CTAB stimulation at 25 μg/ml of assay mixture; small, 95–110 nm, vesicles, which were resistant to CTAB at 25, 75, and 150 μg/ml, and large vesicles, similar to untreated membranes both in morphology and responses to detergent. Combinations of detergent and protein (β-lysin or arginine-rich histone) produced activity appearing to be additive when the protein level was present in a high concentration and the detergent was present at levels corresponding to the minimum influence. Mixtures of a maximally stimulating dose (75 or 100 μg/ml) of detergent and a small amount of protein produced activities that were at least 92% or more of the expected sums of individual stimulations. Interference occurred with the following mixtures: high amounts of detergent and protein; high protein and 10 or 15 μg/ml CTAB; and β-lysin and arginine-rich histone, both at high levels. These data are consistent with a hypothesis that the two peaks in CTAB stimulation reflect two adjacent ATPase sites, one of which is also susceptible to stimulation by cationic protein.  相似文献   

8.
On solubilization with Triton X-100 of sarcoplasmic reticulum vesicles isolated by differential centrifugation, the Ca2+-ATPase is selectively extracted while approximately half of the initial Mg2+-, or ‘basal’, ATPase remains in the Triton X-100 insoluble residue. The insoluble fraction, which does not contain the 100 000 dalton polypeptide of the Ca2+-ATPase, contains high levels of cytochrome c oxidase. Furthermore, its Mg2+-ATPase activity is inhibited by specific inhibitors of mitochondrial ATPase, indicating that the ‘basal’ ATPase separated from the Ca2+-ATPase by detergent extraction originates from mitochondrial contaminants.To minimize mitochondrial contamination, sarcoplasmic reticulum vesicles were fractionated by sedimentation in discontinuous sucrose density gradients into four fractions: heavy, intermediate and light, comprising among them 90–95% of the initial sarcoplasmic reticulum protein, and a very light fraction, which contains high levels of Mg2+-ATPase. Only the heavy, intermediate and light fractions originate from sarcoplasmic reticulum; the very light fraction is of surface membrane origin. Each fraction of sarcoplasmic reticulum origin was incubated with calcium phosphate in the presence of ATP and the loaded fractions were separated from the unloaded fractions by sedimentation in discontinuous sucrose density gradients. It was found that vesicles from the intermediate fraction had, after loading, minimal amounts of mitochondrial and surface membrane contamination, and displayed little or no Ca2+-independent basal ATPase activity. This shows conclusively that the basal ATPase is not an intrinsic enzymatic activity of the sarcoplasmic reticulum membrane, but probably originates from variable amounts of mitochondrial and surface membrane contamination in sarcoplasmic reticulum preparations isolated by conventional procedures.  相似文献   

9.
Activities and a few properties of alkaline phosphatase and 5’-nucleotidase were compared in the developing human placenta. Both the enzymes were mostly membrane-bound and displayed similar developmental patterns with the highest activities at 24/26 weeks of the placenta. L-Phenylalanine, L-tryptophan and L-leucine were inhibitors of alkaline phosphatase, whereas they had no effect on the 5’-nucleotidase. Alkaline phosphatase from a late stage of gestation appeared to be almost heat-stable. An appreciable part of 5’-nucleotidase was also resistant to heat inactivation and this fraction varied with gestational age of the tissue. For both the enzymes, Vmax changed without alteringK m values with periods of gestation. Ca2+, Mg2+ and Mn2+ ions stimulated the alkaline phosphatase activity and Hg2+, Zn2+, Cu2+, Ni2+ were inhibitory. 5’-Nucleotidase was not activated by any of these cations. EDTA and Concanavalin A inhibited both the enzymes, although the extent of inhibition was different and also varied with gestation.  相似文献   

10.
From the culture broth of Clostridium novyi type A, phosphatidyl inositol-specific phospholipase C was separated from the major part of phospholipase C (γ-toxin) which hydrolyzes phosphatidyl choline, phosphatidyl ethanolamine, and sphingomyelin. Sodium deoxycholate stimulated the activity of phosphatidyl inositol phospholipase C. The concentration of sodium deoxycholate for maximal stimulation was 0.2% with 2 mm phosphatidyl inositol. Divalent cations (Mg2+, Ca2+, and Zn2+) were rather inhibitory above 10?3m. Phosphatidyl inositol phospholipase C was not inhibited by EDTA or o-phenanthroline. When phosphatidyl inositol phospholipase C was incubated with rat liver slices, not only alkaline phosphatase but also 5′-nucleotidase was liberated into the soluble fraction.  相似文献   

11.
1. Homogenates of neural lobes of bovine pituitary glands were fractionated by differential and density-gradient ultracentrifugation and the distribution of adenosine triphosphatase (ATPase) activity was studied. It was shown that all the activity was membrane-bound. 2. On the basis of ionic requirements the ATPase activity was grouped into three categories: (a) Mg2+-dependent, (b) Ca2+-dependent and (c) Mg2++Na++K+-dependent (ouabain-sensitive) ATPases. The activity in the absence of bivalent cations was negligible. The ratio between the activities of the three ATPases varied between the different subcellular fractions. 3. Preincubation of the subcellular fractions with deoxycholate increased the activity of the Mg2++Na++K+-dependent enzyme, whereas the Mg2+- and Ca2+-activated ATPases were either unaffected or slightly inhibited. Triton X-100 solubilized the Mg2+- and Ca2+-ATPases; however, the activity of the Mg2++Na++K+-ATPase was abolished by the concentration of Triton X-100 used. 4. All the subfractions displayed unspecific nucleotide triphosphatase activity towards GTP, ITP and UTP. These substrates inhibited the hydrolysis of ATP by all three ATPases. ADP also inhibited the ATPases. 5. Polyacrylamide-gel electrophoresis of extracts containing the Mg2+- and Ca2+-dependent ATPase activity solubilized by Triton X-100 revealed the presence of two enzymes; one activated by either Mg2+ or Ca2+ and the other activated only by Ca2+. 6. In sucrose density gradients the distribution of vasopressin was different from that of all three types of ATPases. It is therefore suggested that the neurosecretory granules do not possess ATPase activity.  相似文献   

12.
Rat gastric mucosa was shown to contain a Mg2+-dependent ATPase which is stimulated by HCO3 at pH 8–9.Triton X-100 solubilizes this HCO3-stimulated, Mg2+-dependent ATPase (ATP phosphohydrolase, EC 3.6.1.3).The gastric mucosa was resolved into five subcellular fractions by differential centrifugation. A large granule fraction (Fraction M), 28 000 g · min, was characterized by cytochrome c oxidase (marker enzyme for mitochondria). A microsomal fraction (Fraction P), 2 760 000 g · min, was characterized by 5′-nucleotidase(5′-ribonucleotide phosphohydrolase, EC 3.1.3.5) (plasma membrane).The Mg2+-dependent ATPase was demonstrated to have a bimodal mitochondrial membranous localization: 24% of its activity is associated with cytochrome c oxidase, and 75% with 5′-nucleotidase(5′-ribonucleotide phosphohydrolase, EC 3.1.3.5) at pH 8.The HCO3 addition resulted in two opposite effects: (1) a strong stimulation (84%) in Fraction M; (2) a slight inhibition (12%) in Fraction P.Fraction M was subfractionated by equilibration on a sucrose gradient. It gave rise to a homogeneous mitochondrial (d, 1.17–1.21) Mg2+-dependent ATPase, closely associated with cytochrome c oxidase. This ATPase is strongly stimulated (×2) by HCO3. The subfractionation of Fraction P gave rise to two distinct ATPases: (1) the major one is associated with membranous (d, 1.10–1.15) material marked by 5′-nucleotidase and is slightly inhibited by HCO3; (2) the other is associated with denser (d, 1.17–1.21) material and is stimulated by HCO3.The bicarbonate-stimulated fraction of the Mg2+-dependent ATPase activity found in the gastric microsomal fraction is assumed to arise from mitochondrial cross-contamination. Further support comes from the optimal HCO3 concentration. In addition, SCN is shown to specifically inhibit the ATPase of Fraction M.From these results it appears that the implication of HCO3-stimulated ATPase in the gastric secretion of H+ is not as clear as had been suggested. However, in the view of an ATPase-supported model for H+ secretion, attention can be directed towards the Mg2+-dependent ATPase found to be associated with microsomes.  相似文献   

13.
The membrane-bound ATPase of Mycoplasma gallisepticum selectively hydrolyzed purine nucleoside triphosphates and dATP. ADP, although not a substrate, inhibited ATP hydrolysis. The enzyme exhibited a pH optimum of 7.0 to 7.5 and an obligatory requirement for divalent cations. Dicyclohexylcarbodiimide at a concentration of 1 mM inhibited 95% of the ATPase activity at 37 degrees C, with 50% inhibition occurring at 22 microM dicyclohexylcarbodiimide. Sodium or potassium (or both) failed to stimulate activity by greater than 37%. Azide (2.6 mM), diethylstilbestrol (100 micrograms/ml), p-chloromercuribenzoate (1 mM), and vanadate (50 microM) inhibited 50, 91, 89, and 60%, respectively. The ATPase activity could not be removed from the membrane without detergent solubilization. Although most detergents inactivated the enzyme, the dipolar ionic detergent N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (0.1%) solubilized approximately 70% of the enzyme with only a minor loss in activity. The extraction led to a twofold increase in specific activity and retention of inhibition by dicyclohexylcarbodiimide and ADP. Glycerol greatly increased the stability of the solubilized enzyme. The properties of the membrane-bound ATPase are not consistent with any known ATPase. We postulate that the ATPase functions as an electrogenic proton pump.  相似文献   

14.
Between pH 4–10, basal ATPase activity, measured in the absence of mineral ions, was 10 to 100 times higher in the final cytoplasmic supernatant from potato tuber homogenates than in the membraneous fractions (purified plasmalemma, purified mitochondria and microsomes). The soluble ATPase was slightly inhibited, whereas the membrane-bound ATPases were all stimulated by Mg2+ ions. A further stimulation by Na+ or K+ ions was only observed in purified plasmalemma or mitochondria, at alkaline pH (7.5–9.5). At a fixed (Na++ K+) concentrations (80 mM), this last stimulation was much greater in purified mitochondria (350%) than in plasmalemma (33%); it also increased with (Na++ K+) concentrations up to 200 mM in mitochondria whereas, in plasmalemma, it was roughly constant for monovalent ion concentrations between 20 and 200 mM. General properties of the plasma membrane-bound ATPase have been determined, i.e. substrate specificity, activity variations with quantity of substrate, temperature, pH, etc. Divalent cations stimulated strongly the ATPase in the following order: Mn2+ > Mg2+ > Ca2+. The maximum ATP hydrolysis velocity for that part of ATPase activity which is strictly dependent on Mg2+ ions was 3.85 μmol × mg?1 protein × h?1. This plasma membrane ATPase was not sensitive to ouabaïn or to oligomycin.  相似文献   

15.
A chicken pectoralis muscle membrane fraction enriched in a Mg2+- or Ca2+-activated (‘basic’) ATPase was obtained by sucrose gradient centrifugation. Enzymatic properties of the ‘basic’ ATPase were determined and used to localize its enzymatic activity in situ by ultrastructural cytochemistry. The enzyme was activated by Mg2+ or Ca2+ but not by Sr2+, Ba2+, Co2+, Ni2+ or Pb2+. It was present in a membranous fraction with a buoyant density of 1.10-1.12 (24–27.5% (ww) sucrose). ‘Basic’ ATPase activity had a sedimentation pattern similar to the putative plasma membrane enzymes, 5′-nucleotidase and leucyl β-naphthylamidase, but different from that of sarcoplasmic reticulum Ca2+ ATPase. Also unlike sarcoplasmic reticulum Ca2+ ATPase, ‘basic’ ATPase was resistant to N-ethylmaleimide and aldehyde fixatives, was active in a medium containing a high Ca2+ concentration (3 mM), and was lost when exposed to Triton X-100 or deoxycholate. In cytochemical studies, a low Pb2+ concentration was used to capture the enzymatically released phosphate ions. Under conditions which eliminated interfering (Na+ + K+) ATPase and sarcoplasmic reticulum Ca2+ ATPase activities, electron-dense lead precipitates were present at the plasmalemma and T-system membranes. These studies suggest that ‘basic’ ATPase activity is associated with plasmalemma and T-system membranes of skeletal muscle.  相似文献   

16.
Circadian rhythms are characteristic of many physiological and biochemical processes in the freshwater flagellate Euglena gracilis. Earlier, we found that the rhythms of photosynthesis, phototaxis and cell shape followed the same pattern in control organisms, but were differently affected by stress such as UV-B irradiation and nitrogen deficiency. Here we extend our studies to use isolated plasma membranes to characterize the rhythms of some plasma membrane-bound enzymes. Also, we wanted to see whether stress-induced changes of these rhythms could be detected at the subcellular level and possibly be coupled to the changes seen in photosynthesis, phototaxis and cell shape. The isolation of plasma membranes using aqueous polymer two-phase partitioning was successful, as judged by the large enrichment of the plasma membrane-marker 5′-nucleotidase, and the difference in the polypeptide pattern compared with the microsomal fraction from which it was prepared. Two other enzymes were analyzed, K+, Mg2+-ATPase, and adenylyl cyclase. The specific activities of all three enzymes were decreased by UV-B radiation by ca 30–50%, compared with the control cultures. On the other hand, nitrogen deficiency not only reduced the activity of the K+.Mg2+-ATPase but also increased the activities of the 5′-nucleotidase and adenylyl cyclase. The different treatments also resulted in differences in polypeptide pattern, e.g., a polypeptide around 30 kDa seemed to be specific to plasma membranes of nitrogen-deficient cultures and one at 39 kDa for the UV-B radiated ones. All three enzymes showed diurnal rhythms that were affected by UV-B radiation. The peak in the rhythm of the ATPase was shifted by UV-B radiation, the rhythm of the 5′-nucleotidase nearly eliminated. The first peak of adenylyl cyclase activity was delayed, so that it looked more like a broad peak between 2 and 11 h after the onset of light. The rhythm of ATPase activity could be correlated with that of photosynthesis in both control and UV-B irradiated cultures. Also, the rhythms of adenylyl cyclase activity and cell shape changes showed some similarities.  相似文献   

17.
The addition of a very small concentration of a detergent (in many instances under the critical micellar concentration (cmc)) has been found to greatly increase the activity of immobilized lipases, using those from Pseudomonas fluorescens (PFL) and Candida antarctica (isoform B) as model enzymes. However, the detergents may also have a negative effect on enzyme activity; in fact, for all enzyme preparations and substrates the activity/detergent concentration curve reached a maximum value and started to decrease, in many instances even under the initial value. The concentration and nature of the detergent (SDS, CTAB, Triton X-100, or X-45) that permitted the maximum hyperactivation was different depending on the substrate. The best hyperactivation values promoted by the presence of detergent were over a 20-fold factor. The presence of detergents permitted the inhibition of lipases by irreversible covalent inhibitors (e.g., 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride) (AEBSF) while the enzyme, in the absence of detergent, is not inhibited by these irreversible inhibitors. This suggested that the main effect of the detergents is to shift the conformational equilibrium of lipases toward the open form. Moreover, the presence of detergents also permitted to improve the enantioselectivity exhibited by the immobilized lipases in some cases. For example, the enantioselectivity of PFL-glyoxyl agarose increased from 40 to more than 100 in the hydrolysis of (+/-)-2-hydroxy-4-phenylbutyric acid ethyl ester by using 0.1% CTAB.  相似文献   

18.
Most of the chicken erythrocyte's sphingomyelin is hydrolyzed when the chicken red blood cells are incubated in hypotonie solution at 37 °C.Addition of detergents, such as Triton X-100 or Na-cholate, is essential for hydrolysis of external [3H ]sphingomyelin by the erythrocyte membranes.Pure plasma membranes show relatively high sphingomyelinase activity while no activity could be detected in the soluble fraction of the cells. Mg2+ and Mn2+ activate the enzyme while Ca2+ and EDTA strongly inhibit its activity. The optimal pH of the membrane-bound sphingomyelinase lies between pH 7.0–9.0. The detergents Triton X-100 and Na-cholate, at concentrations of 0.5% (wv) solubilize the membrane-bound enzyme. Human erythrocytes fail to exhibit sphingomyelinase activity.The correlation between the sphingomyelinase activity and its localization is discussed.  相似文献   

19.
The alkaline phosphatase and 5′-nucleotidase activities of Dictyostelium discoideum are due to two distinct enzymes. Both enzymes are membrane bound, but over 90% of the 5′-nucleotidase activity is solubilized when the crude membrane fraction of the cell is treated with phospholipase C under conditions that release only 10% of the alkaline phosphatase.Part of the alkaline phosphatase activity can be detected in whole cells, suggesting that some of the enzyme molecules are located on the exterior surface of the plasma membrane. In contrast very low 5′-nucleotidase activity can be detected in whole cells. When membrane preparations, isolated from cells that had been surface labeled with 125I, were subjected to sedimentation equilibrium on sucrose density gradients, the majority of the 125I-radioactivity cosedimented with the alkaline phosphatase and 5′-nucleotidase activites, suggesting that both enzymes are plasma membrane components.The two enzymes have distinctly different pH optima, but otherwise their properties are remarkably similar. Both enzymes are inhibited by cyanide, sulfhydryl inhibitors and sulfhydryl reagents, although in each case the 5′-nucleotidase is slightly more susceptible. Both enzymes are inhibited by the levamisole analogue, R 8231, but the alkaline phosphatase is inhibited to a somewhat greater extent. Both enzymes are activated by incubation at 50 °C but inactivated by higher temperatures.The two enzymes increase in activity at identical times during differentiation, suggesting that they are under coordinate developmental control.  相似文献   

20.
W L Dean  C P Suárez 《Biochemistry》1981,20(7):1743-1747
The interaction of Triton X-100 and other nonionic detergents with a delipidated preparation of the Ca2+ ATPase from sarcoplasmic reticulum has been studied. Binding of radiolabeled Triton X-100 was determined by column chromatography at 6 degrees C, and two classes of binding sites were observed. Below the critical micelle concentration (cmc), binding of Triton occurred at 35-40 equivalent sites on the delipidated ATPase with a binding constant of 2.7 X 10(4) M-1. Near the cmc cooperative binding of an additional 70 molecules of the detergent was observed. The binding of monomeric Triton X-100 below the cmc was associated with a parallel activation of over half of the ATPase activity, and the remainder of the activity was recovered after the detergent concentration was increased to the cmc. The ability to reactivate ATPase activity was more dependent on the polar poly(oxyethylene) portion of nonionic detergents than on the hydrocarbon portion. Generalizing for all amphiphiles, these results suggest that there are discrete binding sites on the Ca2+ ATPase for phospholipid molecules in the native membrane and that the polar head groups of phospholipids interact more strongly with the protein than the hydrophobic acyl chains. Perturbations in micelle structure were observed for several nonionic detergents by measurement of cis-parinaric acid fluorescence and differential scanning calorimetry, and discontinuities in Arrhenius plots occurred at the transition temperature of the detergent used for reactivation of ATPase activity. It is concluded that both the physiol state of teh micelle and the intrinsic behavior of the ATPase polypeptide affect the temperature dependence of ATPase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号