首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T cell-mediated immune responses play a critical role in a variety of liver injuries including autoimmune hepatitis. Injection of concanavalin A (Con A) into mice mimics the histological and pathological phenotype of T cell-mediated hepatitis. Recent advances in host immune control of organ transplantation include the development of sphingosine-1-phosphate (S1P) receptor agonists such as FTY720, which alter lymphocyte homing but do not suppress host general immunity. Herein we examined the effect of the new S1P receptor agonist KRP-203 on the Con A-induced liver damage model. In normal liver lymphocytes of BALB/c mice, both FTY720 and KRP203 promoted lymphocyte sequestering from the liver to secondary lymph nodes and significantly reduced the number of liver lymphocytes (p<0.05). Based on this observation, KRP203 was employed in the Con A-induced hepatitis model. KRP203 markedly reduced the number of CD4(+) lymphocytes that infiltrate Con A-treated liver (p<0.05) and successfully reduced serum transaminase elevation (p=0.017), therefore protecting mice from Con A-induced liver injury. Interestingly this homing modulation less occurs in natural hepatic T cell homing through the chemokine receptor, CXCR4. Therefore, S1P receptor agonists preferentially target CXCR4(+)CD4(+) peripheral blood T lymphocytes and suppress the occurrence of Con A-induced hepatitis, suggesting their therapeutic usefulness against T cell-mediated hepatic injury.  相似文献   

2.
T cell-mediated immune responses are implicated in the pathogenesis of a variety of liver disorders; however, the underlying mechanism remains obscure. Con A injection is a widely accepted mouse model to study T cell-mediated liver injury, in which STAT6 is rapidly activated. Disruption of the IL-4 and STAT6 gene by way of genetic knockout abolishes Con A-mediated liver injury without affecting IFN-gamma/STAT1, IL-6/STAT3, or TNF-alpha/NF-kappaB signaling or affecting NKT cell activation. Infiltration of neutrophils and eosinophils in Con A-induced hepatitis is markedly suppressed in IL-4 (-/-) and STAT6(-/-) mice compared with wild-type mice. IL-4 treatment induces expression of eotaxins in hepatocytes and sinusoidal endothelial cells isolated from wild-type mice but not from STAT6(-/-) mice. Con A injection induces expression of eotaxins in the liver and elevates serum levels of IL-5 and eotaxins; such induction is markedly attenuated in IL-4(-/-) and STAT6(-/-) mice. Finally, eotaxin blockade attenuates Con A-induced liver injury and leukocyte infiltration. Taken together, these findings suggest that IL-4/STAT6 plays a critical role in Con A-induced hepatitis, via enhancing expression of eotaxins in hepatocytes and sinusoidal endothelial cells, and induces IL-5 expression, thereby facilitating recruitment of eosinophils and neutrophils into the liver and resulting in hepatitis.  相似文献   

3.
Concanavalin A (Con A)-induced hepatitis has been investigated as a model of T cell-mediated liver injury, in which IFN-gamma plays an essential role by inducing apoptosis of liver cells. Since a large number of neutrophils infiltrate into the liver in the model, the role of neutrophils was investigated in this study. Con A hardly caused liver injury in neutrophil-depleted mice, as assessed as to the plasma alanine aminotransferase level as well as histochemistry. Neutrophil-depleted mice also failed to produce IFN-gamma. Intracellular IFN-gamma staining revealed that, among liver leukocytes, T and NK cells but not neutrophils are the main producers of IFN-gamma. Nylon wool-purified "T cells", however, failed to produce IFN-gamma in response to Con A in vitro, while the production was restored by the addition of neutrophils. Overall, this study suggests that neutrophils play a novel accessory role in IFN-gamma production in Con A-induced hepatitis.  相似文献   

4.
Con A-induced hepatitis has been used as a model of human autoimmune or viral hepatitis. During the process of identifying immunologically bioactive proteins in human plasma, we found that apolipoprotein A-II (ApoA-II), the second major apolipoprotein of high-density lipoprotein, inhibited the production of IFN-γ by Con A-stimulated mouse and human CD4 T cells. Con A-induced hepatitis was attenuated by the administration of ApoA-II. The beneficial effect of ApoA-II was associated with reduced leukocyte infiltration and decreased production of T cell-related cytokines and chemokines in the liver. ApoA-II inhibited the Con A-induced activation of ERK-MAPK and nuclear translocation of NFAT in CD4 T cells. Interestingly, exacerbated hepatitis was observed in ApoA-II-deficient mice, indicating that ApoA-II plays a suppressive role in Con A-induced hepatitis under physiological conditions. Moreover, the administration of ApoA-II after the onset of Con A-induced hepatitis was sufficient to suppress disease. Thus, the therapeutic effect of ApoA-II could be useful for patients with CD4 T cell-related autoimmune and viral hepatitis.  相似文献   

5.
Severe hepatic injury is induced by Concanavalin A (Con A) administration in mice, the major effector cells being CD4+ T cells, NKT cells and macrophages. Since autologous lymphocyte subsets are associated with tissue damage, Con A-induced hepatic injury is considered to be autoimmune hepatitis. However, it has remained to be investigated how autoantibodies and B-1 cells are responsible for this phenomenon. In this study, it was demonstrated that autoantibodies which were detected using Hep-2 cells in immunofluorescence tests and using double-strand (ds) DNA in the ELISA method, appeared after Con A administration (a peak at day 14). Moreover, autoantibody-producing B220low cells (i.e., B-1 cells) also appeared at this time. Purified B220low cells were found to have a potential to produce autoantibodies. These results suggest that Con A-induced hepatic injury indeed includes the mechanism of autoimmune hepatitis.  相似文献   

6.
T cell-mediated liver diseases are associated with elevated serum levels of C-C chemokine ligand 2 (CCL2)/monocyte chemoattractant protein-1 (MCP-1). However, the extent to which the actions of CCL2/MCP-1 contribute to the pathogenesis of T cell-mediated hepatitis remains incompletely understood. Con A-induced hepatitis is a liver-specific inflammation mediated by activated T cells and is driven by an up-regulation of the hepatic expression of TNF-alpha, IFN-gamma, and IL-4. The present study examined the role of CCL2/MCP-1 in the pathogenesis of T cell-mediated hepatitis induced by Con A administration in the mouse. We demonstrate a novel hepatoprotective role for CCL2/MCP-1 during Con A-induced hepatitis, because CCL2/MCP-1 neutralization strikingly enhanced hepatic injury, both biochemically and histologically, after Con A administration. Furthermore, CCL2/MCP-1 neutralization was associated with a significant reduction in the hepatic levels of TNF-alpha and IFN-gamma, but with a significant increase in hepatic IL-4 levels. Moreover, IL-4 production and CCR2 expression by Con A-stimulated CD3(+)NK1.1(+) T cells was significantly reduced by rMCP-1 treatment in vitro. In summary, we propose that CCL2/MCP-1 fulfills a novel anti-inflammatory role in T cell-mediated hepatitis by inhibiting CD3(+)NK1.1(+) T cell-derived IL-4 production through direct stimulation of its specific receptor CCR2. These findings may have direct clinical relevance to T cell-mediated hepatitis.  相似文献   

7.
Alcohol consumption is a major risk factor accelerating the progression of liver disease in patients with chronic hepatitis virus infection. However, the mechanism underlying the enhanced susceptibility of alcoholics to liver injury is not fully understood. Here, we demonstrate that chronic ethanol consumption increases the susceptibility of C57BL/6 mice to concanavalin A (Con A)-induced T cell-mediated hepatitis. Injection of a low dose of Con A (5 microg/g) causes severe liver damage in ethanol-fed mice as evidenced by a significant elevation of serum alanine aminotransaminase levels, massive necrosis, and infiltration of leukocytes but only slightly induces liver injury in control pair-fed mice. In ethanol-fed mice, the activation and cytotoxicity of natural killer T cells, cells that play key roles in Con A-induced T cell hepatitis, are not significantly enhanced relative to pair-fed mice. Moreover, Con A-induced activation of hepatic NF-kappaB is increased, whereas activation of STAT1 and STAT3 is attenuated in ethanol-fed mice. Consistent with this result, the expression of chemokines and adhesion molecules [such as ICAM-1, macrophage inflammatory protein (MIP)-1, MIP-2, and MCP-1] controlled by NF-kappaB is upregulated, whereas STAT1-controlled expression of chemokines (such as MIG and IP-10) is downregulated in ethanol-fed mice compared with pair-fed mice. In conclusion, chronic alcohol consumption accelerates T cell-mediated hepatitis via upregulation of the NF-kappaB signaling pathway and subsequently enhances expression of chemokines/adhesive molecules and recruitment of leukocytes into the liver. Downregulation of the antiapoptotic STAT3 signal may also contribute to alcohol potentiation of T cell hepatitis.  相似文献   

8.
The effect of ginsenoside Rg1 (Rg1) on hepatic damage caused by concanavalin A (Con A) has not been fully elucidated. This study was designed to evaluate the protective effect of Rg1 on Con A-induced hepatitis in mice and explore the potential mechanisms of this effect. C57BL/6 mice were divided randomly into the following four experimental groups: phosphate-buffered saline group, Rg1 group, Con A group, Con A + Rg1 group. Mice received Rg1 (20 mg/kg) 3 h before intravenous administration of Con A (15 mg/kg). Levels of alanine transaminase, aspartate transaminase and cytokine production were measured, the amount of phosphorylated IκBα and p65 were tested, the numbers of CD4+ and CD8+ T lymphocytes infiltrated in the blood, spleen and liver were calculated, intercellular adhesion molecule-1 (ICAM-1) and interferon-inducible chemokine-10 (CXCL-10) levels were measured and histological examination of the livers was conducted. Pretreatment with Rg1 markedly reduced the elevated levels of serum aminotransferase, ameliorated liver damage and suppressed proinflammatory cytokines secretion via inhibition NF-κB activity following Con A injection of mice. Furthermore, Rg1 administration reduced ICAM-1 and CXCL-10 mRNA expression in the liver as well as the number of CD4+ and CD8+ T lymphocytes infiltrating in the liver. Rg1 reduced the incidence of liver damage through inhibition of the proinflammatory response and suppressed the recruitment of CD4+ and CD8+ T lymphocytes to the liver. These data indicate that Rg1 represents a novel agent for the treatment of T lymphocyte-dependent liver injury.  相似文献   

9.
Regulatory T cells (Tregs), which are characterized by expression of CD4, CD25, and Foxp3, play a crucial role in the control of immune responses to both self and non-self Ags. To date, there are only limited data on their role in physiological and pathological hepatic immune responses. In this study, we examined the role of hepatic Tregs in immune-mediated liver injury by using the murine Con A-induced hepatitis model. Con A treatment was associated with an increased number of Foxp3(+) Tregs in liver but not in spleen. Moreover, the expression levels of Foxp3, CTLA-4, glucocorticoid-induced TNF receptor, as well as the frequency of CD103 of Tregs were increased after Con A injection, being significantly higher in liver than in spleen. Depleting CD25(+) cells aggravated liver injury, whereas adoptively transferring CD25(+) cells or Tregs reduced liver injury in Con A-treated recipients. Con A treatment induced elevated serum levels and hepatic mononuclear mRNA expressions of TGF-beta, which were reduced by Tregs depletion. In addition, anti-TGF-beta mAbs blocked the suppressive function of Tregs from Con A-treated mice in vitro. Finally, TGF-beta receptor II dominant-negative mice, whose T cells express a dominant negative form of TGFbetaRII and therefore cannot respond to TGF-beta, had a higher mortality rate and severer liver injury than normal mice injected with the same dose of Con A. These results indicate that CD4(+)CD25(+) Tregs play an important role in limiting the liver injury in Con A-induced hepatitis via a TGF-beta-dependent mechanism.  相似文献   

10.
The hepatoprotective effect of IL-6 on various forms of liver injury including T cell-mediated hepatitis has been well documented, and it is believed that induction of antiapoptotic proteins is an important mechanism. In this study, we provide evidence suggesting an additional mechanism involved in the protective role of IL-6 in T cell-mediated hepatitis. In NKT cell-depleted mice, Con A-induced liver injury is diminished; this can be restored by the adoptive transfer of liver mononuclear cells or NKT cells from wild-type mice, but not from IL-6-treated mice. In vitro IL-6 treatment inhibits the ability of mononuclear cells to restore Con A-induced liver injury in NKT-depleted mice, whereas the same treatment does not inhibit purified NKT cells from restoring the injury. The addition of CD3(+) T cells or CD4(+) T cells can restore the inhibitory effect of IL-6 on purified NKT cells, whereas the addition of CD3(+) T cells from CD4-deficient mice fails to restore this inhibitory effect. The expression of IL-6R was detected in 52.6% of hepatic CD3(+) T cells and 32.7% of hepatic CD4(+) T cells, but only in 3.9% of hepatic NK and 1.5% of hepatic NKT cells. Finally, treatment with IL-6 induces STAT3 activation in hepatic lymphocytes and hepatic T cells, and blocking such activation abolishes the inhibitory effect of IL-6 on hepatic lymphocytes to restore liver injury. Taken together, these findings suggest that in addition to its antiapoptotic abilities, as previously well documented, IL-6/STAT3 inhibits NKT cells via targeting CD4(+) T cells and consequently prevents T cell-mediated hepatitis.  相似文献   

11.
Concanavalin A (Con A)-induced hepatitis is thought to be a T-cell-mediated disease with active destruction of liver cells. Interleukin (IL)-17 is a cytokine produced principally by CD4(+) T cells. However, whether IL-17/IL-17 receptor (IL-17/IL-17R)-mediated responses are involved in T-cell-mediated Con A-induced liver injury remains unclear. In this study, we found that IL-17 expression was highly elevated in liver tissues during Con A-induced hepatitis. The increased levels of IL-17 were paralleled with the severity of liver injury reflected by Alanine aminotransaminase and histological assay as well as the secretion of tumor necrosis factor (TNF)-α and IL-6. Blockage of IL-17 significantly ameliorated Con A-induced hepatitis, while overexpression of IL-17 systemically resulted in massive hepatocyte necrosis in mice. Furthermore, overexpression of an IL-17R immunoglobulin G1 fusion protein significantly attenuated liver inflammation after acute Con A treatment. High expression of IL-17R on Kupffer cells was also observed along with the production of cytokines including TNF-α and IL-6. Inhibition of Kupffer cells by gadolinium chloride completely prevented Con A-induced liver injury and cytokine release. Finally, IL-17-expressing CD4(+) T and natural killer T cells were greatly increased in Con A-injected mice compared with that in controls. Overall, our results indicate that IL-17R signaling is critically involved in the pathogenesis in Con A-induced hepatitis, and blockade of IL-17/IL-17R signaling pathway may represent a novel therapeutic intervention in human autoimmune-related hepatitis.  相似文献   

12.
Administration of Con A induces severe injury to hepatocytes in mice and is considered to be a model for human hepatitis. In the current study, we investigated the role of CD44 in Con A-induced hepatitis. Intravenous administration of Con A (20 mg/kg) caused 100% mortality in C57BL/6 CD44-knockout (KO) mice, although it was not lethal in C57BL/6 CD44 wild-type (WT) mice. Administration of lower doses of Con A (12 mg/kg body weight) into CD44 WT mice induced hepatitis as evident from increased plasma aspartate aminotransferase levels accompanied by active infiltration of mononuclear cells and neutrophils, and significant induction of apoptosis in the liver. Interestingly, CD44 KO mice injected with similar doses of Con A exhibited more severe acute suppurative hepatitis. Transfer of spleen cells from Con A-injected CD44 KO mice into CD44 WT mice induced higher levels of hepatitis when compared with transfer of similar cells from CD44 WT mice into CD44 WT mice. The increased hepatitis seen in CD44 KO mice was accompanied by increased production of cytokines such as TNF-alpha, IL-2 and IFN-gamma, but not Fas or Fas ligand. The increased susceptibility of CD44 KO mice to hepatitis correlated with the observation that T cells from CD44 KO mice were more resistant to activation-induced cell death when compared with the CD44 WT mice. Together, these data demonstrate that activated T cells use CD44 to undergo apoptosis, and dysregulation in this pathway could lead to increased pathogenesis in a number of diseases, including hepatitis.  相似文献   

13.
Administration of Con A induces liver injury that is considered to be an experimental model for human autoimmune or viral hepatitis, where immunopathology plays roles mediated by activated lymphocytes, especially NK1.1+ CD3+ NKT cells, and inflammatory cytokines, including IFN-gamma and IL-4. In the present study we investigated the role of WSX-1, a component of IL-27R, in Con A-induced hepatitis by taking advantage of WSX-1 knockout mice. WSX-1-deficient mice were more susceptible to Con A treatment than wild-type mice, showing serum alanine aminotransferase elevation and massive necrosis in the liver. Although the development of NKT cells appeared normal in WSX-1 knockout mice, purified NKT cells from the knockout mice produced more IFN-gamma and IL-4 than those from wild-type mice in response to stimulation with Con A both in vitro and in vivo. In addition, hyperproduction of proinflammatory cytokines, including IL-1, IL-6, and TNF-alpha, was observed in the knockout mice after Con A administration. These data revealed a novel role for WSX-1 as an inhibitory regulator of cytokine production and inflammation in Con A-induced hepatitis.  相似文献   

14.
BACKGROUND AND AIMS: Concanavalin A (Con A) activates T lymphocytes and induces CD4+ T cell-mediated hepatic injury in mice. Pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma), and interleukin-6 (IL-6), are critical mediators in this experimental model. Activation of adenosine A2A receptors reduces the production of various pro-inflammatory cytokines and suppresses T cell activation. A selective adenosine A2A receptor agonist (ATL-146e) has been shown to be a potent inhibitor of inflammation by increasing intracellular cyclic AMP (cAMP) in leukocytes. The aim of the present study was to determine whether ATL-146e could ameliorate Con A-induced hepatic injury, reduction of pro-inflammatory cytokine production. METHODS: Balb/c mice were injected with 25mg/kg Con A with or without a single injection of ATL-146e (0.5-50 microg/kg), 5 min prior to Con A administration. Liver enzymes, histology, and serum levels of tumor necrosis factor-alpha, interferon-gamma, and interleukin-6 were examined. We also assessed the effects of ATL-146e on pro-inflammatory cytokine production with CD4+ T cell. RESULTS: Pretreatment with ATL-146e significantly reduced serum levels of liver enzymes (P<0.001). The serum pro-inflammatory cytokines were all increased after Con A administration and reduced to near normal levels by ATL-146e. ATL-146e also inhibited CD4+ T cell pro-inflammatory cytokine production. CONCLUSION: A selective adenosine A2A receptor agonist, ATL-146e, can prevent concanavalin A-induced hepatic injury that is presumably mediated by its anti-inflammatory properties.  相似文献   

15.
The effect of curcumin on liver injury caused by Concanavalin A (Con A) has not been carefully examined. This study was designed to evaluate the protective effect of curcumin on Con A-induced hepatitis in mice. Liver injured mice received curcumin by gavage at a dose of 200 mg/kg body weight before Con A intravenous administration. Curcumin was effective in reducing the elevated plasma levels of aminotransferases and the incidence of liver necrosis compared with Con A-injected control group. Enzyme-linked immunosorbent assay (ELISA) showed that curcumin suppressed proinflammatory cytokines such as tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL)-4 production in Con A-injected mice. The reduced severity of hepatitis in curcumin pretreated mice correlated with decrease in numbers of liver CD4(+) T cells but not CD8(+) T cells by immunohistochemical analysis. Furthermore, the expression levels of intercellular adhesion molecule-1 (ICAM-1) and the interferon-inducible chemokine CXCL10 in hepatic tissue were significantly decreased by curcumin pretreatment. In conclusion, curcumin pretreatment protects against T cell-mediated hepatitis in mice.  相似文献   

16.
Chronic hepatitis is a major cause of liver cancer, so earlier treatment of hepatitis might be reducing liver cancer incidence. Hepatitis can be induced in mice by treatment with Concanavalin A (Con A); the resulting liver injury causes significant CD4+ T cell activation and infiltration. In these T cells, Roquin, a ring-type E3 ubiquitin ligase, is activated. To investigate the role of Roquin, we examined Con A-induced liver injury and T cell infiltration in transgenic (Tg) mice overexpressing Roquin specifically in T cells. In Roquin Tg mice, Con A treatment caused greater increases in both the levels of liver injury enzymes and liver tissue apoptosis, as revealed by TUNEL and H&E staining, than wild type (WT) mice. Further, Roquin Tg mice respond to Con A treatment with greater increases in the T cell population, particularly Th17 cells, though Treg cell counts are lower. Roquin overexpression also enhances increases in pro-inflammatory cytokines, including IFN-γ, TNF-α and IL-6, upon liver injury. Furthermore, Roquin regulates the immune response and apoptosis in Con A induced hepatitis via STATs, Bax and Bcl2. These findings suggest that over-expression of Roquin exacerbates T-cell mediated hepatitis.  相似文献   

17.
NKT cells expressing phenotypic markers of both T and NK cells seem to be pivotal in murine models of immune-mediated liver injury, e.g., in Con A-induced hepatitis. Also alpha-galactosylceramide (alpha-GalCer), a specific ligand for invariant Valpha14 NKT cells, induces hepatic injury. To improve the comprehension of NKT-cell mediated liver injury, we investigated concomitants and prerequisites of alpha-GalCer-induced hepatitis in mice. Liver injury induced by alpha-GalCer injection into C57BL/6 mice was accompanied by intrahepatic caspase-3 activity but appeared independent thereof. alpha-GalCer injection also induces pronounced cytokine responses, including TNF-alpha, IFN-gamma, IL-2, IL-4, and IL-6. We provide a detailed time course for the expression of these cytokines, both in liver and plasma. Cytokine neutralization revealed that, unlike Con A-induced hepatitis, IFN-gamma is not only dispensable for alpha-GalCer-induced hepatotoxicity but even appears to exert protective effects. In contrast, TNF-alpha was clearly identified as an important mediator for hepatic injury in this model that increased Fas ligand expression on NKT cells. Whereas intrahepatic Kupffer cells are known as a pivotal source for TNF-alpha in Con A-induced hepatitis, they were nonessential for alpha-GalCer-mediated hepatotoxicity. In alpha-GalCer-treated mice, TNF-alpha was produced by intrahepatic lymphocytes, in particular NKT cells. BALB/c mice were significantly less susceptible to alpha-GalCer-induced liver injury than C57BL/6 mice, in particular upon pretreatment with d-galactosamine, a hepatocyte-specific sensitizer to TNF-alpha-mediated injury. Finally, we demonstrate resemblance of murine alpha-GalCer-induced hepatitis to human autoimmune-like liver disorders. The particular features of this model compared with other immune-mediated hepatitis models may enhance comprehension of basic mechanisms in the etiopathogenesis of NKT cell-comprising liver disorders.  相似文献   

18.
The chemokine receptor CXCR3 is preferentially expressed by Th1 cells and critically involved in their recruitment to inflamed tissue. In a mouse model of immune-mediated liver injury inducible by Con A, we investigated the role of CXCR3 in acute IFN-γ-mediated hepatitis as well as in tolerance induction, which has been shown to depend on IL-10-producing CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs). Induction of Con A hepatitis resulted in increased intrahepatic expression of the CXCR3 ligands CXCL9, CXCL10, and CXCL11. CXCR3(-/-) mice developed a more severe liver injury with higher plasma transaminase activities and a more pronounced Th1/Th17 response compared with wild-type (wt) animals upon Con A injection. Moreover, CXCR3(-/-) mice did not establish tolerance upon Con A restimulation, although Tregs from CXCR3(-/-) mice were still suppressive in an in vitro suppression assay. Instead, Tregs failed to accumulate in livers of CXCR3(-/-) mice upon Con A restimulation in contrast to those from wt animals. Con A-tolerant wt mice harbored significantly increased numbers of intrahepatic CXCR3(+)T-bet(+) Tregs that produced IL-10 compared with nontolerant animals. IFN-γ deficiency or anti-IFN-γ Ab treatment demonstrated that conversion to CXCR3(+)T-bet(+) Tregs depended on a Th1 response. Accordingly, in an immunotherapeutic approach, CD4(+)CD25(+)Foxp3(+) Tregs from Con A-pretreated CXCR3-deficient mice failed to protect against Con A-induced hepatitis, whereas Tregs from Con A-tolerant wt mice allowed CXCR3-deficient mice to recover from Con A hepatitis. In summary, CXCR3(+)T-bet(+)IL-10(+) Tregs are generated in the liver in dependence of IFN-γ, then disseminated into the organism and specifically migrate into the liver, where they limit immune-mediated liver damage.  相似文献   

19.
Using noncompetitive methodologies comparing CD43(+/+) and CD43(-/-) mice, it has been reported that CD43(-/-) leukocytes exhibit reduced recruitment efficiency to sites of inflammation. More recent analyses demonstrate that CD43 on activated T cells can function as an E-selectin ligand (E-SelL) in vitro, suggesting that CD43 might promote rolling interactions during recruitment of leukocytes and account for the reported recruitment deficits in CD43(-/-) T cells and neutrophils in vivo. Internally controlled competitive in vivo methods using fluorescent tracking dyes were applied to compare recruitment efficiency of CD43(+/+) vs CD43(-/-) activated T cells to inflamed skin and of peripheral blood neutrophils to inflamed peritoneum. A simple CFSE perfusion method was developed to distinguish arterial/venous vasculature and confirm appropriate extravasation through venules in a Con A-induced cutaneous inflammation model. In vivo recruitment of peripheral blood neutrophils to inflamed peritoneum was core 2 GlcNAcT-I dependent, but recruitment efficiency was not influenced by absence of CD43. There were also no significant differences in core 2 GlcNAcT-I-dependent, selectin-dependent, cutaneous recruitment of activated T cells from CD43(+/+) and congenic CD43(-/-) mice in either B6 or P-selectin(-/-) recipients despite biochemical confirmation that a CD43-specific E-SelL was present on activated T cells. We conclude that recruitment of neutrophils and activated T cells in these in vivo models is not influenced by CD43 expression and that if CD43 on activated T cells performs an E-SelL function in vivo, it contributes in a limited physiological context.  相似文献   

20.
Alpha-naphthylisothiocyanate (ANIT) is a hepatotoxicant that causes acute cholestatic hepatitis with infiltration of neutrophils around bile ducts and necrotic hepatocytes. The objective of this study was to determine whether the beta2-integrin CD18, which plays an important role in leukocyte invasion and cytotoxicity, contributes to ANIT-induced hepatic inflammation and liver injury. Mice with varying levels of leukocyte CD18 expression were treated with ANIT and monitored for hepatic neutrophil influx and liver injury over 48 h. Mice that were partially deficient in CD18 (30% of normal levels) developed periportal inflammation and widespread hepatic necrosis after ANIT treatment in a pattern identical to that in wild-type (WT) mice. In contrast, mice that completely lack CD18 (CD18 null) were resistant to ANIT toxicity. Forty-eight hours after ANIT, CD18-null mice displayed 60% lower serum alanine aminotransferase (ALT) levels and 75% less hepatic necrosis, as shown by morphometry, than WT mice. This was true despite evidence that ANIT still provoked hepatic neutrophil influx in CD18-null mice. WT mice could also be protected from ANIT-induced hepatocellular necrosis, by depleting the animals of neutrophils. Notably, neither CD18-null mice nor neutrophil-depleted WT mice exhibited any attenuation of bile duct injury or cholestasis due to ANIT. We conclude from these experiments that neutrophils invade ANIT-treated livers in a CD18-independent fashion but utilize CD18 to induce hepatocellular cytotoxicity. The results emphasize that neutrophil-mediated amplification of ANIT-induced liver injury is directed toward hepatocytes rather than cholangiocytes. In fact, the data indicate that the majority of ANIT toxicity toward hepatocytes in vivo is neutrophil driven.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号