首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Strain SVQ121 is a mutant derivative of Sinorhizobium fredii HH103 carrying a transposon Tn5-lacZ insertion into the nolO-coding region. Sequence analysis of the wild-type gene revealed that it is homologous to that of Rhizobium sp. NGR234, which is involved in the 3 (or 4)-O-carbamoylation of the nonreducing terminus of Nod factors. Downstream of nolO, as in Rhizobium sp. NGR234, the noeI gene responsible for methylation of the fucose moiety of Nod factors was found. SVQ121 Nod factors showed lower levels of methylation into the fucosyl residue than those of HH103-suggesting a polar effect of the transposon insertion into nolO over the noel gene. A noeI HH103 mutant was constructed. This mutant, SVQ503, produced Nod factors devoid of methyl groups, confirming that the S. fredii noeI gene is functional. Neither the nolO nor the noeI mutation affected the ability of HH103 to nodulate several host plants, but both mutations reduced competitiveness to nodulate soybean. The Nod factors produced by strain HH103, like those of other S. fredii isolates, lack carbamoyl residues. By using specific polymerase chain reaction primers, we sequenced the nolO gene of S. fredii strains USDA192, USDA193, USDA257, and 042B(s). All the analyzed strains showed the same -1 frameshift mutation that is present in the HH103 nolO-coding region. From these results, it is concluded that, regardless of their geographical origin, S. fredii strains carry the nolO-coding region but that it is truncated by the same base-pair deletion.  相似文献   

2.
Sequence data for genes encoding 16S rRNA indicated that the marine strain previously named Pseudomonas sp. strain S9 would be better identified as a Pseudoalteromonas sp. By use of transposon mutagenesis, a chitinase-negative mutant of S9 with a lacZ reporter gene insertion was isolated. Part of the interrupted gene was cloned and sequenced. The deduced amino acid sequence had homology to sequences of bacterial chitinases. Expression of the chitinase gene promoter was quantified by measuring the lacZ reporter gene product, beta-galactosidase, beta-Galactosidase production was induced 10-fold by N-acetylglucosamine and 3-fold by chitin in minimal medium. Repression of beta-galactosidase synthesis was observed in rich medium either with or without chitin but was not observed in minimal medium containing glucose. The chitinase gene promoter was induced by starvation and higher-than-ambient levels of carbon dioxide but not by cadmium ion, heat or cold shock, or UV exposure.  相似文献   

3.
通过PCR的方法从六六六降解菌Sphingomonas sp.BHC-A扩增出完整的脱氯化氢酶基因linA.将其克隆到含有mini-Tn5的自杀性质粒pUT4K上,构建成质粒pUT/mini-Tn5-linA.通过三亲杂交,在辅助质粒RK600的帮助下,将pUT/mini-Tn5-linA转移到一株高效降解多菌灵菌株Rhodococcus sp.DJL-6中.利用mini-Tn5的转座作用将linA基因整合到DJL-6的染色体DNA上,得到工程菌株DJL-6A.该工程菌具有同时降解多菌灵和六六六的功能,且对于初始浓度为0.05 μg/mL和5 μg/mL的六六六的降解活性与亲本菌株BHC-A相当.在不加任何选择压力的条件下工程菌株进行连续传代,结果证明linA基因可以持续稳定的存在于宿主的染色体DNA上.  相似文献   

4.
Fowler TJ  Mitton MF 《Genetics》2000,156(4):1585-1594
Two copies of scooter, a DNA-mediated transposon in the basidiomycetous fungus Schizophyllum commune, were characterized. Scooter is the first transposon isolated from S. commune. Scooter creates 8-bp target site duplications, comparable to members of the hAT superfamily, and has 32-bp terminal inverted repeats. Both copies of scooter are nonautonomous elements capable of movement. Southern blot hybridizations show that scooter-related sequences are present in all S. commune strains tested. Scooter-1 was identified initially as an insertion in the Bbeta2 pheromone receptor gene, bbr2, leading to a partial defect in mating. Scooter-2 spontaneously disrupted a gene to produce the frequently occurring morphological mutant phenotype known as thin. The scooter-2 insert permitted cloning of the disrupted gene, thn1, which encodes a putative regulator of G protein signaling (RGS) protein. Spontaneous insertion of scooter into genes with identifiable mutant phenotypes constitutes the first evidence of active transposition of a DNA-mediated transposon in a basidiomycete.  相似文献   

5.
C E Rubens  L M Heggen 《Plasmid》1988,20(2):137-142
The tetracycline resistance gene encoded within the transposon Tn916 was replaced with the gene encoding erythromycin resistance from the plasmid pVA838. The derivative transposon of Tn916 was designated Tn916 delta E and was introduced into the Streptococcus faecalis chromosome by protoplast transformation. The conjugation/transposition functions of Tn916 delta E were similar to those observed for Tn916 in S. faecalis and Tn916 delta E was capable of self-conjugation at frequencies similar to those of other S. faecalis and Group B Streptococcus. This transposon will be useful for mutagenesis studies in gram-positive organisms, especially in those species where erythromycin resistance is a more desirable selectable marker.  相似文献   

6.
A new 9.9 kb catabolic transposon, Tn-Dha1, containing the gene responsible for tetrachloroethene (PCE) reductive dechlorination activity, was isolated from Desulfitobacterium hafniense strain TCE1. Two fully identical copies of the insertion sequence ISDha1, a new member of the IS256 family, surround the gene cluster pceABCT, a truncated gene for another transposase and a short open reading frame with homology to a member of the twin-arginine transport system (tatA). Evidence was obtained by Southern blot for an alternative form of the transposon element as a circular molecule containing only one copy of ISDha1. This latter structure most probably represents a dead-end product of the transposition of Tn-Dha1. Strong indications for the transposition activity of ISDha1 were given by polymerase chain reaction (PCR) amplification and sequencing of the intervening sequence located between both inverted repeats (IR) of ISDha1 (IR junction). A stable genomic ISDha1 tandem was excluded by quantitative real-time PCR. Promoter mapping of the pceA gene, encoding the reductive dehalogenase, revealed the presence of a strong promoter partially encoded in the right inverted repeat of ISDha1. A sequence comparison with pce gene clusters from Desulfitobacterium sp. strains PCE-S and Y51 and from Dehalobacter restrictus, all of which show 100% identity for the pceAB genes, indicated that both Desulfitobacterium strains seem to possess the same transposon structure, whereas only the pceABCT gene cluster is conserved in D. restrictus.  相似文献   

7.
Biological oxidation of cyclic alcohols normally results in formation of the corresponding dicarboxylic acids, which are further metabolized and enter the central carbon metabolism in the cell. We isolated an Acinetobacter sp. from an industrial wastewater bioreactor that utilized cyclohexanol as a sole carbon source. A cosmid library was constructed from Acinetobacter sp. strain SE19, and oxidation of cyclohexanol to adipic acid was demonstrated in recombinant Escherichia coli carrying a SE19 DNA segment. A region that was essential for cyclohexanol oxidation was localized to a 14-kb fragment on the cosmid DNA. Several putative open reading frames (ORFs) that were expected to encode enzymes catalyzing the conversion of cyclohexanol to adipic acid were identified. Whereas one ORF showed high homology to cyclohexanone monooxygenase from Acinetobacter sp. strain NCIB 9871, most of the ORFs showed only moderate homology to proteins in GenBank. In order to assign functions of the various ORFs, in vitro transposon mutagenesis was performed using the cosmid DNA as a target. A set of transposon mutants with a single insertion in each of the ORFs was screened for cyclohexanol oxidation in E. coli. Several of the transposon mutants accumulated a variety of cyclohexanol oxidation intermediates. The in vitro transposon mutagenesis technique was shown to be a powerful tool for rapidly assigning gene functions to all ORFs in the pathway.  相似文献   

8.
Broad-host-range IncP and IncQ plasmids have been transferred to the aerobic magnetic bacterium Aquaspirillum sp. strain AMB-1. Conjugal matings with Escherichia coli S17-1 allowed high-frequency transfer of the RK2 derivative pRK415 (4.5 x 10(-3) transconjugant per recipient cell) and the RSF1010 derivative pKT230 (3.0 x 10(-3) transconjugant per recipient). These plasmids successfully formed autonomous replicons in transconjugants and could be isolated and transformed back into E. coli, illustrating their potential as shuttle vectors. A mobilizable plasmid containing transposon Tn5 was transferred to Aquaspirillum sp. strain AMB-1 and also to the obligately microaerophilic magnetic bacterium Aquaspirillum magnetotacticum MS-1. Five nonmagnetic kanamycin-resistant mutants of Aquaspirillum sp. strain AMB-1 in which Tn5 was shown to be integrated into the chromosome were obtained. Different genomic fragments containing the mutagenized regions were cloned into E. coli. Two genomic fragments were restriction mapped, and the site of Tn5 insertion was determined. They were shown to be identical, although derived from independent transposon insertions. One of these clones was found to hybridize strongly to regions of the A. magnetotacticum MS-1 chromosome. This is the first report of gene transfer in a magnetic bacterium.  相似文献   

9.
A novel Tc1-like transposable element has been identified as a new DNA transposon in the mud loach, Misgurnus mizolepis. The M. mizolepis Tc1-like transposon (MMTS) is comprised of inverted terminal repeats and a single gene that codes Tc1-like transposase. The deduced amino acid sequence of the transposase-encoding region of MMTS transposon contains motifs including DDE motif, which was previously recognized in other Tc1-like transposons. However, putative MMTS transposase has only 34-37% identity with well-known Tc1, PPTN, and S elements at the amino acid level. In dot-hybridization analysis used to measure the copy numbers of the MMTS transposon in genomes of the mud loach, it was shown that the MMTS transposon is present at about 3.36 x 104 copies per 2 x 109 bp, and accounts for approximately 0.027% of the mud loach genome. Here, we also describe novel MMTS-like transposons from the genomes of carp-like fishes, flatfish species, and cichlid fishes, which bear conserved inverted repeats flanking an apparently intact transposase gene. Additionally, BLAST searches and phylogenetic analysis indicated that MMTS-like transposons evolved uniquely in fishes, and comprise a new subfamily of Tc1-like transposons, with only modest similarity to Drosophila melanogaster (foldback element FB4, HB2, HB1), Xenopus laevis, Xenopus tropicalis, and Anopheles gambiae (Frisky).  相似文献   

10.
Genetic analysis of Bacteroides fragilis (BF) is hindered because of the lack of efficient transposon mutagenesis methods. Here, we describe a simple method for transposon mutagenesis using EZ::TN5, a commercially available system that we optimized for use in BF638R. The modified EZ::TN5 transposon contains an Escherichia coli conditional origin of replication, a kanamycin resistance gene for E. coli, an erythromycin resistance gene for BF , and 19 basepair transposase recognition sequences on either ends. Electroporation of the transposome (transposon-transposase complex) into BF638R yielded 3.2 ± 0.35 × 10(3) CFU μg(-1) of transposon DNA. Modification of the transposon by the BF638R restriction/modification system increased transposition efficiency sixfold. Electroporation of the EZ::TN5 transposome results in a single-copy insertion of the transposon evenly distributed across the genome of BF638R and can be used to construct a BF638R transposon library. The transposon was also effective in mutating a BF clinical isolate and a strain of the related species, Bacteroides thetaiotaomicron. The EZ::TN5-based mutagenesis described here is more efficient than other transposon mutagenesis approaches previously reported for BF.  相似文献   

11.
We have characterized a transferable tetracycline resistance (Tcr) element from a Streptococcus intermedius isolate. The gene responsible for this resistance was identified by PCR and Southern hybridization as tet(S). Furthermore, the genetic support for this determinant was shown to be a conjugative transposon closely related to Tn916. This element has been designated Tn916S.  相似文献   

12.
We have previously identified a gene in Staphylococcus aureus, agr, whose activity is required for high-level post-exponential-phase expression of a series of secreted proteins. In this paper, we describe the cloning of this gene in Escherichia coli by using an inserted transposon (Tn551) as a cloning probe. The cloned gene, consisting of a 241-codon open reading frame containing the site of the transposon insertion, was recloned to an S. aureus vector, pSK265, and shown to be functional in S. aureus. Activity was evaluated by determinations of alpha-hemolysin, beta-hemolysin, and toxic shock syndrome toxin-1 production in early-stationary-phase cultures. The cloned gene showed considerable variation with respect to different exoproteins and different host strains compared with the chromosomal agr determinant; this variation could not be attributed to the higher copy number of the cloned gene and probably reflects inapparent subtleties of the regulatory system.  相似文献   

13.
Analysis of one of the regions of catabolic plasmid pP51 which encode chlorobenzene metabolism of Pseudomonas sp. strain P51 revealed that the tcbA and tcbB genes for chlorobenzene dioxygenase and dehydrogenase are located on a transposable element, Tn5280. Tn5280 showed the features of a composite bacterial transposon with iso-insertion elements (IS1066 and IS1067) at each end of the transposon oriented in an inverted position. When a 12-kb HindIII fragment of pP51 containing Tn5280 was cloned in the suicide donor plasmid pSUP202, marked with a kanamycin resistance gene, and introduced into Pseudomonas putida donor plasmid pSUP202, marked with a kanamycin resistance gene, and introduced into Pseudomonas putida KT2442, Tn5280 was found to transpose into the genome at random and in single copy. The insertion elements IS1066 and IS1067 differed in a single base apir located in the inner inverted repeat and were found to be highly homologous to a class of repetitive elements of Bradyrhizobium japonicum and distantly related to IS630 of Shigella sonnei. The presence of the catabolic genes tcbA and tcbB on Tn5280 suggests a mechanism by which gene clusters can be mobilized as gene cassettes and joined with others to form novel catabolic pathways.  相似文献   

14.
15.
16.
The M1 strain, able to grow on beta-myrcene as the sole carbon and energy source, was isolated by an enrichment culture and identified as a Pseudomonas sp. One beta-myrcene-negative mutant, called N22, obtained by transposon mutagenesis, accumulated (E)-2-methyl-6-methylen-2,7-octadien-1-ol (or myrcen-8-ol) as a unique beta-myrcene biotransformation product. This compound was identified by gas chromatography-mass spectrometry. We cloned and sequenced the DNA regions flanking the transposon and used these fragments to identify the M1 genomic library clones containing the wild-type copy of the interrupted gene. One of the selected cosmids, containing a 22-kb genomic insert, was able to complement the N22 mutant for growth on beta-myrcene. A 5,370-bp-long sequence spanning the region interrupted by the transposon in the mutant was determined. We identified four open reading frames, named myrA, myrB, myrC, and myrD, which can potentially code for an aldehyde dehydrogenase, an alcohol dehydrogenase, an acyl-coenzyme A (CoA) synthetase, and an enoyl-CoA hydratase, respectively. myrA, myrB, and myrC are likely organized in an operon, since they are separated by only 19 and 36 nucleotides (nt), respectively, and no promoter-like sequences have been found in these regions. The myrD gene starts 224 nt upstream of myrA and is divergently transcribed. The myrB sequence was found to be completely identical to the one flanking the transposon in the mutant. Therefore, we could ascertain that the transposon had been inserted inside the myrB gene, in complete agreement with the accumulation of (E)-2-methyl-6-methylen-2,7-octadien-1-ol by the mutant. Based on sequence and biotransformation data, we propose a pathway for beta-myrcene catabolism in Pseudomonas sp. strain M1.  相似文献   

17.
转座子挽救法对苜蓿中华根瘤菌与耐盐有关基因的定位   总被引:5,自引:0,他引:5  
用含Tn5转座子的质粒pRL1063a诱变苜蓿中华根瘤菌(Sinorhizobium meliloti)042BM,得到盐敏感突变株042BML-2。采用转座子挽救法对Tn5插入位点两边的序列进行克隆与测序,获得了1179bp的转座子插入位点侧翼DNA序列。在GenBank中进行序列同源性和基因定位分析,结果表明:转座子插入在一个功能未知的基因内部,此基因长6270bp。研究证明:该基因与042BM的耐盐性有关,并定名为rtsC。氨基酸疏水性分析表明,在RtsC蛋白的N端有两个跨膜区,该蛋白与细菌趋化性相关蛋白的功能域有同源性。并对RtsC蛋白在苜蓿中华根瘤菌042BM耐盐性中的作用进行了讨论。  相似文献   

18.
The gtfB gene coding for glucosyltransferase-I (GTF-I) activity previously isolated from Streptococcus mutans GS-5 was insertionally inactivated with the newly constructed transposon MudE in an Escherichia coli background. Insertion of MudE into various regions of the gtfB gene led to inactivation of GTF-I activity. The altered gene was introduced back into S. mutans GS-5 by transformation and produced mutants defective in insoluble glucan synthesis as well as the ability to colonize smooth surfaces in the presence of sucrose. Therefore, the MudE transposon can be utilized to produce specific mutants in oral streptococci as well as in other transformable Gram-positive bacteria expressing an erythromycin-resistance marker.  相似文献   

19.
Two gene transfer systems were established for a marine bacterium, Vibrio sp. strain 60. One was generalized transduction with a newly isolated bacteriophage, As3, and the other was conjugal gene transfer by the use of newly constructed transposon-facilitated recombination (Tfr) donors. As3 transduced various chromosomal markers at frequencies of 10(-4) to 10(-6). Tfr donors, which were constructed by introducing transposon Tn10 into both plasmid RP4 and the chromosome, mediated the polarized transfer of chromosomal genes from the sites of Tn10 insertion on the chromosome. By means of these gene transfer systems, a genetic map of the vibrio chromosome was constructed.  相似文献   

20.
Pseudomonas putida strain BNF1 was isolated to degrade aromatic hydrocarbons efficiently and use phenol as a main carbon and energy source to support its growth. Catechol 2,3-dioxygenase was found to be the responsible key enzyme for the biodegradation of aromatic hydrocarbons. Catechol 2,3-dioxygenase gene was cloned from plasmid DNA of P. putida strain BNF1. The nucleotide base sequence of a 924 bp segment encoding the catechol 2,3-dioxygenase (C23O) was determined. This segment showed an open reading frame, which encoded a polypeptide of 307 amino acids. C23O gene was inserted into NotI-cut transposon vector pUT/mini-Tn5 (Kmr) to get a novel transposon vector pUT/mini-Tn5-C23O. With the helper plasmid PRK2013, the transposon vector pUT/mini-Tn5-C23O was introduced into one alkanes degrading strain Acinetobacter sp. BS3 by triparental conjugation, and then the C23O gene was integrated into the chromosome of Acinetobacter sp. BS3. And the recombinant BS3-C23O, which could express catechol 2,3-dioxygenase protein, was obtained. The recombinant BS3-C23O was able to degrade various aromatic hydrocarbons and n-alkanes. Broad substrate specificity, high enzyme activity, and the favorable stability suggest that the BS3-C23O was a potential candidate used for the biodegradation of crude oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号