首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Commercial seasonal flu vaccines induce production of antibodies directed mostly towards hemaglutinin (HA). Because HA changes rapidly in the circulating virus, the protection remains partial. Several conserved viral proteins, e.g., nucleocapsid (NP) and matrix proteins (M1), are present in the vaccine, but are not immunogenic. To improve the protection provided by these vaccines, we used nanoparticles made of the coat protein of a plant virus (papaya mosaic virus; PapMV) as an adjuvant. Immunization of mice and ferrets with the adjuvanted formulation increased the magnitude and breadth of the humoral response to NP and to highly conserved regions of HA. They also triggered a cellular mediated immune response to NP and M1, and long-lasting protection in animals challenged with a heterosubtypic influenza strain (WSN/33). Thus, seasonal flu vaccine adjuvanted with PapMV nanoparticles can induce universal protection to influenza, which is a major advancement when facing a pandemic.  相似文献   

2.
Immunogenic properties of synthetic peptides corresponding to regions 122–133, 136–147, 154–164, and 314–328 of the heavy chain (HA1) of A/Aichi/2/68 virus hemagglutinin were studied. Peptides 122–133 and 136–147 together form a nearly complete antigenic determinant A, peptide 154–164 is a part of determinant B, and peptide 314–328 corresponds to the C-terminal HA1 fragment. In a model influenza A/Aichi/2/68 infection in CBA mice, a protective effect of conjugates of BSA with peptides 136–147 and 314–328 was shown. Immunization of animals with conjugates BSA-(136–147) and BSA-(314–328) in combination with interferon inducers (larifan and ridostin) and a plant immunomodulator (immunomax) intensified the protection of mice against the influenza infection.  相似文献   

3.
To develop an efficient nasal influenza vaccine, influenza A and B virus HA with rCTB as a mucosal adjuvant were administered to mice intranasally. Serum anti-HA IgG and IgA antibody responses for both HA vaccines were significantly increased in the presence of rCTB. Higher HI and neutralizing antibody titers and higher mucosal IgA antibody responses in the respiratory tract were detected when rCTB was added than without rCTB. When mice were immunized with HA vaccine with or without rCTB and challenged by intranasal administration of mouse-adapted pathogenic influenza A virus, all mice immunized with HA plus rCTB survived for seven days without any inflammatory changes in the lungs, while not all the mice immunized with HA without rCTB survived, and all of them had lung consolidations. These results demonstrate that intranasal co-administration of rCTB as a mucosal adjuvant with influenza virus HA is necessary not only for the induction of systemic and mucosal HA antibodies, but also for the protection of mice from morbidity and mortality resulting from virus infection.  相似文献   

4.
Du L  Leung VH  Zhang X  Zhou J  Chen M  He W  Zhang HY  Chan CC  Poon VK  Zhao G  Sun S  Cai L  Zhou Y  Zheng BJ  Jiang S 《PloS one》2011,6(1):e16555
Development of effective vaccines to prevent influenza, particularly highly pathogenic avian influenza (HPAI) caused by influenza A virus (IAV) subtype H5N1, is a challenging goal. In this study, we designed and constructed two recombinant influenza vaccine candidates by fusing hemagglutinin 1 (HA1) fragment of A/Anhui/1/2005(H5N1) to either Fc of human IgG (HA1-Fc) or foldon plus Fc (HA1-Fdc), and evaluated their immune responses and cross-protection against divergent strains of H5N1 virus. Results showed that these two recombinant vaccines induced strong immune responses in the vaccinated mice, which specifically reacted with HA1 proteins and an inactivated heterologous H5N1 virus. Both proteins were able to cross-neutralize infections by one homologous strain (clade 2.3) and four heterologous strains belonging to clades 0, 1, and 2.2 of H5N1 pseudoviruses as well as three heterologous strains (clades 0, 1, and 2.3.4) of H5N1 live virus. Importantly, immunization with these two vaccine candidates, especially HA1-Fdc, provided complete cross-clade protection against high-dose lethal challenge of different strains of H5N1 virus covering clade 0, 1, and 2.3.4 in the tested mouse model. This study suggests that the recombinant fusion proteins, particularly HA1-Fdc, could be developed into an efficacious universal H5N1 influenza vaccine, providing cross-protection against infections by divergent strains of highly pathogenic H5N1 virus.  相似文献   

5.
Immunization of mice with DNA encoding the influenza virus hemagglutinin (HA) affords complete protection against lethal influenza virus infection and the means to investigate the mechanisms of B-cell responsiveness to virus challenge. Using a single-cell enzyme-linked immunospot assay, we sought to determine the localization of HA-specific antibody-forming cells (AFCs) during the development of humoral immunity in mice given HA DNA vaccine by gene gun. At 33 days postvaccination, populations of AFCs were maintained in the spleen and bone marrow. In response to lethal challenge with influenza virus, the AFCs became localized at the site of antigenic challenge, i.e., within the draining lymph nodes of the lung compartment. Immunoglobulin G (IgG)- and IgA-producing AFCs were detected in lymph nodes of the upper and lower respiratory tracts, underscoring their importance in clearing virus from the lungs. Response to challenge required competent CD4+ T cells, without which no AFCs were generated, even those producing IgM. By contrast, in mice vaccinated with an HA-containing subunit vaccine, fewer AFCs were generated in response to challenge, and these animals were less capable of resisting infection. Our findings demonstrate the comparable localization of AFCs in response to challenge in mice vaccinated with either HA DNA or live virus. Moreover, the former strategy generates both IgG- and IgA-producing plasma cells.  相似文献   

6.

Background

The 23-amino acid extracellular domain of matrix 2 protein (M2e) and the internal nucleoprotein (NP) of influenza are highly conserved among viruses and thus are promising candidate antigens for the development of a universal influenza vaccine. Various M2e- or NP-based DNA or viral vector vaccines have been shown to have high immunogenicity; however, high cost, complicated immunization procedures, and vector-specific antibody responses have restricted their applications. Immunization with an NP–M2e fusion protein expressed in Escherichia coli may represent an alternative strategy for the development of a universal influenza vaccine.

Methodology/Principal Findings

cDNA encoding M2e was fused to the 3′ end of NP cDNA from influenza virus A/Beijing/30/95 (H3N2). The fusion protein (NM2e) was expressed in E. coli and isolated with 90% purity. Mice were immunized with recombinant NM2e protein along with aluminum hydroxide gel and/or CpG as adjuvant. NM2e plus aluminum hydroxide gel almost completely protected the mice against a lethal (20 LD50) challenge of heterologous influenza virus A/PR/8/34.

Conclusions/Significance

The NM2e fusion protein expressed in E. coli was highly immunogenic in mice. Immunization with NM2e formulated with aluminum hydroxide gel protected mice against a lethal dose of a heterologous influenza virus. Vaccination with recombinant NM2e fusion protein is a promising strategy for the development of a universal influenza vaccine.  相似文献   

7.
为评价在小鼠体内表达流感病毒M1和HA基因诱导的免疫反应,制备共表达H5N1亚型禽流感病毒 (A/Anhui/1/2005) 全长基质蛋白1 (M1) 基因和血凝素 (HA) 基因的重组DNA疫苗pStar-M1/HA和重组腺病毒载体疫苗Ad-M1/HA,将其按初免-加强程序免疫BALB/c小鼠,共免疫4次,每次间隔14 d。第1、3次用DNA疫苗,第2、4次用重组腺病毒载体疫苗,每次免疫前及末次免疫后14 d采集小鼠血清用于检测体液免疫应答,末次免疫后14 d采集小鼠脾淋巴细胞用于检测细胞免疫应答。血凝  相似文献   

8.
The infectivity and pathogenicity of influenza virus are primarily determined by host cellular trypsin-type processing proteases which cleave the viral membrane fusion glycoprotein hemagglutinin (HA). Therefore the distribution of the processing protease is a major determinant of the infectious organ tropism. The common epidemic human influenza A virus is pneumotropic and the HA processing proteases tryptase Clara, mini-plasmin, tryptase TC30 and ectopic anionic trypsin have all been isolated from mammalian airways. However, the pneumotropic influenza virus occasionally causes severe brain edema, particularly in children presenting with Reye's syndrome treated with aspirin, or in children with influenza-associated encephalopathy without antipyretic treatment. We have observed that, after influenza virus infection, the accumulation of mini-plasmin in the cerebral capillaries in mice with a congenital or acquired abnormality of mitochondrial beta-oxidation mimicking the pathological findings of Reye's syndrome, causes an invasion and multiplication of the pneumotropic influenza virus at these same locations. From these findings, we hypothesize that the accumulated mini-plasmin modifies the brain capillaries from a non-permissive to a permissive state, thereby allowing multiplication of pneumotropic influenza virus. In addition, mini-plasmin proteolytically destroys the blood-brain barrier. These pathologic findings, consistent with encephalopathy in mice with a systemic impairment of beta-oxidation, may have implications for human influenza encephalopathy.  相似文献   

9.
The recognition of influenza virus hemagglutinin (HA) by T lymphocytes was examined by assaying the T cell proliferative response of influenza virus-primed T cells to purified HA of different influenza A subtypes or to isolated heavy (HA1) or light (HA2) polypeptide chains of the HA molecule. The proliferative response to HA was dependent on the activation of an Ly-1+2- subset of T cells and required the presence of nylon wool-adherent, radiation-resistant accessory cells. T cells from mice primed by infection with one strain of type A influenza virus cross-reacted with other purified HA not only of the same subtype as the priming virus but also of serologically distinct subtypes of influenza A (but not B) virus. The response of virus-primed T cells to the homologous HA or to HA of the same subtype was shown to involve recognition of determinants on both the HA1 and the HA2 chains. The recognition of HA of different subtype by cross-reactive T cells appeared to be directed predominantly to determinants on HA2. Because the antibody response to influenza virus HA is not cross-reactive between subtypes and is directed predominantly to determinants on HA1, the present results indicate that at least some of the determinants on HA recognized by T cells are different from those recognized by B cells and that the HA2 chain may be involved primarily in stimulation of T cell rather than B cell immunity.  相似文献   

10.
There is a need to develop a universal vaccine against influenza virus infection to avoid developing new formulations of a seasonal vaccine each year. Many of the vaccine strategies for a universal vaccine target strain-conserved influenza virus proteins, such as the matrix, polymerase, and nucleoproteins, rather than the surface hemagglutinin and neuraminidase proteins. In addition, non-disease-causing viral vectors are a popular choice as a delivery system for the influenza virus antigens. As a proof-of-concept, we have designed a novel influenza virus immunogen based on the NP backbone containing human T cell epitopes for M1, NS1, NP, PB1 and PA proteins (referred as NPmix) as well as a construct containing the conserved regions of influenza virus neuraminidase (N-terminal) and hemagglutinin (C-terminal) (referred as NA-HA). DNA vectors and vaccinia virus recombinants expressing NPmix (WR-NP) or both NPmix plus NA-HA (WR-flu) in the cytosol were tested in a heterologous DNA-prime/vaccinia virus-boost vaccine regimen in mice. We observed an increase in the number of influenza virus-specific IFNγ-secreting splenocytes, composed of populations marked by CD4(+) and CD8(+) T cells producing IFNγ or TNFα. Upon challenge with influenza virus, the vaccinated mice exhibited decreased viral load in the lungs and a delay in mortality. These findings suggest that DNA prime/poxvirus boost with human multi-epitope recombinant influenza virus proteins is a valid approach for a general T-cell vaccine to protect against influenza virus infection.  相似文献   

11.
To understand more fully the molecular events associated with highly virulent or attenuated influenza virus infections, we have studied the effects of expression of the 1918 hemagglutinin (HA) and neuraminidase (NA) genes during viral infection in mice under biosafety level 3 (agricultural) conditions. Using histopathology and cDNA microarrays, we examined the consequences of expression of the HA and NA genes of the 1918 pandemic virus in a recombinant influenza A/WSN/33 virus compared to parental A/WSN/33 virus and to an attenuated virus expressing the HA and NA genes from A/New Caledonia/20/99. The 1918 HA/NA:WSN and WSN recombinant viruses were highly lethal for mice and displayed severe lung pathology in comparison to the nonlethal New Caledonia HA/NA:WSN recombinant virus. Expression microarray analysis performed on lung tissues isolated from the infected animals showed activation of many genes involved in the inflammatory response, including cytokine, apoptosis, and lymphocyte genes that were common to all three infection groups. However, consistent with the histopathology studies, the WSN and 1918 HA/NA:WSN recombinant viruses showed increased up-regulation of genes associated with activated T cells and macrophages, as well as genes involved in apoptosis, tissue injury, and oxidative damage that were not observed in the New Caledonia HA/NA:WSN recombinant virus-infected mice. These studies document clear differences in gene expression profiles that were correlated with pulmonary disease pathology induced by virulent and attenuated influenza virus infections.  相似文献   

12.
The Spanish influenza pandemic of 1918 to 1919 swept the globe and resulted in the deaths of at least 20 million people. The basis of the pulmonary damage and high lethality caused by the 1918 H1N1 influenza virus remains largely unknown. Recombinant influenza viruses bearing the 1918 influenza virus hemagglutinin (HA) and neuraminidase (NA) glycoproteins were rescued in the genetic background of the human A/Texas/36/91 (H1N1) (1918 HA/NA:Tx/91) virus. Pathogenesis experiments revealed that the 1918 HA/NA:Tx/91 virus was lethal for BALB/c mice without the prior adaptation that is usually required for human influenza A H1N1 viruses. The increased mortality of 1918 HA/NA:Tx/91-infected mice was accompanied by (i) increased (>200-fold) viral replication, (ii) greater influx of neutrophils into the lung, (iii) increased numbers of alveolar macrophages (AMs), and (iv) increased protein expression of cytokines and chemokines in lung tissues compared with the levels seen for control Tx/91 virus-infected mice. Because pathological changes in AMs and neutrophil migration correlated with lung inflammation, we assessed the role of these cells in the pathogenesis associated with 1918 HA/NA:Tx/91 virus infection. Neutrophil and/or AM depletion initiated 3 or 5 days after infection did not have a significant effect on the disease outcome following a lethal 1918 HA/NA:Tx/91 virus infection. By contrast, depletion of these cells before a sublethal infection with 1918 HA/NA:Tx/91 virus resulted in uncontrolled virus growth and mortality in mice. In addition, neutrophil and/or AM depletion was associated with decreased expression of cytokines and chemokines. These results indicate that a human influenza H1N1 virus possessing the 1918 HA and NA glycoproteins can induce severe lung inflammation consisting of AMs and neutrophils, which play a role in controlling the replication and spread of 1918 HA/NA:Tx/91 virus after intranasal infection of mice.  相似文献   

13.
Highly pathogenic avian influenza H5N1 viruses can result in poultry and occasionally in human mortality. A safe and effective H5N1 vaccine is urgently needed to reduce the pandemic potential. Hemagglutinin (HA), a major envelope protein accounting for approximately 80% of spikes in influenza virus, is often used as a major antigen for subunit vaccine development. In this study, we conducted a systematic study of the immune response against influenza virus infection following immunization with recombinant HA proteins expressed in insect (Sf9) cells, insect cells that contain exogenous genes for elaborating N-linked glycans (Mimic) and mammalian cells (CHO). While the antibody titers are higher with the insect cell derived HA proteins, the neutralization and HA inhibition titers are much higher with the mammalian cell produced HA proteins. Recombinant HA proteins containing tri- or tetra-antennary complex, terminally sialylated and asialyated-galactose type N-glycans induced better protective immunity in mice to lethal challenge. The results are highly relevant to issues that should be considered in the production of fragment vaccines.  相似文献   

14.

Background

Glycosylation on the globular head of the hemagglutinin (HA) protein of influenza virus acts as an important target for recognition and destruction of virus by innate immune proteins of the collectin family. This, in turn, modulates the virulence of different viruses for mice. The role of particular oligosaccharide attachments on the HA in determining sensitivity to collectins has yet to be fully elucidated.

Methods

When comparing the virulence of H3N2 subtype viruses for mice we found that viruses isolated after 1980 were highly glycosylated and induced mild disease in mice. During these studies, we were surprised to find a small plaque variant of strain A/Beijing/353/89 (Beij/89) emerged following infection of mice and grew to high titres in mouse lung. In the current study we have characterized the properties of this small plaque mutant both in vitro and in vivo.

Results

Small plaque mutants were recovered following plaquing of lung homogenates from mice infected with influenza virus seed Beij/89. Compared to wild-type virus, small plaque mutants showed increased virulence in mice yet did not differ in their ability to infect or replicate in airway epithelial cells in vitro. Instead, small plaque variants were markedly resistant to neutralization by murine collectins, a property that correlated with the acquisition of an amino acid substitution at residue 246 on the viral HA. We present evidence that this substitution was associated with the loss of an oligosaccharide glycan from the globular head of HA.

Conclusion

A point mutation in the gene encoding the HA of Beij/89 was shown to ablate a glycan attachment site. This was associated with resistance to collectins and increased virulence in mice.  相似文献   

15.
A R Davis  T Bos  M Ueda  D P Nayak  D Dowbenko  R W Compans 《Gene》1983,21(3):273-284
Cloned DNA fragments coding for parts of strain WSN (H1N1) influenza virus hemagglutinin (HA) were fused to a bacterial leader DNA derived from the Escherichia coli trp operon. Fusion proteins produced consisted of 190 amino acids of trpLE' protein at the amino terminus, and HA amino acids, either 1-308, 1-396, or 1-548 (complete HA), at the carboxyl terminus. These proteins were expressed at high levels (10-20% of total protein) in E. coli starved for tryptophan. A CNBr fragment (HA1-211) was derived from HA-308. Each of the proteins was purified and used for immunizing mice and rabbits. The antibody produced was shown to bind to (i) the HA fusion proteins, (ii) detergent-treated viral HA, (iii) HA, on intact virions, and (iv) the HA on the surface of cells infected with influenza virus. This shows that the HA fusion proteins expressed in bacteria can elicit antibodies that recognize at least some determinants of the native viral HA, and probably could lead to development of an anti-influenza vaccine.  相似文献   

16.
To analyze the compatibility of avian influenza A virus hemagglutinins (HAs) and human influenza A virus matrix (M) proteins M1 and M2, we doubly infected Madin-Darby canine kidney cells with amantadine (1-aminoadamantane hydrochloride)-resistant human viruses and amantadine-sensitive avian strains. By using antisera against the human virus HAs and amantadine, we selected reassortants containing the human virus M gene and the avian virus HA gene. In our system, high virus yields and large, well-defined plaques indicated that the avian HAs and the human M gene products could cooperate effectively; low virus yields and small, turbid plaques indicated that cooperation was poor. The M gene products are among the primary components that determine the species specificities of influenza A viruses. Therefore, our system also indicated whether the avian HA genes effectively reassorted into the genome and replaced the HA gene of the prevailing human influenza A viruses. Most of the avian HAs that we tested efficiently cooperated with the M gene products of the early human A/PR/8/34 (H1N1) virus; however, the avian HAs did not effectively cooperate with the most recently isolated human virus that we tested, A/Nanchang/933/95 (H3N2). Cooperation between the avian HAs and the M proteins of the human A/Singapore/57 (H2N2) virus was moderate. These results suggest that the currently prevailing human influenza A viruses might have lost their ability to undergo antigenic shift and therefore are unable to form new pandemic viruses that contain an avian HA, a finding that is of great interest for pandemic planning.  相似文献   

17.
Highly pathogenic avian influenza (HPAI) H5N1 viruses, which have emerged in poultry and other wildlife worldwide, contain a characteristic multi-basic cleavage site (CS) in the hemagglutinin protein (HA). Because this arginine-rich CS is unique among influenza virus subtypes, antibodies against this site have the potential to specifically diagnose pathogenic H5N1. By immunizing mice with the CS peptide and screening a phage display library, we isolated four antibody Fab fragment clones that specifically bind the antigen peptide and several HPAI H5N1 HA proteins in different clades. The soluble Fab fragments expressed in Escherichia coli bound the CS peptide and the H5N1 HA protein with nanomolar affinity. In an immunofluorescence assay, these Fab fragments stained cells infected with HPAI H5N1 but not those infected with a less virulent strain. Lastly, all the Fab clones could detect the CS peptide and H5N1 HA protein by open sandwich ELISA. Thus, these recombinant Fab fragments will be useful novel reagents for the rapid and specific detection of HPAI H5N1 virus.  相似文献   

18.
Zhang J  Pekosz A  Lamb RA 《Journal of virology》2000,74(10):4634-4644
Influenza viruses encoding hemagglutinin (HA) and neuraminidase (NA) glycoproteins with deletions in one or both cytoplasmic tails (HAt- or NAt-) have a reduced association with detergent-insoluble glycolipids (DIGs). Mutations which eliminated various combinations of the three palmitoylation sites in HA exhibited reduced amounts of DIG-associated HA in virus-infected cells. The influenza virus matrix (M(1)) protein was also found to be associated with DIGs, but this association was decreased in cells infected with HAt- or NAt- virus. Regardless of the amount of DIG-associated protein, the HA and NA glycoproteins were targeted primarily to the apical surface of virus-infected, polarized cells. The uncoupling of DIG association and apical transport was augmented by the observation that the influenza A virus M(2) protein as well as the influenza C virus HA-esterase-fusion glycoprotein were not associated with DIGs but were apically targeted. The reduced DIG association of HAt- and NAt- is an intrinsic property of the glycoproteins, as similar reductions in DIG association were observed when the proteins were expressed from cDNA. Examination of purified virions indicated reduced amounts of DIG-associated lipids in the envelope of HAt- and NAt- viruses. The data indicate that deletion of both the HA and NA cytoplasmic tails results in reduced DIG association and changes in both virus polypeptide and lipid composition.  相似文献   

19.
Takeda M 《Uirusu》2004,54(1):9-15
Lipid molecules of the plasma membrane are not distributed homogeneously, but form a lateral organization resulting from preferential packaging of sphingolipid and cholesterol into lipid microdomain rafts, in which specific membrane proteins become incorporated. Evidence has accumulated that a variety of viruses including influenza virus use the raft during some steps of their replication cycles. Influenza virus glycoproteins, hemagglutinin (HA) and neuraminidase, associate intrinsically with the rafts. The HA protein is distributed in clusters at the plasma membrane and concentrated in the small area by interacting with the raft. A mutant influenza virus, whose HA protein lacks the ability to associate with the raft, contains reduced amounts of the HA proteins and exhibits a decreased virus to cell fusion activity, resulting in greatly reduced infectivity. Thus, the raft may play an important role in virus production by acting as a concentrating devise or an efficient carrier to transport the HA protein to the site of virus budding.  相似文献   

20.
流感病毒表面抗原——血凝素(HA)亚单位,在人工合成的胞壁酰二肽(MDP)佐剂配合下,注射小白鼠所产生的免疫效果与常用的Al(OH)_3及福氏佐剂相似。含MDP佐剂的流感病毒HA亚单位疫苗腹腔注射小白鼠,能产生与福尔马林灭活的流感疫苗相似的免疫反应,而皮下注射,前者的免疫效果比后者明显为佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号