首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human pathogen Neisseria meningitidis is capable of growth using the denitrification of nitrite to nitrous oxide under microaerobic conditions. This process is catalyzed by two reductases: nitrite reductase (encoded by aniA) and nitric oxide (NO) reductase (encoded by norB). Here, we show that in N. meningitidis MC58 norB is regulated by nitric oxide via the product of gene NMB0437 which encodes NsrR. NsrR is a repressor in the absence of NO, but norB expression is derepressed by NO in an NsrR-dependent manner. nsrR-deficient mutants grow by denitrification more rapidly than wild-type N. meningitidis, and this is coincident with the upregulation of both NO reductase and nitrite reductase even under aerobic conditions in the absence of nitrite or NO. The NsrR-dependent repression of aniA (unlike that of norB) is not lifted in the presence of NO. The role of NsrR in the control of expression of aniA is linked to the function of the anaerobic activator protein FNR: analysis of nsrR and fnr single and nsrR fnr double mutants carrying an aniA promoter lacZ fusion indicates that the role of NsrR is to prevent FNR-dependent aniA expression under aerobic conditions, indicating that FNR in N. meningitidis retains considerable activity aerobically.  相似文献   

2.
In this paper, we report the identification of a norCBQD gene cluster that encodes a functional nitric oxide reductase (Nor) in Nitrosomonas europaea. Disruption of the norB gene resulted in a strongly diminished nitric oxide (NO) consumption by cells and membrane protein fractions, which was restored by the introduction of an intact norCBQD gene cluster in trans. NorB-deficient cells produced amounts of nitrous oxide (N2O) equal to that of wild-type cells. NorCB-dependent activity was present during aerobic growth and was not affected by the inactivation of the putative fnr gene. The findings demonstrate the presence of an alternative site of N2O production in N. europaea.  相似文献   

3.
4.
Macrophages produce nitric oxide (NO) via the inducible nitric oxide synthase as part of a successful response to infection. The gene norB of Neisseria meningitidis encodes a NO reductase which enables utilization and consumption of NO during microaerobic respiration and confers resistance to nitrosative stress-related killing by human monocyte-derived macrophages (MDM). In this study we confirmed that NO regulates cytokine and chemokine release by resting MDM: accumulation of TNF-alpha, IL-12, IL-10, CCL5 (RANTES) and CXCL8 (IL-8) in MDM supernatants was significantly modified by the NO-donor S-nitroso-N-penicillamine (SNAP). Using a protein array, infection of MDM with N. meningitidis was shown to be associated with secretion of a wide range of cytokines and chemokines. To test whether NO metabolism by N. meningitidis modifies release of NO-regulated cytokines, we infected MDM with wild-type organisms and an isogenic norB strain. Resulting expression of the cytokines TNF-alpha and IL-12, and the chemokine CXCL8 was increased and production of the cytokine IL-10 and the chemokine CCL5 was decreased in norB-infected MDM, in comparison to wild-type. Addition of SNAP to cultures infected with wild-type mimicked the effect observed in cultures infected with the norB mutant. In conclusion, NorB-catalysed removal of NO modifies cellular release of NO-regulated cytokines and chemokines.  相似文献   

5.
6.
7.
Nitric oxide (NO) and nitrous oxide (N2O) are climatically important trace gases that are produced by both nitrifying and denitrifying bacteria. In the denitrification pathway, N2O is produced from nitric oxide (NO) by the enzyme nitric oxide reductase (NOR). The ammonia-oxidizing bacterium Nitrosomonas europaea also possesses a functional nitric oxide reductase, which was shown recently to serve a unique function. In this study, sequences homologous to the large subunit of nitric oxide reductase (norB) were obtained from eight additional strains of ammonia-oxidizing bacteria, including Nitrosomonas and Nitrosococcus species (i.e., both beta- and gamma-Proteobacterial ammonia oxidizers), showing widespread occurrence of a norB homologue in ammonia-oxidizing bacteria. However, despite efforts to detect norB homologues from Nitrosospira strains, sequences have not yet been obtained. Phylogenetic analysis placed nitrifier norB homologues in a subcluster, distinct from denitrifier sequences. The similarities and differences of these sequences highlight the need to understand the variety of metabolisms represented within a "functional group" defined by the presence of a single homologous gene. These results expand the database of norB homologue sequences in nitrifying bacteria.  相似文献   

8.
Two genes, norB and norZ, encoding two independent nitric oxide reductases have been identified in Alcaligenes eutrophus H16. norB and norZ predict polypeptides of 84.5 kDa with amino acid sequence identity of 90%. While norB resides on the megaplasmid pHG1, the norZ gene is located on a chromosomal DNA fragment. Amino acid sequence analysis suggests that norB and norZ encode integral membrane proteins composed of 14 membrane-spanning helices. The region encompassing helices 3 to 14 shows similarity to the NorB subunit of common bacterial nitric oxide reductases, including the positions of six strictly conserved histidine residues. Unlike the Nor enzymes characterized so far from denitrifying bacteria, NorB and NorZ of A. eutrophus contain an amino-terminal extension which may form two additional helices connected by a hydrophilic loop of 203 amino acids. The presence of a NorB/NorZ-like protein was predicted from the genome sequence of the cyanobacterium Synechocystis sp. strain PCC6803. While the common NorB of denitrifying bacteria is associated with a second cytochrome c subunit, encoded by the neighboring gene norC, the nor loci of A. eutrophus and Synechocystis lack adjacent norC homologs. The physiological roles of norB and norZ in A. eutrophus were investigated with mutants disrupted in the two genes. Mutants bearing single-site deletions in norB or norZ were affected neither in aerobic nor in anaerobic growth with nitrate or nitrite as the terminal electron acceptor. Inactivation of both norB and norZ was lethal to the cells under anaerobic growth conditions. Anaerobic growth was restored in the double mutant by introducing either norB or norZ on a broad-host-range plasmid. These results show that the norB and norZ gene products are isofunctional and instrumental in denitrification.  相似文献   

9.
We have analyzed the extent of regulation by the nitric oxide (NO)-sensitive repressor NsrR from Neisseria meningitidis MC58, using microarray analysis. Target genes that appeared to be regulated by NsrR, based on a comparison between an nsrR mutant and a wild-type strain, were further investigated by quantitative real-time PCR, revealing a very compact set of genes, as follows: norB (encoding NO reductase), dnrN (encoding a protein putatively involved in the repair of nitrosative damage to iron-sulfur clusters), aniA (encoding nitrite reductase), nirV (a putative nitrite reductase assembly protein), and mobA (a gene associated with molybdenum metabolism in other species but with a frame shift in N. meningitidis). In all cases, NsrR acts as a repressor. The NO protection systems norB and dnrN are regulated by NO in an NsrR-dependent manner, whereas the NO protection system cytochrome c' (encoded by cycP) is not controlled by NO or NsrR, indicating that N. meningitidis expresses both constitutive and inducible NO protection systems. In addition, we present evidence to show that the anaerobic response regulator FNR is also sensitive to NO but less so than NsrR, resulting in complex regulation of promoters such as aniA, which is controlled by both FNR and NsrR: aniA was found to be maximally induced by intermediate NO concentrations, consistent with a regulatory system that allows expression during denitrification (in which NO accumulates) but is down-regulated as NO approaches toxic concentrations.  相似文献   

10.
Neisseria meningitidis, the causative agent of meningococcal disease in humans, is likely to be exposed to nitrosative stress during natural colonization and disease. The genome of N. meningitidis includes the genes aniA and norB, predicted to encode nitrite reductase and nitric oxide (NO) reductase, respectively. These gene products should allow the bacterium to denitrify nitrite to nitrous oxide. We show that N. meningitidis can support growth microaerobically by the denitrification of nitrite via NO and that norB is required for anaerobic growth with nitrite. NorB and, to a lesser extent, the cycP gene product cytochrome c' are able to counteract toxicity due to exogenously added NO. Expression of these genes by N. meningitidis during colonization and disease may confer protection against exogenous or endogenous nitrosative stress.  相似文献   

11.
Brucella spp. are facultative intracellular pathogens that have the ability to survive and multiply in professional and nonprofessional phagocytes, and cause abortion in domestic animals and undulant fever in humans. However, the mechanism and factors of virulence are not fully understood. In the present study, a D-alanyl-D-alanine carboxypeptidase (DAP) mutant of Brucella abortus failed to replicate in mouse macrophages and HeLa cells, and showed less virulence than the wild type in mice. Under nitric oxide (NO) stress, the growth of the DAP mutant in vitro decreased and it also had less capability to reduce NO than the wild type. Intracellular replication of the DAP mutant was partially restored by pretreatment of macrophages with the NO synthase inhibitor, 1-phenyl-imidazole, and the level of expression of the NO reductase gene, norB, in the DAP mutant was lower than that in the wild type. These results suggest that DAP contributes to resistance against NO and that it is required for the intracellular growth of the bacterium.  相似文献   

12.
The nitric-oxide synthases (NOSs) are modular, cofactor-containing enzymes, divided into a heme-containing oxygenase domain and an FMN- and FAD-containing reductase domain. The domains are connected by a calmodulin (CaM)-binding sequence, occupancy of which is required for nitric oxide (NO) production. Two additional CaM-modulated regulatory elements are present in the reductase domains of the constitutive isoforms, the autoregulatory region (AR) and the C-terminal tail region. Deletion of the AR reduces CaM stimulation of electron flow through the reductase domain from 10-fold in wild-type nNOS to 2-fold in the mutant. Deletion of the C terminus yields an enzyme with greatly enhanced reductase activity in the absence of CaM but with activity equivalent to that of wild-type enzyme in its presence. A mutant in which both the AR and C terminus were deleted completely loses CaM modulation through the reductase domain. Thus, transduction of the CaM effect through the reductase domain of nNOS is dependent on these elements. Formation of nitric oxide is, however, still stimulated by CaM in all three mutants. A CaM molecule in which the N-terminal lobe was replaced by the C-terminal lobe (CaM-CC) supported NO synthesis by the deletion mutants but not by wild-type nNOS. We propose a model in which the AR, the C-terminal tail, and CaM interact directly to regulate the conformational state of the reductase domain of nNOS.  相似文献   

13.
14.
15.
Shi FM  Li YZ 《BMB reports》2008,41(1):79-85
The source of nitric oxide (NO) in plants is unclear and it has been reported NO can be produced by nitric oxide synthase (NOS) like enzymes and by nitrate reductase (NR). Here we used wild-type, Atnos1 mutant and nia1, nia2 NR-deficient mutant plants of Arabidopsis thaliana to investigate the potential source of NO production in response to Verticillium dahliae toxins (VD-toxins). The results revealed that NO production is much higher in wild-type and Atnos1 mutant than in nia1, nia2 NR-deficient mutants. The NR inhibitor had a significant effect on VD-toxins-induced NO production; whereas NOS inhibitor had a slight effect. NR activity was significantly implicated in NO production. The results indicated that as NO was induced in response to VD-toxins in Arabidopsis, the major source was the NR pathway. The production of NOS-system appeared to be secondary.  相似文献   

16.
17.
A gene that encodes a periplasmic copper-type nitrite reductase (NirK) was identified in Nitrosomonas europaea. Disruption of this gene resulted in the disappearance of Nir activity in cell extracts. The nitrite tolerance of NirK-deficient cells was lower than that of wild-type cells. Unexpectedly, NirK-deficient cells still produced nitric oxide (NO) and nitrous oxide (N(2)O), the latter in greater amounts than that of wild-type cells. This demonstrates that NirK is not essential for the production of NO and N(2)O by N. europaea. Inactivation of the putative fnr gene showed that Fnr is not essential for the expression of nirK.  相似文献   

18.
Mutations in Parkin (a ubiquitin protein ligase) are involved in autosomal recessive juvenile parkinsonism, but it is not known how they cause nigral cell death. We examined the effect of Parkin overexpression on cellular levels of oxidative damage, antioxidant defenses, nitric oxide production, and proteasomal enzyme activity. Increasing expression of Parkin by gene transfection in NT-2 and SK-N-MC cells led to increased proteasomal activity, decreased levels of protein carbonyls, 3-nitrotyrosine-containing proteins, and a trend to a reduction in ubiquitinated protein levels. Transfection of these cells with DNA encoding three mutant Parkins associated with autosomal recessive juvenile parkinsonism (Del 3-5, T240R, and Q311X) gave smaller increases in proteasomal activity and led to elevated levels of protein carbonyls and lipid peroxidation. Turnover of the mutant proteins was slower than that of the wild-type protein, and both could be blocked by the proteasome inhibitor, lactacystin. A rise in levels of nitrated proteins and increased levels of NO2-/NO3- was also observed in cells transfected with mutant Parkins, apparently because of increased levels of neuronal nitric-oxide synthase. The presence of mutant Parkin in substantia nigra in juvenile parkinsonism may increase oxidative stress and nitric oxide production, sensitizing cells to death induced by other insults.  相似文献   

19.
The relationship between nitric oxide (NO) and salicylic acid (SA) was investigated in Arabidopsis thaliana. Here it is shown that SA is able to induce NO synthesis in a dose-dependent manner in Arabidopsis. NO production was detected by confocal microscopic analysis and spectrofluorometric assay in plant roots and cultured cells. To identify the metabolic pathways involved in SA-induced NO synthesis, genetic and pharmacological approaches were adopted. The analysis of the nia1,nia2 mutant showed that nitrate reductase activity was not required for SA-induced NO production. Experiments performed in the presence of a nitric oxide synthase (NOS) inhibitor suggested the involvement of NOS-like enzyme activity in this metabolic pathway. Moreover, the production of NO by SA treatment of Atnos1 mutant plants was strongly reduced compared with wild-type plants. Components of the SA signalling pathway giving rise to NO production were identified, and both calcium and casein kinase 2 (CK2) were demonstrated to be involved. Taken together, these results suggest that SA induces NO production at least in part through the activity of a NOS-like enzyme and that calcium and CK2 activity are essential components of the signalling cascade.  相似文献   

20.
A PCR-based approach was developed to recover nitric oxide (NO) reductase (norB) genes as a functional marker gene for denitrifying bacteria. norB database sequences grouped in two very distinct branches. One encodes the quinol-oxidizing single-subunit class (qNorB), while the other class is a cytochrome bc-type complex (cNorB). The latter oxidizes cytochrome c, and the gene is localized adjacent to norC. While both norB types occur in denitrifying strains, the qnorB type was also found in a variety of nondenitrifying strains, suggesting a function in detoxifying NO. Branch-specific degenerate primer sets detected the two norB types in our denitrifier cultures. Specificity was confirmed by sequence analysis of the norB amplicons and failure to amplify norB from nondenitrifying strains. These primer sets also specifically amplified norB from freshwater and marine sediments. Pairwise comparison of amplified norB sequences indicated minimum levels of amino acid identity of 43.9% for qnorB and 38% for cnorB. Phylogenetic analysis confirmed the existence of two classes of norB genes, which clustered according to the respective primer set. Within the qnorB cluster, the majority of genes from isolates and a few environmental clones formed a separate subcluster. Most environmental qnorB clones originating from both habitats clustered into two distinct subclusters of novel sequences from presumably as yet uncultivated organisms. cnorB clones were located on separate branches within subclusters of genes from known organisms, suggesting an origin from similar organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号