首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The actin filament-associated protein AFAP-110 is an SH2/SH3 binding partner for Src. AFAP-110 contains several protein-binding motifs in its amino terminus and has been hypothesized to function as an adaptor molecule that could link signaling proteins to actin filaments. Recent studies using deletional mutagenesis demonstrated that AFAP-110 can alter actin filament integrity in SV40 transformed Cos-1 cells. Thus, AFAP-110 may be positioned to modulate the effects of Src upon actin filaments. In this report, we sought to determine whether (a) AFAP-110 could interact with actin filaments directly and (b) deletion mutants could affect actin filament integrity and cell shape in untransformed fibroblast cells. The data demonstrate that the carboxy terminus of AFAP-110 is both necessary and sufficient for actin filament association, in vivo and in vitro. Analysis of the carboxy terminus revealed a mean 40% similarity with other known actin-binding motifs, indicating a mechanism for binding to actin filaments. AFAP-110 can also induce lamellipodia formation. Contiguous with the alpha-helical, actin-binding motif is an alpha-helical, leucine zipper motif. Deletion of the leucine zipper motif (AFAP(Deltalzip)) followed by cellular expression enabled AFAP(Deltalzip) to alter actin filament integrity and cell shape in untransformed cells as evidenced by the induction of lamellipodia formation. We hypothesize that AFAP-110 may be an important signaling protein that can directly modulate changes in actin filament integrity and induce lamellipodia formation.  相似文献   

2.
The actin filament-associated protein and Src-binding partner, AFAP-110, is an adaptor protein that links signaling molecules to actin filaments. AFAP-110 binds actin filaments directly and multimerizes through a leucine zipper motif. Cellular signals downstream of Src(527F) can regulate multimerization. Here, we determined recombinant AFAP-110 (rAFAP-110)-bound actin filaments cooperatively, through a lateral association. We demonstrate rAFAP-110 has the capability to cross-link actin filaments, and this ability is dependent on the integrity of the carboxy terminal actin binding domain. Deletion of the leucine zipper motif or PKC phosphorylation affected AFAP-110's conformation, which correlated with changes in multimerization and increased the capability of rAFAP-110 to cross-link actin filaments. AFAP-110 is both a substrate and binding partner of PKC. On PKC activation, stress filament organization is lost, motility structures form, and AFAP-110 colocalizes strongly with motility structures. Expression of a deletion mutant of AFAP-110 that is unable to bind PKC blocked the effect of PMA on actin filaments. We hypothesize that upon PKC activation, AFAP-110 can be cooperatively recruited to newly forming actin filaments, like those that exist in cell motility structures, and that PKC phosphorylation effects a conformational change that may enable AFAP-110 to promote actin filament cross-linking at the cell membrane.  相似文献   

3.
Activation of PKC will induce the cSrc binding partner AFAP-110 to colocalize with and activate cSrc. The ability of AFAP-110 to colocalize with cSrc is contingent on the integrity of the amino-terminal pleckstrin homology (PH1) domain, while the ability to activate cSrc is dependent on the integrity of its SH3 binding motif, which engages the cSrc SH3 domain. The outcome of AFAP-110-directed cSrc activation is a change in actin filament integrity and the formation of podosomes. Here, we address what cellular signals promote AFAP-110 to colocalize with and activate cSrc, in response to PKC activation or PMA treatment. Because PH domain integrity in AFAP-110 is required for colocalization, and PH domains are known to interact with both protein and lipid binding partners, we sought to determine whether phosphatidylinositol 3-kinase (PI3K) activation played a role in PMA-induced colocalization between AFAP-110 and cSrc. We show that PMA treatment is able to direct activation of PI3K. Treatment of mouse embryo fibroblast with PI3K inhibitors blocked PMA-directed colocalization between AFAP-110 and cSrc and subsequent cSrc activation. PMA also was unable to induce colocalization or cSrc activation in cells that lacked the p85 and - regulatory subunits of PI3K. This signaling pathway was required for migration in a wound healing assay. Cells that were null for cSrc or the p85 regulatory subunits or expressed a dominant-negative AFAP-110 also displayed a reduction in migration. Thus PI3K activity is required for PMA-induced colocalization between AFAP-110 and cSrc and subsequent cSrc activation, and this signaling pathway promotes cell migration. phorbol 12-myristate 13-acetate; Src; protein kinase C; AFAP-110; phosphatidylinositol 3-kinase; pleckstrin homology domain  相似文献   

4.
The Src family of nonreceptor tyrosine kinases plays an important role in modulating signals that affect growth cone extension, neuronal differentiation, and brain development. Recent reports indicate that the Src SH2/SH3 binding partner AFAP-110 has the capacity to modulate actin filament integrity as a cSrc activating protein and as an actin filament bundling protein. Both AFAP-110 and a brain specific isoform called AFAP-120 (collectively referred to as AFAP) exist at high levels in chick embryo brain. We sought to identify the localization of AFAP in mouse brain in order to identify its expression pattern and potential role as a cellular modulator of Src family kinase activity and actin filament integrity in the brain. In E16 mouse embryos, AFAP expression levels were very high and concentrated in the olfactory bulb, cortex, forebrain, cerebellum, and various peripheral sensory structures. In P3 mouse pups, overall expression was reduced compared to E16 embryos, and AFAP was found primarily in olfactory bulb, cortex, and cerebellum. AFAP expression levels were significantly reduced in adult mice, with high expression levels only detected in the olfactory bulb. Western blot analysis indicated that concentrated expression of AFAP correlates well with the AFAP-120 isoform, which appears to be a splice variant of AFAP-110. As the expression pattern of AFAP overlaps with the reported expression patterns of cSrc and Fyn, we hypothesize that AFAP is positioned to modulate signal transduction cascades that direct activation of these nonreceptor tyrosine kinases and concomitant cellular changes that occur in actin filaments during brain development.  相似文献   

5.
Enhanced expression and activity of cSrc are associated with ovarian cancer progression. Generally, cSrc does not contain activating mutations; rather, its activity is increased in response to signals that affect a conformational change that releases its autoinhibition. In this report, we analyzed ovarian cancer tissues for the expression of a cSrc-activating protein, AFAP-110. AFAP-110 activates cSrc through a direct interaction that releases it from its autoinhibited conformation. Immunohistochemical analysis revealed a concomitant increase of AFAP-110 and cSrc in ovarian cancer tissues. An analysis of the AFAP-110 coding sequence revealed the presence of a nonsynonymous, single-nucleotide polymorphism that resulted in a change of Ser403 to Cys403. In cells that express enhanced levels of cSrc, AFAP-110403C directed the activation of cSrc and the formation of podosomes independently of input signals, in contrast to wild-type AFAP-110. We therefore propose that, under conditions of cSrc overexpression, the polymorphic variant of AFAP-110 promotes cSrc activation. Further, these data indicate amechanismby which an inherited genetic variation could influence ovarian cancer progression and could be used to predict the response to targeted therapy.  相似文献   

6.
Transformation of chicken embryo cells by oncogenic forms of pp60src (e.g., pp60v-src or pp60527F) is linked with a concomitant increase in the steady-state levels of tyrosine-phosphorylated cellular proteins. Activated forms of the Src protein-tyrosine kinase stably associate with tyrosine-phosphorylated proteins, including a protein of 110 kDa, pp110. Previous reports have established that stable complex formation between pp110 and pp60src requires the structural integrity of the Src SH2 and SH3 domains, whereas tyrosine phosphorylation of pp110 requires only the structural integrity of the SH3 domain. In normal chicken embryo cells, pp110 colocalizes with actin stress filaments, and in Src-transformed cells, pp110 is found associated with podosomes (rosettes). Here, we report the identification and characterization of cDNAs encoding pp110. The predicted open reading frame encodes a polypeptide of 635 amino acids which exhibits little sequence similarity with other protein sequences present in the available sequence data bases. Thus, pp110 is a distinctive cytoskeleton-associated protein. On the basis of its association with actin stress filaments, we propose the term AFAP-110, for actin filament-associated protein of 110 kDa. In vitro analysis of AFAP-110 binding to bacterium-encoded glutathione S-transferase (GST) fusion proteins revealed that AFAP-110 present in normal cell extracts binds efficiently to Src SH3/SH2-containing fusion proteins, less efficiently to Src SH3-containing proteins, and poorly to SH2-containing fusion proteins. In contrast, AFAP-110 in Src-transformed cell extracts bound to GST-SH3/SH2 and GST-SH2 fusion proteins. Analysis of AFAP-110 cDNA sequences revealed the presence of sequence motifs predicted to bind to SH2 and SH3 domains, respectively. We suggest that AFAP-110 may represent a cellular protein capable of interacting with SH3-containing proteins and, upon tyrosine phosphorylation, binds tightly to SH2-containing proteins, such as pp60src or pp59fyn. The potential roles of AFAP-110 as an SH3/SH2 cytoskeletal binding protein are discussed.  相似文献   

7.
The actin filament-associated protein AFAP-110 forms a stable complex with activated variants of Src in chick embryo fibroblast cells. Stable complex formation requires the integrity of the Src SH2 and SH3 domains. In addition, AFAP-110 encodes two adjacent SH3 binding motifs and six candidate SH2 binding motifs. These data indicate that both SH2 and SH3 domains may work cooperatively to facilitate Src/AFAP-110 stable complex formation. As a test for this hypothesis, we sought to understand whether one or both SH3 binding motifs in AFAP-110 modulate interactions with the Src SH3 domain and if this interaction was required to present AFAP-110 for tyrosine phosphorylation by, and stable complex formation with, Src. A proline to alanine site-directed mutation in the amino terminal SH3 binding motif (SH3bm I) was sufficient to abrogate absorption of AFAP-110 with GST-SH3src. Co-expression of activated Src (pp60527F) with AFAP-110 in Cos-1 cells permit tyrosine phosphorylation of AFAP-110 a nd stable complex formation with pp60527F. However, co-expression of the SH3 null-binding mutant (AFAP71A) with pp60527F revealed a 2.7 fold decrease in steady-state levels of tyrosine phosphorylation, compared to AFAP-110. Although a lower but detectable level of AFAP71A was phosphorylated on tyrosine, AFAP71A could not be detected in stable complex with pp60527F, unlike AFAP-110. These data indicate that SH3 interactions facilitate presentation of AFAP-110 for tyrosine phosphorylation and are also required for stable complex formation with pp60527F. (Mol Cell Biochem 175: 243–252, 1997)  相似文献   

8.
We report that the actin filament-associated protein AFAP-110 is required to mediate protein kinase Calpha (PKCalpha) activation of the nonreceptor tyrosine kinase c-Src and the subsequent formation of podosomes. Immunofluorescence analysis demonstrated that activation of PKCalpha by phorbol 12-myristate 13-acetate (PMA), or ectopic expression of constitutively activated PKCalpha, directs AFAP-110 to colocalize with and bind to the c-Src SH3 domain, resulting in activation of the tyrosine kinase. Activation of c-Src then directs the formation of podosomes, which contain cortactin, AFAP-110, actin, and c-Src. In a cell line (CaOV3) that has very little or no detectable AFAP-110, PMA treatment was unable to activate c-Src or effect podosome formation. Ectopic expression of AFAP-110 in CaOV3 cells rescued PKCalpha-mediated activation of c-Src and elevated tyrosine phosphorylation levels and subsequent formation of podosomes. Neither expression of activated PKCalpha nor treatment with PMA was able to induce these changes in CAOV3 cells expressing mutant forms of AFAP-110 that are unable to bind to, or colocalize with, c-Src. We hypothesize that one major function of AFAP-110 is to relay signals from PKCalpha that direct the activation of c-Src and the formation of podosomes.  相似文献   

9.
The actin-filament associated protein (AFAP) family of adaptor proteins consists of three members: AFAP1, AFAP1L1, and AFAP1L2/XB130 with AFAP1 being the best described as a cSrc binding partner and actin cross-linking protein. A homology search of AFAP1 recently identified AFAP1L1 which has a similar sequence, domain structure and cellular localization; however, based upon sequence variations, AFAP1L1 is hypothesized to have unique functions that are distinct from AFAP1. While AFAP1 has the ability to bind to the SH3 domain of the nonreceptor tyrosine kinase cSrc via an N-terminal SH3 binding motif, it was unable to bind cortactin. However, the SH3 binding motif of AFAP1L1 was more efficient at interacting with the SH3 domain of cortactin and not cSrc. AFAP1L1 was shown by fluorescence microscopy to decorate actin filaments and move to punctate actin structures and colocalize with cortactin, consistent with localization to invadosomes. Upon overexpression in A7r5 cells, AFAP1L1 had the ability to induce podosome formation and move to podosomes without stimulation. Immunohistochemical analysis of AFAP1L1 in human tissues shows differential expression when contrasted with AFAP1 with localization of AFAP1L1 to unique sites in muscle and the dentate nucleus of the brain where AFAP1 was not detectable. We hypothesize AFAP1L1 may play a similar role to AFAP1 in affecting changes in actin filaments and bridging interactions with binding partners, but we hypothesize that AFAP1L1 may forge unique protein interactions in which AFAP1 is less efficient, and these interactions may allow AFAP1L1 to affect invadosome formation.  相似文献   

10.
Myosin binding protein-C (MyBP-C) is a thick-filament protein whose precise function within the sarcomere is not known. However, recent evidence from cMyBP-C knock-out mice that lack MyBP-C in the heart suggest that cMyBP-C normally slows cross-bridge cycling rates and reduces myocyte power output. To investigate possible mechanisms by which cMyBP-C limits cross-bridge cycling kinetics we assessed effects of recombinant N-terminal domains of MyBP-C on the ability of heavy meromyosin (HMM) to support movement of actin filaments using in vitro motility assays. Here we show that N-terminal domains of cMyBP-C containing the MyBP-C "motif," a sequence of approximately 110 amino acids, which is conserved across all MyBP-C isoforms, reduced actin filament velocity under conditions where filaments are maximally activated (i.e. either in the absence of thin filament regulatory proteins or in the presence of troponin and tropomyosin and high [Ca2+]). By contrast, under conditions where thin filament sliding speed is submaximal (i.e. in the presence of troponin and tropomyosin and low [Ca2+]), proteins containing the motif increased filament speed. Recombinant N-terminal proteins also bound to F-actin and inhibited acto-HMM ATPase rates in solution. The results suggest that N-terminal domains of MyBP-C slow cross-bridge cycling kinetics by reducing rates of cross-bridge detachment.  相似文献   

11.
《The Journal of cell biology》1990,111(6):3049-3064
To investigate the sequences important for assembly of keratins into 10- nm filaments, we used a combined approach of (a) transfection of mutant keratin cDNAs into epithelial cells in vivo, and (b) in vitro assembly of mutant and wild-type keratins. Keratin K14 mutants missing the nonhelical carboxy- and amino-terminal domains not only integrated without perturbation into endogenous keratin filament networks in vivo, but they also formed 10-nm filaments with K5 in vitro. Surprisingly, keratin mutants missing the highly conserved L L E G E sequence, common to all intermediate filament proteins and found at the carboxy end of the alpha-helical rod domain, also assembled into filaments with only a somewhat reduced efficiency. Even a carboxy K14 mutant missing approximately 10% of the rod assembled into filaments, although in this case filaments aggregated significantly. Despite the ability of these mutants to form filaments in vitro, they often perturbed keratin filament organization in vivo. In contrast, small truncations in the amino-terminal end of the rod domain more severely disrupted the filament assembly process in vitro as well as in vivo, and in particular restricted elongation. For both carboxy and amino rod deletions, the more extensive the deletion, the more severe the phenotype. Surprisingly, while elongation could be almost quantitatively blocked with large mutations, tetramer formation and higher ordered lateral interactions still occurred. Collectively, our in vitro data (a) provide a molecular basis for the dominance of our mutants in vivo, (b) offer new insights as to why different mutants may generate different phenotypes in vivo, and (c) delineate the limit sequences necessary for K14 to both incorporate properly into a preexisting keratin filament network in vivo and assemble efficiently into 10-nm keratin filaments in vitro.  相似文献   

12.
Dynamic cytoplasmic streaming, organelle positioning, and nuclear migration use molecular tracks generated from actin filaments arrayed into higher-order structures like actin cables and bundles. How these arrays are formed and stabilized against cellular depolymerizing forces remains an open question. Villin and fimbrin are the best characterized actin-filament bundling or cross-linking proteins in plants and each is encoded by a multigene family of five members in Arabidopsis thaliana. The related villins and gelsolins are conserved proteins that are constructed from a core of six homologous gelsolin domains. Gelsolin is a calcium-regulated actin filament severing, nucleating and barbed end capping factor. Villin has a seventh domain at its C terminus, the villin headpiece, which can bind to an actin filament, conferring the ability to crosslink or bundle actin filaments. Many, but not all, villins retain the ability to sever, nucleate, and cap filaments. Here we have identified a putative calcium-insensitive villin isoform through comparison of sequence alignments between human gelsolin and plant villins with x-ray crystallography data for vertebrate gelsolin. VILLIN1 (VLN1) has the least well-conserved type 1 and type 2 calcium binding sites among the Arabidopsis VILLIN isoforms. Recombinant VLN1 binds to actin filaments with high affinity (K(d) approximately 1 microM) and generates bundled filament networks; both properties are independent of the free Ca(2+) concentration. Unlike human plasma gelsolin, VLN1 does not nucleate the assembly of filaments from monomer, does not block the polymerization of profilin-actin onto barbed ends, and does not stimulate depolymerization or sever preexisting filaments. In kinetic assays with ADF/cofilin, villin appears to bind first to growing filaments and protects filaments against ADF-mediated depolymerization. We propose that VLN1 is a major regulator of the formation and stability of actin filament bundles in plant cells and that it functions to maintain the cable network even in the presence of stimuli that result in depolymerization of other actin arrays.  相似文献   

13.
The specific functions of greater than 40 vertebrate nonmuscle tropomyosins (Tms) are poorly understood. In this article we have tested the ability of two Tm isoforms, TmBr3 and the human homologue of Tm5 (hTM5(NM1)), to regulate actin filament function. We found that these Tms can differentially alter actin filament organization, cell size, and shape. hTm5(NM1) was able to recruit myosin II into stress fibers, which resulted in decreased lamellipodia and cellular migration. In contrast, TmBr3 transfection induced lamellipodial formation, increased cellular migration, and reduced stress fibers. Based on coimmunoprecipitation and colocalization studies, TmBr3 appeared to be associated with actin-depolymerizing factor/cofilin (ADF)-bound actin filaments. Additionally, the Tms can specifically regulate the incorporation of other Tms into actin filaments, suggesting that selective dimerization may also be involved in the control of actin filament organization. We conclude that Tm isoforms can be used to specify the functional properties and molecular composition of actin filaments and that spatial segregation of isoforms may lead to localized specialization of actin filament function.  相似文献   

14.
M Str?mqvist 《FEBS letters》1987,213(1):102-106
The effect of brain spectrin (fodrin) on actin has been studied using viscometry and fluorimetry. Brain spectrin resembles erythrocyte spectrin tetramer in its action on actin. Both proteins crosslink actin filaments giving rise to a large increase in the viscosity but fluorimetry shows that neither affects actin polymerization significantly. In addition, brain spectrin as well as erythrocyte spectrin fragments preformed actin filaments. Actin filaments incubated in the presence of either of the two proteins incorporate actin monomers at a much higher rate showing that more filament ends are generated.  相似文献   

15.
Higgs HN  Blanchoin L  Pollard TD 《Biochemistry》1999,38(46):15212-15222
The 70 C-terminal amino acids of Wiskott-Aldrich syndrome protein (WASp WA) activate the actin nucleation activity of the Arp2/3 complex. WASp WA binds both the Arp2/3 complex and actin monomers, but the mechanism by which it activates the Arp2/3 complex is not known. We characterized the effect of WASp WA on actin polymerization in the absence and presence of the human Arp2/3 complex. WASp WA binds actin monomers with an apparent K(d) of 0.4 microM, inhibiting spontaneous nucleation and subunit addition to pointed ends, but not addition to barbed ends. A peptide containing only the WASp homology 2 motif behaves similarly but with a 10-fold lower affinity. In contrast to previously published results, neither WASp WA nor a similar region of the protein Scar1 significantly depolymerizes actin filaments under a variety of conditions. WASp WA and the Arp2/3 complex nucleate actin filaments, and the rate of this nucleation is a function of the concentrations of both WASp WA and the Arp2/3 complex. With excess WASp WA and <10 nM Arp2/3 complex, there is a 1:1 correspondence between the Arp2/3 complex and the concentration of filaments produced, but the filament concentration plateaus at an Arp2/3 complex concentration far below the cellular concentration determined to be 9.7 microM in human neutrophils. Preformed filaments increase the rate of nucleation by WASp WA and the Arp2/3 complex but not the number of filaments that are generated. We propose that filament side binding by the Arp2/3 complex enhances its activation by WASp WA.  相似文献   

16.
A Bejsovec  P Anderson 《Cell》1990,60(1):133-140
We have determined the positions and sequences of 31 dominant mutations affecting a C. elegans muscle myosin heavy chain gene. These mutations alter thick filament structure in heterozygotes by interfering with the ability of wild-type myosin to assemble into stable thick filaments. These assembly-disruptive mutations are missense alleles affecting the globular head of myosin. The most strongly dominant alleles alter highly conserved residues of the myosin ATP binding site, indicating that functions of the myosin ATPase are important for thick filament assembly. Other alleles alter the site at which myosin binds actin.  相似文献   

17.
We define conditions under which the two C-terminal residues of actin, Cys-374 and Phe-375, can be selectively removed by proteolysis with trypsin. This modification had little effect on the secondary structure of actin detected by Fourier-transform infrared spectroscopy. However, removing these residues caused small but significant decreases in the critical concentration of actin, in its ability to activate myosin ATPase, and in its interaction with tropomyosin and troponin. Removing residues 374-375 caused dramatic changes in the actin filament as seen by electron microscopy. The filaments had a much greater and more irregular curvature and were intertwined into disordered multifilament bundles. Removing 374-375 also significantly lowered the flow viscosity of filamentous-actin solutions. These data suggest an increase in the flexibility and fragility of the filament, supporting the idea that the C-terminus forms one of the major intermonomer contacts in the filament.  相似文献   

18.
Cortactin and WASP activate Arp2/3-mediated actin filament nucleation and branching. However, different mechanisms underlie activation by the two proteins, which rely on distinct actin-binding modules and modes of binding to actin filaments. It is generally thought that cortactin binds to "mother" actin filaments, while WASP donates actin monomers to Arp2/3-generated "daughter" filament branches. Interestingly, cortactin also binds WASP in addition to F-actin and the Arp2/3 complex. However, the structural basis for the role of cortactin in filament branching remains unknown, making interpretation difficult. Here, electron microscopy and 3D reconstruction were carried out on F-actin decorated with the actin-binding repeating domain of cortactin, revealing conspicuous density on F-actin attributable to cortactin that is located on a consensus-binding site on subdomain-1 of actin subunits. Strikingly, the binding of cortactin widens the gap between the two long-pitch filament strands. Although other proteins have been found to alter the structure of the filament, the cortactin-induced conformational change appears unique. The results are consistent with a mechanism whereby alterations of the F-actin structure may facilitate recruitment of the Arp2/3 complex to the "mother" filament in the cortex of cells. In addition, cortactin may act as a structural adapter protein, stabilizing nascent filament branches while mediating the simultaneous recruitment of Arp2/3 and WASP.  相似文献   

19.
We have used fluorescence recovery after photobleaching to study the effect of muscle α-actinin on the structure of actin filaments in dilute solutions. Unexpectedly we found that α-actinin partitioned filaments into two types: those with a high mobility and those with low mobility. We have determined that the high mobility (smaller sized) population is too large to be simple monomeric actin:α-actinin complexes. Although it is known that cofilin encourages the transformation of α-actinin:actin gels into large meshworks of inter-digitating actin filament bundles (Maciver et al. 1991), we have found that the presence of cofilin also increases the cross-linking of actin filaments by α-actinin and hypothesize that this is due to cofilin’s ability to alter the filament twist. This effectively makes more potential α-actinin binding sites per unit of actin filament. As expected from previous work, this effect was more marked at pH 6.5 than at pH 8.0. Both effects are likely to operate in cells to deny other actin-binding proteins access to binding these particular filaments and may explain how very different actin cytoskeletal structures may co-exist in the same cell at the same time.  相似文献   

20.
The assembly and organization of the three major eukaryotic cytoskeleton proteins, actin, microtubules, and intermediate filaments, are highly interdependent. Through evolution, cells have developed specialized multifunctional proteins that mediate the cross-linking of these cytoskeleton filament networks. Here we test the hypothesis that two of these filamentous proteins, F-actin and vimentin filament, can interact directly, i.e. in the absence of auxiliary proteins. Through quantitative rheological studies, we find that a mixture of vimentin/actin filament network features a significantly higher stiffness than that of networks containing only actin filaments or only vimentin filaments. Maximum inter-filament interaction occurs at a vimentin/actin molar ratio of 3 to 1. Mixed networks of actin and tailless vimentin filaments show low mechanical stiffness and much weaker inter-filament interactions. Together with the fact that cells featuring prominent vimentin and actin networks are much stiffer than their counterparts lacking an organized actin or vimentin network, these results suggest that actin and vimentin filaments can interact directly through the tail domain of vimentin and that these inter-filament interactions may contribute to the overall mechanical integrity of cells and mediate cytoskeletal cross-talk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号