首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA binding by the tat and rev proteins of HIV-1   总被引:3,自引:0,他引:3  
  相似文献   

2.
J W Harper  N J Logsdon 《Biochemistry》1991,30(32):8060-8066
Substantial evidence indicates that HIV-1 trans-activation by tat protein is mediated through the TAR RNA element. This RNA forms a stem-loop structure containing a three-nucleotide bulge and a six-nucleotide loop. Previous mutagenic analysis of TAR indicates that the bulge residues and a 4 bp segment of the stem constitute, in part, the tat binding site. However, there appears to be no sequence-specific contribution of the six-base loop. We have employed a ribonuclease protection technique to explore the interaction of tat with single-stranded regions of TAR. The results indicate that tat interacts with both the bulge and loop regions of TAR. Treatment of TAR RNA with RNase A results in cleavage at U23 and U31, located in the bulge and loop regions, respectively. High concentrations (approximately 2 microM) of Escherichia coli derived tat protein, prepared by standard procedures, gave complete protection of TAR RNA from RNase A cleavage. However, under these conditions, truncated TAR derivatives in which no stem-loop structure is expected to form were also protected, indicating nonspecific binding. In order to obtain a tat preparation with enhanced specificity toward TAR RNA, methods were developed for refolding the recombinant protein. This treatment enhanced the affinity of tat for TAR by approximately 30-fold [Kd(apparent) less than 25 nM] and markedly increased its specificity for the TAR. Again, tat protected TAR RNA from RNase A cleavage at both U23 and U31. Protection was also observed with RNase T1 which cleaves TAR RNA at three G residues in the six-base loop.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
4.
The interaction of HIV-1 Tat protein with its recognition sequence, the trans-activation responsive region TAR is a potential target for drug discovery against HIV infection. We show by use of an in vitro competition filter binding interference assay that synthetic oligodeoxyribonucleotides complementary to the HIV-1 TAR RNA apical stem-loop and bulge region inhibit the binding of Tat protein or a Tat peptide (residues 37-72) better than two small molecules that have been shown to bind TAR RNA, Hoechst 33258 and neomycin B. The inhibition is not sensitive to length between 13 and 16 residues or precise positioning but shorter oligonucleotides are less effective. Enhanced inhibition was obtained for a 16-mer 2'-O-methyl oligoribonucleotide but not for C5-propyne pyrimidine-substituted oligonucleotides. Control non-antisense oligonucleotides were occasionally also effective in filter binding interference but only the complementary antisense 2'-O-methyl oligoribonucleotide was effective in gel mobility shift assays in direct TAR binding or in interference with Tat peptide binding to the TAR stem-loop. This is the first demonstration of effective inhibition of the Tat-TAR interaction by nuclease-stabilized oligonucleotide analogues.  相似文献   

5.
6.
Identification of a novel HIV-1 TAR RNA bulge binding protein.   总被引:6,自引:4,他引:2       下载免费PDF全文
The Tat protein binds to TAR RNA to stimulate the expression of the human immunodeficiency virus type 1 (HIV-1) genome. Tat is an 86 amino acid protein that contains a short region of basic residues (aa49-aa57) that are required for RNA binding and TAR is a 59 nucleotide stem-loop with a tripyrimidine bulge in the upper stem. TAR is located at the 5' end of all viral RNAs. In vitro, Tat specifically interacts with TAR by recognising the sequence of the bulge and upper stem, with no requirement for the loop. However, in vivo the loop sequence is critical for activation, implying a requirement for accessory cellular TAR RNA binding factors. A number of TAR binding cellular factors have been identified in cell extracts and various models for the function of these factors have been suggested, including roles as coactivators and inhibitors. We have now identified a novel 38 kD cellular factor that has little general, single-stranded or double-stranded RNA binding activity, but that specifically recognises the bulge and upper stem region of TAR. The protein, referred to as BBP (bulge binding protein), is conserved in mammalian and amphibian cells and in Schizosaccharomyces pombe but is not found in Saccharomyces cerevisiae. BBP is an effective competitive inhibitor of Tat binding to TAR in vitro. Our data suggest that the bulge-stem recognition motif in TAR is used to mediate cellular factor/RNA interactions and indicates that Tat action might be inhibited by such competing reactions in vivo.  相似文献   

7.
K S Long  D M Crothers 《Biochemistry》1999,38(31):10059-10069
Basic peptides from the carboxy terminus of the HIV-1 Tat protein bind to the apical stem-loop region of TAR RNA with high affinity and moderate specificity. The conformations of the unbound and 24 residue Tat peptide (Tfr24)-bound forms of TAR RNA have been characterized by NMR spectroscopy. The unbound form of TAR exists in major and minor forms having different trinucleotide bulge conformations. A specific TAR RNA conformational change is observed upon complex formation with Tfr24, consisting of coaxial stacking of helical stems and base triple formation. A U23-A27-U38 base triple is proposed based on exchangeable proton NMR data, where U23 forms a base pair with A27 in the major groove. No evidence for base triple formation was found for Tat peptides in which lysine residues are extensively substituted for arginine.  相似文献   

8.
Interaction between the human immunodeficiency virus type 1 (HIV-1) trans-activator Tat and its cis-acting responsive RNA element TAR is necessary for activation of HIV-1 gene expression. We investigated the hypothesis that the essential uridine residue at position 23 in the bulge of TAR RNA is involved in intramolecular hydrogen bonding to stabilize an unique RNA structure required for recognition by Tat. Nucleotide substitutions in the two base pairs of the TAR stem directly above the essential trinucleotide bulge that maintain base pairing but change sequence prevent complex formation with Tat in vitro. Corresponding mutations tested in a trans-activation assay strongly affect the biological activity of TAR in vivo, suggesting an important role for these nucleotides in the Tat-TAR interaction. On the basis of these data, a model is proposed which implicates uridine 23 in a stable tertiary interaction with the GC pair directly above the bulge. This interaction would cause widening of the major groove of the RNA, thereby exposing its hydrogen-bonding surfaces for possible interaction with Tat. The model also predicts a gap between uridine 23 and the first base pair in the stem above, which would require one or more unpaired nucleotides to close, but does not predict any other role for such nucleotides. In accordance with this prediction, synthetic propyl phosphate linkers of equivalent length to 1 or 2 nucleotides, were found to be fully acceptable substitutes in the bulge above uridine 23, demonstrating that neither the bases nor the ribose moieties at these positions are implicated in the recognition of TAR RNA by Tat.  相似文献   

9.
D Harrich  C Hsu  E Race    R B Gaynor 《Journal of virology》1994,68(9):5899-5910
The human immunodeficiency virus type 1 (HIV-1) TAR element is critical for the activation of gene expression by the transactivator protein, Tat. Mutagenesis has demonstrated that a stable stem-loop RNA structure containing both loop and bulge structures transcribed from TAR is the major target for tat activation. Though transient assays have defined elements critical for TAR function, no studies have yet determined the role of TAR in viral replication because of the inability to generate viral stocks containing mutations in TAR. In the current study, we developed a strategy which enabled us to generate stable 293 cell lines which were capable of producing high titers of different viruses containing TAR mutations. Viruses generated from these cell lines were used to infect both T-lymphocyte cell lines and peripheral blood mononuclear cells. Viruses containing TAR mutations in either the upper stem, the bulge, or the loop exhibited dramatically decreased HIV-1 gene expression and replication in all cell lines tested. However, we were able to isolate lymphoid cell lines which stably expressed gene products from each of these TAR mutant viruses. Though the amounts of virus in these cell lines were roughly equivalent, cells containing TAR mutant viruses were extremely defective for gene expression compared with cell lines containing wild-type virus. The magnitude of this decrease in viral gene expression was much greater than previously seen in transient expression assays using HIV-1 long terminal repeat chloramphenicol acetyltransferase gene constructs. In contrast to the defects in viral growth found in T-lymphocyte cell lines, several of the viruses containing TAR mutations were much less defective for gene expression and replication in activated peripheral blood mononuclear cells. These results indicate that maintenance of the TAR element is critical for viral gene expression and replication in all cell lines tested, though the cell type which is infected is also a major determinant of the replication properties of TAR mutant viruses.  相似文献   

10.
11.
An oligoribonucleotide, corresponding to the Tat-interactive top half of the HIV-1 TAR RNA stem-loop, was synthesized in both the natural D- and the enantiomeric L-configurations. The affinity of Tat for the two RNAs, assessed by competition binding experiments, was found to be identical and is reduced 10-fold for both, upon replacement of the critical bulge residue U23 with cytidine. It is suggested that this interaction of the flexible Tat protein depends strongly upon the tertiary structure of a binding pocket within TAR, but not upon its handedness, and may be described by a 'hand-in-mitten' model.  相似文献   

12.
13.
14.
All human immunodeficiency virus mRNAs contain a sequence known as TAR (trans-activating responsive sequence). The TAR element forms a stable RNA stem-loop structure which binds the HIV tat (trans-activator) protein and mediates increased viral gene expression. In principle, molecules which bind to the TAR RNA structure would inhibit trans-activation by perturbing the native RNA secondary structure. We have constructed a series of phosphodiester and phosphorothioate antisense oligonucleotides which specifically bind to the HIV TAR element. Specific binding to the TAR element was demonstrated in vitro with enzymatically synthesized TAR RNA. The TAR-directed phosphorothioates inhibited trans-activation in a sequence-dependent fashion in a cell culture model using an HIV LTR/human placental alkaline phosphatase gene fusion and tat protein supplied in trans. The molecules also inhibited HIV replication in both acute and chronically infected viral assays, but without sequence specificity. We have constructed a series of vectors consisting of the MMTV promoter and 5'-untranslated region of four different mRNAs, including the TAR region, to study the effect of TAR on gene expression in heterologous systems. The results suggest that, in the absence of the HIV LTR, the TAR element has a repressive effect on gene expression, which is relieved by tat.  相似文献   

15.
16.
Escherichia coli pseudouridine synthase RluF is dedicated to modifying U2604 in a stem-loop of 23S RNA, while a homologue, RluB, modifies the adjacent base, U2605. Both uridines are in the same RNA stem, separated by ∼ 4 Å. The 3.0 Å X-ray crystal structure of RluF bound to the isolated stem-loop, in which U2604 is substituted by 5-fluorouridine to prevent catalytic turnover, shows RluF distinguishes closely spaced bases in similar environments by a selectivity mechanism based on a frameshift in base pairing. The RNA stem-loop is bound to a conserved binding groove in the catalytic domain. A base from a bulge in the stem, A2602, has folded into the stem, forcing one strand of the RNA stem to translate by one position and thus positioning U2604 to flip into the active site. RluF does not modify U2604 in mutant stem-loops that lack the A2602 bulge and shows dramatically higher activity for a stem-loop with a mutation designed to facilitate A2602 refolding into the stem with concomitant RNA strand translation. Residues whose side chains contact rearranged bases in the bound stem-loop, while conserved among RluFs, are not conserved between RluFs and RluBs, suggesting that RluB does not bind to the rearranged stem loop.  相似文献   

17.
TAR, a 59 nt 5′-terminal hairpin in human immunodeficiency virus 1 (HIV-1) mRNA, binds viral Tat and several cellular proteins. We report that eukaryotic translation initiation factor 2 (eIF2) recognizes TAR. TAR and the AUG initiation codon domain, located well downstream from TAR, both contribute to the affinity of HIV-1 mRNA for eIF2. The affinity of TAR for eIF2 was insensitive to lower stem mutations that modify sequence and structure or to sequence changes throughout the remainder that leave the TAR secondary structure intact. Hence, eIF2 recognizes structure rather than sequence in TAR. The affinity for eIF2 was severely reduced by a 3 nt change that converts the single A bulge into a 7 nt internal loop. T1 footprinting showed that eIF2 protects nucleotides in the loop as well as in the strand opposite the A bulge. Thus, eIF2 recognizes the TAR loop and lower part of the sub-apical stem. Though not contiguous, these regions are brought into proximity in TAR by a bend in the helical structure induced by the UCU bulge; binding of eIF2 opens up the bulge context and apical stem. The ability to bind eIF2 suggests a function for TAR in HIV-1 mRNA translation. Indeed, the 3 nt change that reduces the affinity of TAR for eIF2 impairs the ability of reporter mRNA to compete in translation. Interaction of TAR with eIF2 thus allows HIV-1 mRNA to compete more effectively during protein synthesis.  相似文献   

18.
Song R  Kafaie J  Laughrea M 《Biochemistry》2008,47(10):3283-3293
The HIV-1 genome consists of two identical RNAs that are linked together through noncovalent interactions involving nucleotides from the 5' untranslated region (5' UTR) of each RNA strand. The 5' UTR is the most conserved part of the HIV-1 RNA genome, and its 335 nucleotide residues form regulatory motifs that mediate multiple essential steps in the viral replication cycle. Here, studying the effect of selected mutations both singly and together with mutations disabling SL1 (SL1 is a 5' UTR stem-loop containing a palindrome called the dimerization initiation site), we have done a rather systematic survey of the 5' UTR requirements for full genomic RNA dimerization in grown-up (i.e., predominantly >/=10 h old) HIV-1 viruses produced by transfected human and simian cells. We have identified a role for the 5' transactivation response element (5' TAR) and a contribution of a long-distance base pairing between a sequence located at the beginning of the U5 region and nucleotides surrounding the AUG Gag initiation codon. The resulting intra- or intermolecular duplex is called the U5-AUG duplex. The other regions of the 5' UTR have been shown to play no systematic role in genomic RNA dimerization, except for a sequence located around the 3' end of a large stem-loop enclosing the primer binding site, and the well-documented SL1. Our data are consistent with a direct role for the 5' TAR in genomic RNA dimerization (possibly via a palindrome encompassing the apical loop of the 5' TAR).  相似文献   

19.
Synthesis of the Gag-Pol protein of the human immunodeficiency virus type 1 (HIV-1) requires a programmed -1 ribosomal frameshifting when ribosomes translate the unspliced viral messenger RNA. This frameshift occurs at a slippery sequence followed by an RNA structure motif that stimulates frameshifting. This motif is commonly assumed to be a simple stem-loop for HIV-1. In this study, we show that the frameshift stimulatory signal is more complex than believed and consists of a two-stem helix. The upper stem-loop corresponds to the classic stem-loop, and the lower stem is formed by pairing the spacer region following the slippery sequence and preceding this classic stem-loop with a segment downstream of this stem-loop. A three-purine bulge interrupts the two stems. This structure was suggested by enzymatic probing with nuclease V1 of an RNA fragment corresponding to the gag/pol frameshift region of HIV-1. The involvement of the novel lower stem in frameshifting was supported by site-directed mutagenesis. A fragment encompassing the gag/pol frameshift region of HIV-1 was inserted in the beginning of the coding sequence of a reporter gene coding for the firefly luciferase, such that expression of luciferase requires a -1 frameshift. When the reporter was expressed in COS cells, mutations that disrupt the capacity to form the lower stem reduced frameshifting, whereas compensatory changes that allow re-formation of this stem restored the frameshift efficiency near wild-type level. The two-stem structure that we propose for the frameshift stimulatory signal of HIV-1 differs from the RNA triple helix structure recently proposed.  相似文献   

20.
Complexes of the HIV transactivation response element (TAR) RNA with the viral regulatory protein tat are of special interest due in particular to the plasticity of the RNA at this binding site and to the potential for therapeutic targeting of the interaction. We performed REDOR solid-state NMR experiments on lyophilized samples of a 29 nt HIV-1 TAR construct to measure conformational changes in the tat-binding site concomitant with binding of a short peptide comprising the residues of the tat basic binding domain. Peptide binding was observed to produce a nearly 4 Å decrease in the separation between phosphorothioate and 2′F labels incorporated at A27 in the upper helix and U23 in the bulge, respectively, consistent with distance changes observed in previous solution NMR studies, and with models showing significant rearrangement in position of bulge residue U23 in the bound-form RNA. In addition to providing long-range constraints on free TAR and the TAR–tat complex, these results suggest that in RNAs known to undergo large deformations upon ligand binding, 31P–19F REDOR measurements can also serve as an assay for complex formation in solid-state samples. To our knowledge, these experiments provide the first example of a solid-state NMR distance measurement in an RNA–peptide complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号