首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have demonstrated that fumarate addition and carboxylation are two possible mechanisms of anaerobic alkane degradation. In the present study, we surveyed metabolites formed during growth on hexadecane by the sulfate-reducing isolates AK-01 and Hxd3 and by a mixed sulfate-reducing consortium. The cultures were incubated with either protonated or fully deuterated hexadecane; the sulfate-reducing consortium was also incubated with [1,2-13C2]hexadecane. All cultures were extracted, silylated, and analyzed by gas chromatography-mass spectrometry. We detected a suite of metabolites that support a fumarate addition mechanism for hexadecane degradation by AK-01, including methylpentadecylsuccinic acid, 4-methyloctadecanoic acid, 4-methyloctadec-2,3-enoic acid, 2-methylhexadecanoic acid, and tetradecanoic acid. By using d34-hexadecane, mass spectral evidence strongly supporting a carbon skeleton rearrangement of the first intermediate, methylpentadecylsuccinic acid, was demonstrated for AK-01. Evidence indicating hexadecane carboxylation was not found in AK-01 extracts but was observed in Hxd3 extracts. In the mixed sulfate-reducing culture, however, metabolites consistent with both fumarate addition and carboxylation mechanisms of hexadecane degradation were detected, which demonstrates that multiple alkane degradation pathways can occur simultaneously within distinct anaerobic communities. Collectively, these findings underscore that fumarate addition and carboxylation are important alkane degradation mechanisms that may be widespread among phylogenetically and/or physiologically distinct microorganisms.  相似文献   

2.
An alkane-degrading, sulfate-reducing bacterial strain, AK-01, isolated from a petroleum-contaminated sediment was studied to elucidate its mechanism of alkane metabolism. Total cellular fatty acids of AK-01 were predominantly C even when it was grown on C-even alkanes and were predominantly C odd when grown on C-odd alkanes, suggesting that the bacterium anaerobically oxidizes alkanes to fatty acids. Among these fatty acids, some 2-, 4-, and 6-methylated fatty acids were specifically found only when AK-01 was grown on alkanes, and their chain lengths always correlated with those of the alkanes. When [1,2-(13)C(2)]hexadecane or perdeuterated pentadecane was used as the growth substrate, (13)C-labeled 2-Me-16:0, 4-Me-18:0, and 6-Me-20:0 fatty acids or deuterated 2-Me-15:0, 4-Me-17:0, and 6-Me-19:0 fatty acids were recovered, respectively, confirming that these monomethylated fatty acids were alkane derived. Examination of the (13)C-labeled 2-, 4-, and 6-methylated fatty acids by mass spectrometry showed that each of them contained two (13)C atoms, located at the methyl group and the adjacent carbon, thus indicating that the methyl group was the original terminal carbon of the [1, 2-(13)C(2)]hexadecane. For perdeuterated pentadecane, the presence of three deuterium atoms, on the methyl group and its adjacent carbon, in each of the deuterated 2-, 4-, and 6-methylated fatty acids further supported the hypothesis that the methyl group was the terminal carbon of the alkane. Thus, exogenous carbon appears to be initially added to an alkane subterminally at the C-2 position such that the original terminal carbon of the alkane becomes a methyl group on the subsequently formed fatty acid. The carbon addition reaction, however, does not appear to be a direct carboxylation of inorganic bicarbonate. A pathway for anaerobic metabolism of alkanes by strain AK-01 is proposed.  相似文献   

3.
Recent studies have demonstrated that fumarate addition and carboxylation are two possible mechanisms of anaerobic alkane degradation. In the present study, we surveyed metabolites formed during growth on hexadecane by the sulfate-reducing isolates AK-01 and Hxd3 and by a mixed sulfate-reducing consortium. The cultures were incubated with either protonated or fully deuterated hexadecane; the sulfate-reducing consortium was also incubated with [1,2-13C2]hexadecane. All cultures were extracted, silylated, and analyzed by gas chromatography-mass spectrometry. We detected a suite of metabolites that support a fumarate addition mechanism for hexadecane degradation by AK-01, including methylpentadecylsuccinic acid, 4-methyloctadecanoic acid, 4-methyloctadec-2,3-enoic acid, 2-methylhexadecanoic acid, and tetradecanoic acid. By using d34-hexadecane, mass spectral evidence strongly supporting a carbon skeleton rearrangement of the first intermediate, methylpentadecylsuccinic acid, was demonstrated for AK-01. Evidence indicating hexadecane carboxylation was not found in AK-01 extracts but was observed in Hxd3 extracts. In the mixed sulfate-reducing culture, however, metabolites consistent with both fumarate addition and carboxylation mechanisms of hexadecane degradation were detected, which demonstrates that multiple alkane degradation pathways can occur simultaneously within distinct anaerobic communities. Collectively, these findings underscore that fumarate addition and carboxylation are important alkane degradation mechanisms that may be widespread among phylogenetically and/or physiologically distinct microorganisms.  相似文献   

4.
An alkane-degrading, sulfate-reducing bacterial strain, AK-01, isolated from a petroleum-contaminated sediment was studied to elucidate its mechanism of alkane metabolism. Total cellular fatty acids of AK-01 were predominantly C even when it was grown on C-even alkanes and were predominantly C odd when grown on C-odd alkanes, suggesting that the bacterium anaerobically oxidizes alkanes to fatty acids. Among these fatty acids, some 2-, 4-, and 6-methylated fatty acids were specifically found only when AK-01 was grown on alkanes, and their chain lengths always correlated with those of the alkanes. When [1,2-13C2]hexadecane or perdeuterated pentadecane was used as the growth substrate, 13C-labeled 2-Me-16:0, 4-Me-18:0, and 6-Me-20:0 fatty acids or deuterated 2-Me-15:0, 4-Me-17:0, and 6-Me-19:0 fatty acids were recovered, respectively, confirming that these monomethylated fatty acids were alkane derived. Examination of the 13C-labeled 2-, 4-, and 6-methylated fatty acids by mass spectrometry showed that each of them contained two 13C atoms, located at the methyl group and the adjacent carbon, thus indicating that the methyl group was the original terminal carbon of the [1,2-13C2]hexadecane. For perdeuterated pentadecane, the presence of three deuterium atoms, on the methyl group and its adjacent carbon, in each of the deuterated 2-, 4-, and 6-methylated fatty acids further supported the hypothesis that the methyl group was the terminal carbon of the alkane. Thus, exogenous carbon appears to be initially added to an alkane subterminally at the C-2 position such that the original terminal carbon of the alkane becomes a methyl group on the subsequently formed fatty acid. The carbon addition reaction, however, does not appear to be a direct carboxylation of inorganic bicarbonate. A pathway for anaerobic metabolism of alkanes by strain AK-01 is proposed.  相似文献   

5.
In this paper we describe the bacterial communities associated with natural hydrocarbon seeps in nonthermal soils at Rainbow Springs, Yellowstone National Park. Soil chemical analysis revealed high sulfate concentrations and low pH values (pH 2.8 to 3.8), which are characteristic of acid-sulfate geothermal activity. The hydrocarbon composition of the seep soils consisted almost entirely of saturated, acyclic alkanes (e.g., n-alkanes with chain lengths of C15 to C30, as well as branched alkanes, predominately pristane and phytane). Bacterial populations present in the seep soils were phylogenetically characterized by 16S rRNA gene clone library analysis. The majority of the sequences recovered (>75%) were related to sequences of heterotrophic acidophilic bacteria, including Acidisphaera spp. and Acidiphilium spp. of the alpha-Proteobacteria. Clones related to the iron- and sulfur-oxidizing chemolithotroph Acidithiobacillus spp. were also recovered from one of the seep soils. Hydrocarbon-amended soil-sand mixtures were established to examine [14C]hexadecane mineralization and corresponding changes in the bacterial populations using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments. Approximately 50% of the [14C]hexadecane added was recovered as 14CO2 during an 80-day incubation, and this was accompanied by detection of heterotrophic acidophile-related sequences as dominant DGGE bands. An alkane-degrading isolate was cultivated, whose 16S rRNA gene sequence was identical to the sequence of a dominant DGGE band in the soil-sand mixture, as well as the clone sequence recovered most frequently from the original soil. This and the presence of an alkB gene homolog in this isolate confirmed the alkane degradation capability of one population indigenous to acidic hydrocarbon seep soils.  相似文献   

6.
A new sulfate-reducing bacterium, strain 86FS1, was isolated from a deep-sea sediment in the western Mediterranean Sea with sodium lactate as electron and carbon source. Cells were ovoid, gram-negative and motile. Strain 86FS1 contained b- and c-type cytochromes. The organism was able to utilize propionate, pyruvate, lactate, succinate, fumarate, malate, alanine, primary alcohols (C(2)-C(5)), and mono- and disaccharides (glucose, fructose, galactose, ribose, sucrose, cellobiose, lactose) as electron donors for the reduction of sulfate, sulfite or thiosulfate. The major products of carbon metabolism were acetate and CO(2), with exception of n-butanol and n-pentanol, which were oxidized only to the corresponding fatty acids. The growth yield with sulfate and glucose or lactate was 8.3 and 15 g dry mass, respectively, per mol sulfate. The temperature limits for growth were 10 degrees C and 30 degrees C with an optimum at 25 degrees C. Growth was observed at salinities ranging from 10 to 70 g NaCl l(-1). Sulfide concentrations above 4 mmol l(-1) inhibited growth. The fatty acid pattern of strain 86FS1 resembled that of Desulfobulbus propionicus with n-14:0, n-16:1omega7, n-16:1 omega5, n-17:1 omega6 and n-18:1 omega7 as dominant fatty acids. On the basis of its phylogenetic position and its phenotypic properties, strain 86FS1 affiliates with the genus Desulfobulbus and is described as a new species, Desulfobulbus mediterraneus sp. nov.  相似文献   

7.
Although polycyclic aromatic hydrocarbons (PAHs) have usually been found to persist under strict anaerobic conditions, in a previous study an unusual site was found in San Diego Bay in which two PAHs, naphthalene and phenanthrene, were oxidized to carbon dioxide under sulfate-reducing conditions. Further investigations with these sediments revealed that methylnaphthalene, fluorene, and fluoranthene were also anaerobically oxidized to carbon dioxide in these sediments, while pyrene and benzo[a]pyrene were not. Studies with naphthalene indicated that PAH oxidation was sulfate dependent. Incubating the sediments with additional naphthalene for 1 month resulted in a significant increase in the oxidation of [14C]naphthalene. In sediments from a less heavily contaminated site in San diego Bay where PAHs were not readily degraded, naphthalene degradation could be stimulated through inoculation with active PAH-degrading sediments from the most heavily contaminated site. Sediments from the less heavily contaminated site that had been adapted for rapid anaerobic degradation of high concentrations of benzene did not oxidize naphthalene, suggesting that the benzene- and naphthalene-degrading populations were different. When fuels containing complex mixtures of alkanes were added to sediments from the two sites, there was significant degradation in the alkanes. [14C]hexadecane was also anaerobically oxidized to 14CO2 in these sediments. Molybdate, a specific inhibitor of sulfate reduction, inhibited hexadecane oxidation. These results demonstrate that a wide variety of hydrocarbon contaminants can be degraded under sulfate-reducing conditions in hydrocarbon-contaminated sediments, and they suggest that it may be possible to use sulfate reduction rather than aerobic respiration as a treatment strategy for hydrocarbon-contaminated dredged sediments.  相似文献   

8.
Strain Hxd3, an alkane-degrading sulfate reducer previously isolated and described by Aeckersberg et al. (F. Aeckersberg, F. Bak, and F. Widdel, Arch. Microbiol. 156:5-14, 1991), was studied for its alkane degradation mechanism by using deuterium and (13)C-labeled compounds. Deuterated fatty acids with even numbers of C atoms (C-even) and (13)C-labeled fatty acids with odd numbers of C atoms (C-odd) were recovered from cultures of Hxd3 grown on perdeuterated pentadecane and [1,2-(13)C(2)]hexadecane, respectively, underscoring evidence that C-odd alkanes are transformed to C-even fatty acids and vice versa. When Hxd3 was grown on unlabeled hexadecane in the presence of [(13)C]bicarbonate, the resulting 15:0 fatty acid, which was one carbon shorter than the alkane, incorporated a (13)C label to form its carboxyl group. The same results were observed when tetradecane, pentadecane, and perdeuterated pentadecane were used as the substrates. These observations indicate that the initial attack of alkanes includes both carboxylation with inorganic bicarbonate and the removal of two carbon atoms from the alkane chain terminus, resulting in a fatty acid one carbon shorter than the original alkane. The removal of two terminal carbon atoms is further evidenced by the observation that the [1,2-(13)C(2)]hexadecane-derived fatty acids contained either two (13)C labels located exclusively at their acyl chain termini or none at all. Furthermore, when perdeuterated pentadecane was used as the substrate, the 14:0 and 16:0 fatty acids formed both carried the same numbers of deuterium labels, while the latter was not deuterated at its carboxyl end. These observations provide further evidence that the 14:0 fatty acid was initially formed from perdeuterated pentadecane, while the 16:0 fatty acid was produced after chain elongation of the former fatty acid with nondeuterated carbon atoms. We propose that strain Hxd3 anaerobically transforms an alkane to a fatty acid through a mechanism which includes subterminal carboxylation at the C-3 position of the alkane and elimination of the two adjacent terminal carbon atoms.  相似文献   

9.
n-Hexadecane added as electron donor and carbon source to an anaerobic enrichment culture from an oil production plant or to anoxic marine sediment samples allowed dissimilatory sulfate reduction to sulfide. The enrichment from the oil field was purified via serial dilutions in liquid medium under a hexadecane phase and in agar medium with caprylate. A pure culture of a sulfate-reducing bacterium, strain Hxd3, with relatively tiny cells (0.4–0.5 by 0.8–2 m) was isolated that grew anaerobically on hexadecane without addition of further organic substrates. Most of the cells were found to adhere to the hydrocarbon phase. It was verified that neither organic impurities in hexadecane nor residual oxygen were responsible for growth. Strain Hxd3 was grown with n-hexadecane of high purity (99.5%) in anoxic glass ampoules sealed by fusion. Of 0.4 ml hexadecane added per l (1.4 mmol per l), 90% was degraded with concomitant reduction of sulfate. Controls with pasteurized cells or a common Desulfovibrio species neither consumed hexadecane nor reduced sulfate. Incubation of cell-free medium with low reducing capacity and a redox indicator showed that the ampoules were completely oxygen-tight. Measured degradation balances and enzyme activities suggested a complete oxidation of the alkane to CO2 via the carbon monoxide dehydrogenase pathway. However, the first step in anaerobic alkane oxidation is unknown. On hexadecane, strain Hxd3 produced as much as 15 to 20 mM H2S, but growth was rather slow; with 5% inoculum, cultures were fully grown after 5 to 7 weeks. The new sulfate reducer grew on alkanes from C12 to C20, 1-hexadecene, 1-hexadecanol, 2-hexadecanol, palmitate and stearate. Best growth occurred on stearate (doubling time around 26 h). Growth on soluble fatty acids such as caprylate was very poor. Alkanes with chains shorter than C12, lactate, ethanol or H2 were not used. Strain Hxd3 is the first anaerobe shown to grow definitely on saturated hydrocarbons.Abbreviations CO dehydrogenase carbon monoxide dehydrogenase - DTE 1,4-dithioerythritol - Tris tris(hydroxymethyl)-aminomethane Dedicated to Dr. Ralph S. Wolfe on occasion of his 70th birthday  相似文献   

10.
The alkane-degrading, sulfate-reducing bacterium Desulfatibacillum aliphaticivorans strain CV2803T, recently isolated from marine sediments, was investigated for n-alkane metabolism. The total cellular fatty acids of this strain had predominantly odd numbers of carbon atoms (C odd) when the strain was grown on a C-odd alkane (pentadecane) and even numbers of carbon atoms (C even) when it was grown on a C-even alkane (hexadecane). Detailed analyses of those fatty acids by gas chromatography/mass spectrometry allowed us to identify saturated 2-, 4-, 6-, and 8-methyl- and monounsaturated 6-methyl-branched fatty acids, with chain lengths that specifically correlated with those of the alkane. Growth of D. aliphaticivorans on perdeuterated hexadecane demonstrated that those methyl-branched fatty acids were directly derived from the substrate. In addition, cultures on pentadecane and hexadecane produced (1-methyltetradecyl)succinate and (1-methylpentadecyl)succinate, respectively. These results indicate that D. aliphaticivorans strain CV2803T oxidizes n-alkanes into fatty acids anaerobically, via the addition of fumarate at C-2. Based on our observations and on literature data, a pathway for anaerobic n-alkane metabolism by D. aliphaticivorans is proposed. This involves the transformation of the initial alkylsuccinate into a 4-methyl-branched fatty acid which, in addition to catabolic reactions, can alternatively undergo chain elongation and desaturation to form storage fatty acids.  相似文献   

11.
Two thermophilic non-sporeforming sulfate-reducing bacteria (SRB) were isolated from microbial mats collected from an Icelandic hot spring. Strain JSP was a gram negative rod, with an average cell size of 2.8 x 0.5 microm. No flagella were found. Growth occurred between 55 and 74 degrees C with an optimum between 70 and 74 degrees C at pH 7.0. The G+C content was 40 mol%. Strain R1Ha3 was a gram negative vibrio-shaped rod with an average cell size of 1.7 x 0.4 microm. Motility was observed mediated by one polar flagellum. The growth optimum at pH 7.0 was 65 degrees C, and growth occurred between 45 and 70 degrees C. The G+C content was 38 mol%. In the presence of sulfate, both strains used lactate, pyruvate and H2 as electron donors. In addition, strain R1Ha3 used formate. Pyruvate was the only substrate supporting fermentative growth of both strains. Growth occurred with sulfate as well as thiosulfate as electron acceptors. Furthermore, strain R1Ha3 reduced nitrate and strain JSP reduced sulfite. Neither of the strains were able to oxidize lactate completely to CO2 and neither of the strains contained desulfoviridin. 16S rDNA sequencing placed strain JSP in the genus Thermodesulfobacterium and strain R1Ha3 in the genus Thermodesulfovibrio. Based on the DNA-DNA hybridization studies and differences in morphology and physiology to their closest relatives the two new isolates were considered as new species. Strain JSP is named Thermodesulfobacterium hveragerdense and strain R1Ha3 Thermodesulfovibrio islandicus.  相似文献   

12.
A new sulfate-reducing bacterium was isolated from marine sediment with phosphite as sole electron donor and CO(2) as the only carbon source. Strain FiPS-3 grew slowly, with doubling times of 3-4 days, and oxidized phosphite, hydrogen, formate, acetate, fumarate, pyruvate, glycine, glutamate, and other substrates nearly completely, with concomitant reduction of sulfate to sulfide. Acetate was formed as a side product to a small extent. Glucose, arabinose, and proline were partly oxidized and partly fermented to acetate plus propionate. Growth with phosphite, hydrogen, or formate was autotrophic. Also, in the presence of sulfate, CO dehydrogenase was present, and added acetate did not increase growth rates or growth yields. In the absence of sulfate, phosphite oxidation was coupled to homoacetogenic acetate formation, with growth yields similar to those in the presence of sulfate. Cells were small rods, 0.6 - 0.8 x 2-4 microm in size, and gram-negative, with a G+C content of 53.9 mol%. They contained desulforubidin, but no desulfoviridin. Based on sequence analysis of the 16S rRNA gene and the sulfite reductase genes dsrAB, strain FiPS-3 was found to be closely related to Desulfotignum balticum. However, physiological properties differed in many points from those of D. balticum. These findings justify the establishment of a new species, Desulfotignum phosphitoxidans.  相似文献   

13.
Strain Hxd3, an alkane-degrading sulfate reducer previously isolated and described by Aeckersberg et al. (F. Aeckersberg, F. Bak, and F. Widdel, Arch. Microbiol. 156:5-14, 1991), was studied for its alkane degradation mechanism by using deuterium and 13C-labeled compounds. Deuterated fatty acids with even numbers of C atoms (C-even) and 13C-labeled fatty acids with odd numbers of C atoms (C-odd) were recovered from cultures of Hxd3 grown on perdeuterated pentadecane and [1,2-13C2]hexadecane, respectively, underscoring evidence that C-odd alkanes are transformed to C-even fatty acids and vice versa. When Hxd3 was grown on unlabeled hexadecane in the presence of [13C]bicarbonate, the resulting 15:0 fatty acid, which was one carbon shorter than the alkane, incorporated a 13C label to form its carboxyl group. The same results were observed when tetradecane, pentadecane, and perdeuterated pentadecane were used as the substrates. These observations indicate that the initial attack of alkanes includes both carboxylation with inorganic bicarbonate and the removal of two carbon atoms from the alkane chain terminus, resulting in a fatty acid one carbon shorter than the original alkane. The removal of two terminal carbon atoms is further evidenced by the observation that the [1,2-13C2]hexadecane-derived fatty acids contained either two 13C labels located exclusively at their acyl chain termini or none at all. Furthermore, when perdeuterated pentadecane was used as the substrate, the 14:0 and 16:0 fatty acids formed both carried the same numbers of deuterium labels, while the latter was not deuterated at its carboxyl end. These observations provide further evidence that the 14:0 fatty acid was initially formed from perdeuterated pentadecane, while the 16:0 fatty acid was produced after chain elongation of the former fatty acid with nondeuterated carbon atoms. We propose that strain Hxd3 anaerobically transforms an alkane to a fatty acid through a mechanism which includes subterminal carboxylation at the C-3 position of the alkane and elimination of the two adjacent terminal carbon atoms.  相似文献   

14.
15.
16.
A novel sulfate-reducing bacterium isolated from fuel-contaminated subsurface soil, strain PRTOL1, mineralizes toluene as the sole electron donor and carbon source under strictly anaerobic conditions. The mineralization of 80% of toluene carbon to CO2 was demonstrated in experiments with [ring-U-14C]toluene; 15% of toluene carbon was converted to biomass and nonvolatile metabolic by-products, primarily the former. The observed stoichiometric ratio of moles of sulfate consumed per mole of toluene consumed was consistent with the theoretical ratio for mineralization of toluene coupled with the reduction of sulfate to hydrogen sulfide. Strain PRTOL1 also transforms o- and p-xylene to metabolic products when grown with toluene. However, xylene transformation by PRTOL1 is slow relative to toluene degradation and cannot be sustained over time. Stable isotope-labeled substrates were used in conjunction with gas chromatography-mass spectrometry to investigate the by-products of toluene and xylene metabolism. The predominant by-products from toluene, o-xylene, and p-xylene were benzylsuccinic acid, (2-methylbenzyl)succinic acid, and 4-methylbenzoic acid (or p-toluic acid), respectively. Metabolic by-products accounted for nearly all of the o-xylene consumed. Enzyme assays indicated that acetyl coenzyme A oxidation proceeded via the carbon monoxide dehydrogenase pathway. Compared with the only other reported toluene-degrading, sulfate-reducing bacterium, strain PRTOL1 is distinct in that it has a novel 16S rRNA gene sequence and was derived from a freshwater rather than marine environment.  相似文献   

17.
The alkane-degrading, sulfate-reducing bacterium Desulfatibacillum aliphaticivorans strain CV2803T, recently isolated from marine sediments, was investigated for n-alkane metabolism. The total cellular fatty acids of this strain had predominantly odd numbers of carbon atoms (C odd) when the strain was grown on a C-odd alkane (pentadecane) and even numbers of carbon atoms (C even) when it was grown on a C-even alkane (hexadecane). Detailed analyses of those fatty acids by gas chromatography/mass spectrometry allowed us to identify saturated 2-, 4-, 6-, and 8-methyl- and monounsaturated 6-methyl-branched fatty acids, with chain lengths that specifically correlated with those of the alkane. Growth of D. aliphaticivorans on perdeuterated hexadecane demonstrated that those methyl-branched fatty acids were directly derived from the substrate. In addition, cultures on pentadecane and hexadecane produced (1-methyltetradecyl)succinate and (1-methylpentadecyl)succinate, respectively. These results indicate that D. aliphaticivorans strain CV2803T oxidizes n-alkanes into fatty acids anaerobically, via the addition of fumarate at C-2. Based on our observations and on literature data, a pathway for anaerobic n-alkane metabolism by D. aliphaticivorans is proposed. This involves the transformation of the initial alkylsuccinate into a 4-methyl-branched fatty acid which, in addition to catabolic reactions, can alternatively undergo chain elongation and desaturation to form storage fatty acids.  相似文献   

18.
Strain DCB-1 is a strict anaerobe capable of reductive dehalogenation. We elucidated metabolic processes in DCB-1 which may be related to dehalogenation and which further characterize the organism physiologically. Sulfoxy anions and CO2 were used by DCB-1 as catabolic electron acceptors. With suitable electron donors, sulfate and thiosulfate were reduced to sulfide. Sulfate and thiosulfate supported growth with formate or hydrogen as the electron donor and thus are probably respiratory electron acceptors. Other electron donors supporting growth with sulfate were CO, lactate, pyruvate, butyrate, and 3-methoxybenzoate. Thiosulfate also supported growth without an additional electron donor, being disproportionated to sulfide and sulfate. In the absence of other electron acceptors, CO2 reduction to acetate plus cell material was coupled to pyruvate oxidation to acetate plus CO2. Pyruvate could not be fermented without an electron acceptor. Carbon monoxide dehydrogenase activity was found in whole cells, indicating that CO2 reduction probably occurred via the acetyl coenzyme A pathway. Autotrophic growth occurred on H2 plus thiosulfate or sulfate. Diazotrophic growth occurred, and whole cells had nitrogenase activity. On the basis of these physiological characteristics, DCB-1 is a thiosulfate-disproportionating bacterium unlike those previously described.  相似文献   

19.
The anaerobic metabolism of acetate was studied in sediments and groundwater from a gas condensate-contaminated aquifer in an aquifer where geochemical evidence implicated sulfate reduction and methanogenesis as the predominant terminal electron-accepting processes. Most-probable-number tubes containing acetate and microcosms containing either [2-(14)C]acetate or [U-(14)C]acetate produced higher quantities of CH(4) compared to CO(2) in the presence or absence of sulfate.(14)CH(4) accounted for 70 to 100% of the total labeled gas in the [(14)C]acetate microcosms regardless of whether sulfate was present or not. Denaturing gradient gel electrophoresis of the acetate enrichments both with and without sulfate using Archaea-specific primers showed identical predominant bands that had 99% sequence similarity to members of Methanosaetaceae. Clone libraries containing archaeal 16S rRNA gene sequences amplified from sediment from the contaminated portion of the aquifer showed that 180 of the 190 clones sequenced belonged to the Methanosaetaceae. The production of methane and the high frequency of sequences from the Methanosaetaceae in acetate enrichments with and without sulfate indicate that aceticlastic methanogenesis was the predominant fate of acetate at this site even though sulfate-reducing bacteria would be expected to consume acetate in the presence of sulfate.  相似文献   

20.
The complete oxidation of methylmercaptan (MSH) and dimethyl sulfide (DMS) with sulfate or nitrate as electron acceptors was observed in enrichment cultures and dilution series using thermophilic fermentor sludge as the inoculum. Three new strains of thermophilic sulfate reducers were isolated in pure culture (strains MTS5, TDS2, and SDN4). Strain MTS5 grew on MSH and strain TDS2 grew on DMS whereas strain SDN4 grew on either MSH or DMS. The cellular growth yields were 2.57 g (dry weight)/mol of MSH for strain MTS5 and 6.02 g (dry weight)/mol of DMS for strain TDS2. All strains used sulfate, sulfite, or thiosulfate as electron acceptors, but only strain SDN4 used nitrate. DMS and MSH were oxidized to CO2 and sulfide with either sulfate or nitrate as the electron acceptor. Sulfate was stoichiometrically reduced to sulfide while nitrate was reduced to ammonium. All strains were motile rods, required biotin for growth, lacked desulfoviridin, had DNA with G+C contents of 48 to 57 mol% and probably belonged to the genus Desulfotomaculum. This is the first report of the oxidation of MSH and DMS by pure cultures of sulfate-reducing bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号