首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
beta-Phenylethylamine (PE) hydrochloride injected intraperitoneally into rats was distributed evenly throughout the various regions of rat brain. Similarly, when a mixture of PE and alpha, alpha, beta, beta-deuterated PE [( 2H4]PE) was injected, no regional differences were observed in the ratios of the amounts of [2H4]PE and PE present; however, significantly more [2H4]PE than PE was present, although a 1:1 mixture had been administered. Further experiments in which the amounts of [2H4]PE and PE in whole rat brain, liver, and plasma were quantified confirmed this finding. The maximum [2H4]PE-to-PE ratios observed were 67 in whole brain 1 h after injection and 8 in liver and in plasma 45 min after injection. The whole brain [2H4]PE-to-PE ratios were decreased by pargyline pretreatment. Subsequent experiments showed that more alpha, alpha-[2H2]PE than PE was present in whole brain, liver, and plasma of rats injected with an equimolar mixture of alpha, alpha-[2H2]PE and PE. In contrast, beta, beta-[2H2]PE was not enriched in comparison to PE under the same experimental conditions. We concluded that the basis for the enrichment of [2H4]PE and alpha, alpha-[2H2]PE compared to PE was due to protection of the deuterated analogs from the actions of monoamine oxidase and perhaps aldehyde dehydrogenase; this protection led to pronounced deuterium substitution effects in vivo especially in the brain.  相似文献   

2.
A method for the synthesis and purification of large quantities of four radiolabeled substrates for quantitation of uncovering enzyme is described. Four substrates, [3H]GlcNAc-alpha-P-Man alpha Me, [3H]GlcNAc-alpha-P-uteroferrin, [3H]GlcNAc alpha-P-Man alpha 1-2Man-O-Me, and [3H]GlcNAc alpha-P-Man9GlcNAc, were enzymatically synthesized using GlcNAc-phosphotransferase from Acanthamoeba castellanii and uridine diphosphate N-acetyl-[3H]glucosamine and, as acceptor, methyl-alpha-D-mannopyranoside (Man alpha Me), uteroferrin, Man alpha 1-2Man-O-methyl, or Man9GlcNAc. The isolation of the [3H]GlcNAc-P-modified product of each reaction is detailed. Two assays for the detection of uncovering enzyme activity using [3H]GlcNAc-alpha-P-uteroferrin and [3H]GlcNAc-alpha-P-Man alpha Me are outlined. The ability to easily synthesize four relevant substrates for uncovering enzyme offers flexibility in assaying uncovering enzyme.  相似文献   

3.
A dual plasmid system was used to examine the protein and acyl-CoA specificities of Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase (NMT) by co-expressing it in Escherichia coli with each of four homologous alpha subunits of the signal-transducing, heterotrimeric G proteins. Exogenous [3H]myristate was incorporated into rat Gi alpha 1 and rat Go alpha but not into bovine Gs alpha or human Gz alpha. Oxygen for methylene group substitutions in myristate result in analogs with comparable chain length and stereochemistry but marked reductions in hydrophobicity. Metabolic labeling studies with 6-, 11-, or 13-[3H]oxatetradecanoic acid indicated that they were incorporated into rat Gi alpha 1 and Go alpha with an efficiency that could be correlated with their accumulation into E. coli and their interactions with purified NMT in vitro. Octapeptides derived from the NH2-terminal sequences of these four G alpha polypeptides were tested as substrates for purified S. cerevisiae NMT. None were bound by the enzyme. Acidic residues at positions 7 and 8 appear to contribute to this effect; deletion of these two amino acids or addition of the next 9 residues of rat Go alpha produced active substrates. These results imply that productive interactions between NMT and G alpha protein substrates in vivo require structural features that are not fully represented within their NH2-terminal 8 residues.  相似文献   

4.
M L Vazquez  R B Silverman 《Biochemistry》1985,24(23):6538-6543
A mechanism previously proposed for inactivation of monoamine oxidase (MAO) by N-cyclopropylbenzylamine (N-CBA) [Silverman, R. B., & Hoffman, S. J. (1980) J. Am. Chem. Soc. 102, 884-886] is revised. Inactivation of MAO by N-[1-3H]CBA results in incorporation of about 3 equiv of tritium into the enzyme and release of [3H]acrolein. Treatment of inactivated enzyme with benzylamine, a reactivator for N-CBA-inactivated MAO, releases only 1 equiv of tritium as [3H]acrolein concomitant with reactivation of the enzyme. Even after MAO is inactivated by N-[1-3H]CBA, the reaction continues. At pH 7.2, a linear release of [3H]acrolein is observed for 70 h, which produces 55 equiv of [3H]acrolein while 2.3 equiv of tritium is incorporated into the enzyme. At pH 9, only 3.5 equiv of [3H]acrolein is detected in solution after 96 h, but 40 equiv of tritium is incorporated into the enzyme, presumably as a result of greater ionization of protein nucleophiles at the higher pH. N-[1-3H]Cyclopropyl-alpha-methylbenzylamine (N-C alpha MBA) produces the same adduct as N-CBA but gives only 1-1.35 equiv of tritium bound after inactivation of the enzyme. Denaturation of labeled enzyme results in reoxidation of the flavin without release of tritium, indicating attachment is not to the flavin but rather to an amino acid residue. Enzyme inactivated with N-[1-3H]C alpha MBA is reactivated by benzylamine with the release of 1 equiv of [3H]acrolein, which must have come from an adduct attached to an active site amino acid residue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Abstract— A new method has been developed for the separation of histamine and its metabolites after intracisternal injection of [3H]histamine into the rat brain, involving solvent extraction and subsequent thin-layer chromatography. The effect of graded doses of the MAO inhibitors deprenil and pargyline, which at relatively low doses inhibit preferentially the B form (phenethylamine deaminating) of the enzyme, and clorgyline, which mainly inhibits the A form (serotonin, noradrenaline and dopamine deaminating) on the brain levels of intracisternally injected [3H]histamine and its labelled metabolites was studied and compared to MAO A and B activity as determined with the substrates serotonin and phenethylamine, respectively. In addition, the time-course of the effects of a single dose of pargyline (50mg/kg subcutaneously) was investigated. No [3H]imidazoleacetic acid could be detected in any of the control or treated animals. [3H]Histamine accounted for 9–12% of the total extracted radioactivity and this was not altered significantly by pretreatment with any of the MAO inhibitors up to high doses, at which both MAO A and B activities were completely inhibited. In the controls, 40–43% of the total extracted radioactivity was [3H]methylhistamine and 28–30% was [3H]methylimidazoleacetic acid. Deprenil and pargyline caused [3H]methylhistamine levels to increase in a dose-dependent manner up to about 150% of control levels and those of [3H]methylimida-zoleacetic acid to decrease concomitantly to about 10% of control levels. Clorgyline in doses up to 10 mg/kg subcutaneously (s.c.) had no effect on the levels of these two metabolites. The dose-response curves of the effects of deprenil and pargyline on [3H]methylimidazoleacetic acid levels were congruent with those of the MAOI effects on MAO B activity and not with those on MAO A activity. Pargyline (50 mg/kg s.c.) had a long lasting effect on the accumulation of [3H]methylhistamine and [3H]methylimidazoleacetic acid. Recovery occurred within 21 days, and the half-lives observed were 5.3 and 5.6 days, respectively. This compares well to the half-life for the recovery of MAO B activity reported earlier after the same dose of pargyline (5.5 days). These results suggest that methylhistamine is metabolized selectively by MAO B in rat brain. Moreover, the fact that clorgyline, at doses where phenethylamine deamination is already considerably inhibited, did not affect the deamination of methylhistamine, suggests that the latter is an even more selective substrate for MAO B than phenethylamine itself. Therefore, small doses of deprenil (0.3–3 mg/kg s.c.) or pargyline (1–3 mg/kg) can be used to influence histamine catabolism without interfering with catecholamine or serotonin deamination.  相似文献   

6.
The equivalence of aminomethylene groups in selected diamine substrates of diamine oxidase was exploited for the determination of intramolecular isotope effects. In the series of substrates, [1,1-2H2]-1,3-diaminopropane, [1,1-2H2]-1,5-diaminopentane, [1,1-2H2]-1,6-diaminohexane, [1,1-2H2]-1,7-diaminoheptane and [alpha,alpha-2H2]-4-(aminomethyl)benzylamine, the preference of the enzyme for reaction at the unlabeled methylene was found to vary from 1.45 to 10.5-fold. The observed partitioning ratios go through a minimum value with 1,5-diaminopentane, the best substrate of diamine oxidase of the compounds tested. The results suggest that fast substrates have less opportunity to reorient into alternate binding conformations while bound to the active site of the enzyme. On the other hand, diamine substrates tested that cannot exist in energetically favorable conformations with internitrogen distances of about 7-8 A showed larger intramolecular isotope effects.  相似文献   

7.
Abstract: Intrastriatal injections of kainic acid (KA) were utilized to investigate the cellular localization of postsynaptic dopamine (DA) metabolism by type A and B monoamine oxidase (MAO) in rat striatum. At 2 days postinjection, maximal degeneration of cholinergic and γ-aminobutyric acid (GABA)ergic neurons was observed and found to be associated with a significant decrease in both type A and B MAO activity. However, over the next 8-day period, when only the process of gliosis appeared to be occurring, a selective return to control of type B MAO activity was seen. When the metabolism of [3H]DA (10?7 M) was examined in 8-day KA-lesioned rat striatal slices, an increase in [3H]dihydroxyphenylacetic acid (DOPAC) and [3H]homovanillic acid (HVA) formation was observed. The KA-induced elevation of [3H]DOPAC formation (but not [3H]HVA) was abolished by the DA neuronal uptake inhibitor nomifensine. This is consistent with earlier findings suggesting that HVA is formed exclusively within sites external to DA neurons. Experiments with clorgyline and/or deprenyl revealed that the relative roles of type A and B MAO in striatal DA deamination remained unchanged following KA (90% deamination by type A MAO) even though total deamination was substantially enhanced. At high concentrations of [3H]DA (10?5 M), deamination by type B MAO could be increased to 30% of the total MAO activity; however, this was observed in both control and KA-lesioned striata. These results suggest that KA-sensitive neurons contain type A and/or type B MAO. Moreover, whereas these neurons may metabolize DA, a major portion of postsynaptic DA deamination appears to occur within glial sites of rat striatal tissue. Furthermore, glial cells would appear to contain functionally important quantities of both type A and B MAO.  相似文献   

8.
The mechanism and sequence of side chain hydroxylation of cholesterol in bile acid synthesis was studied in the isolated perfused rabbit liver. A comparison was made between the importance of 26- and 25-hydroxylation in cholic acid biosynthesis in the rabbit. The formation of [G-3H]cholic acid was observed when the liver was perfused with 5beta-[G-3H]cholestane-3alpha, 7alpha-diol, 5beta-[G-3H]cholestane-3alpha, 7alpha-12alpha-triol, and 5beta-[G-3H]cholestane-3alpha, 7alpha, 26-triol. No [G-3H]chenodeoxycholic acid was detected in the bile. These findings indicate that potential precursors of chenodeoxycholic acid were hydroxylated at position 12alpha either subsequent to or before hydroxylation of the cholesterol side chain. In addition, no other intermediates (tetrahydroxy or pentahydroxy bile alcohols) were found in the bile when these compounds were perfused in the liver. Bile acid precursors were detected in bile when the rabbit liver was perfused with 5beta-[24-14C]cholestane-3alpha, 7alpha, 25-triol. The 5beta-[24-14C]cholestane-3alpha, 7alpha, 25-triol was hydroxylated in the liver at the 12alpha position to yield the corresponding 5beta-cholestane-3alpha, 7alpha, 12alpha, 25-tetrol. The tetrol was further metabolized to a series of pentols (5beta-cholestane-3alpha, 7alpha, 12alpha, 22, 25-pentol; 5beta-cholestane-3alpha, 7alpha, 12alpha, 23, 25-pentol; 5beta-cholestane-3alpha, 7alpha, 12alpha, 24, 25-pentol; and 5beta-cholestane-3alpha, 7alpha, 12alpha, 25, 26-pentol). The major bile acid obtained from the perfusion of the 5beta-cholestane-3alpha, 7alpha, 25-triol was cholic acid. The experiments indicated that in the rabbit liver 12alpha-hydroxylation can occur after hydroxylation of the cholesterol side chain at either C-25 (5 beta-cholestane-3alpha, 7alpha, 25-triol) or C-26 (5beta-cholestane-3alpha, 7alpha-26-triol). Apparently, the rabbit can form cholic acid via the classical 26-hydroxylation pathway as well as via 25-hydroxylated intermediates.  相似文献   

9.
15-Keto-13,14-dihydro 6-ketoprostaglandin E1 was positively identified by gas chromatography-mass spectrometry with negative-ion chemical ionisation detection from samples of rat kidney high-speed supernatant incubated with prostaglandin I2 in the presence of NAD+. A decreased formation of this product was observed when NAD+ was substituted with NADP+ and none was observed in the absence of nucleotide or substrate prostaglandin I2. Experiments with [9 beta-3H]prostaglandin I2 showed a time- and concentration-dependent loss of tritium which appeared as tritiated water, typical of reaction of [9 beta-3H]prostaglandin substrates with the enzyme, 9-hydroxyprostaglandin dehydrogenase. Time-course measurements of the appearance of tritiated water showed similar rates with 6-keto[9 beta-3H]prostaglandin F1 alpha and 15-keto-13,14-dihydro 6-keto[9 beta-3H]prostaglandin F1 alpha as substrates. These experiments suggest that the transformation of prostaglandin I2 and 6-ketoprostaglandin F1 alpha into the 15-keto-13,14-dihydro 6-ketoprostaglandin E1 catabolite occurs in this in vitro preparation via the corresponding 15-keto-13,14-dihydro catabolite of 6-ketoprostaglandin F1 alpha.  相似文献   

10.
The ability of the bovine brain A1-adenosine receptor to discriminate between different G protein subtypes was tested using G protein alpha-subunits synthesized in Escherichia coli (rG alpha-subunits). When combined with a 3-fold molar excess of beta gamma-subunit purified from bovine brain and used at high concentrations, all three subtypes of rGi alpha (rGi alpha-1, rGi alpha-2, and rGi alpha-3) and rGo alpha were capable of reconstituting guanine nucleotide-sensitive high-affinity binding of the agonist radioligand (-)-N6-3-[125I] (iodo-4-hydroxyphenylisopropyl) adenosine ([125I]HPIA) to the purified A1-adenosine receptor (Kd approximately 1.2 nM). Titration of the A1-adenosine receptor with increasing amounts of rG alpha revealed a approximately 10-fold higher affinity for rGi alpha-3 compared with rGi alpha-1, rGi alpha-2, and rGo alpha. This selectivity was also observed in the absence of beta gamma. Other alpha-subunits (rGs alpha-s, rGs alpha-L, rGs alpha PT, and rGz alpha) did not promote [125I]HPIA binding to the purified receptor. In N-ethylmaleimide-treated bovine brain membranes, rGi alpha-3 was the only rG alpha-subunit capable of reconstituting high-affinity agonist binding. Similarly, rGi alpha-3 competed potently with rGo alpha for activation by the agonist-liganded A1-adenosine receptor, whereas a approximately 50-fold molar excess of rGo alpha was required to quench the receptor-mediated release of [alpha-32P]GDP from rGi alpha-3. Hence, in spite of the extensive homology between alpha-subunits belonging to the Gi/Go group, the A1-adenosine receptor appears to discriminate between the subtypes. This specificity is likely to govern transmembrane signaling pathways in vivo.  相似文献   

11.
To more clearly define the physiologic roles of thromboxane (TX)A2 and primary prostaglandins (PG) in vascular tissue we examined vascular contractility, cell signaling, and growth responses. The growth-promoting effects of (15S)-hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5Z,13E-dienoic acid (U46619; TXA2 agonist), PGF2 alpha, and PGE2 consisted of protein synthesis and proto-oncogene expression, but not DNA synthesis or cell proliferation. U46619 contracted rat aortas and increased cultured rat aortic vascular smooth muscle cell intracellular free calcium concentration [Ca2+]i, [3H]inositol monophosphate (IP) accumulation, myosin light chain phosphorylation, and protein synthesis ([3H]leucine incorporation) with EC50 values ranging from 10 to 50 nM. Each of these responses was inhibitable with the TXA2 receptor antagonist [1S]1 alpha,2 beta(5Z),3 beta,4 alpha-7-(3-[2- [(phenylamino)carbonyl]hydrazino]methyl)-7-oxabicyclo[2.2.1]hept-2- yl-5-heptenoic acid (SQ29548). In contrast, PGF2 alpha increased [Ca2+]i, [3H]IP, and protein synthesis with EC50 values of 30-230 nM but contracted rat aortas with an EC50 of 4800 nM. PGE2 increased [Ca2+]i, [3H]IP accumulation, protein synthesis, and contracted rat aortas with EC50 values of 2.5-3.5 microM. TXA2 receptor blockade prevented PGF2 alpha- and PGE2-induced aortic contraction and cell myosin light chain phosphorylation, but not cell signaling or protein synthesis. Binding studies to vascular smooth muscle TXA2 receptors using 1S-[1 alpha,2 beta(5Z),3 alpha(1E,3S),4 alpha]-7-(3-[3-hydroxy-4-(p- [125I]iodophenoxy)-1-butenyl]7-oxabicyclo[2.2.1]hept-2-yl)-5-hepte noic acid ([125I]BOP) showed U46619, SQ29548, PGF2 alpha, and PGE2 competition for TXA2 receptor binding at concentrations similar to their EC50 values for aortic contraction, while binding competition with [3H]PGF2 alpha and [3H]PGE2 demonstrated the specificity of [125I]BOP and SQ29548 for TXA2 receptors. The results suggest that 1) PGF2 alpha- and E2-stimulated vessel contraction is due to cross-agonism at vascular TXA2 receptors; 2) PGF2 alpha stimulates TXA2 receptor-independent vascular smooth muscle protein synthesis at nanomolar concentrations, consistent with an interaction at its primary receptor; and 3) TXA2 is a potent stimulus for vascular smooth muscle contraction and protein synthesis. We suggest that the main physiologic effect of PGF2 alpha may be as a stimulus for vascular smooth muscle cell hypertrophy, not as a contractile agonist.  相似文献   

12.
The mechanism of 3-hydroxy epimerization of chenodeoxycholic acid by Clostridium perfringens was investigated in 3 alpha, 7 alpha-dihydroxy-[2,2,4,4-2H4]-, 3 alpha, 7 alpha-dihydroxy-[3 beta-2H]- and 3 beta, 7 alpha-dihydroxy-[3 alpha-2H]-5 beta-cholanoic acid transformations. Our findings rule out a dehydration-rehydration pathway and agree with a redox mechanism involving 3-oxochenodeoxycholic acid as intermediate.  相似文献   

13.
The proteins of the bioluminescent bacterium Beneckea harveyi have been labelled with [3H]leucine prior to the induction of bioluminescence, and with [14C]leucine during the development of the bioluminescent system. An aliphatic aldehyde dehydrogenase and a NAD(P)H:flavin oxidoreductase, two enzymes that may be directly involved in the metabolism of the substrates (aldehyde, FMNH2) for the luminescent reaction catalyzed by luciferase, were purified and the isotope ratios of their respective polypeptide chains determined after sodium dodecyl sufate gel electrophoresis. A comparison of these isotope ratios to (a) the isotope ratios of the induced polypeptide chains of luciferase, purified in the same experiment, and (b) the average isotope ratio for the proteins synthesized in concert with growth has provided direct evidence that the synthesis of aldehyde dehydrogenase but not NAD(P)H:flavin oxidoreductase is induced during the development of bioluminescence.  相似文献   

14.
The application of positron emission tomography (PET) to the study of biochemical transformations in the living human and animal body requires the development of highly selective radiotracers whose concentrations in tissue provide a record of a discrete metabolic process. L-N-[11C-methyl]Deprenyl ([11C]L-deprenyl), a suicide inactivator of monoamine oxidase (MAO) type B, has been developed as a radiotracer for mapping MAO B in the living human and animal brain. In this investigation, [11C]L-deprenyl (1) and [11C]L-deprenyl-alpha, alpha-2H2 (2) have been compared in three different baboons by PET measurement of carbon-11 uptake and retention in the brain and the measurement of the amount of unchanged tracer in the arterial plasma over a 90-min time interval. For one baboon, N-[11C-methyl-2H3]L-deprenyl (3) was also studied. Kinetic parameters calculated using a three-compartment model revealed a deuterium isotope effect of 3.8 +/- 1.1. Comparison of the two tracers (1 and 2) in mouse brain demonstrated that deuterium substitution significantly reduced the amount of radioactivity bound to protein. HPLC and GLC analysis of the soluble radioactivity in mouse brain after injection of [11C]L-deprenyl showed the presence of [11C]methamphetamine as a major product along with unidentified labeled products. Sodium dodecyl sulfate-polyacrylamide electrophoresis with carbon-14-labeled L-deprenyl showed that a protein of molecular weight 58,000 was labeled. These results establish that MAO-catalyzed cleavage of the alpha carbon-hydrogen bond on the propargyl group is the rate limiting (or a major rate contributing) step in the retention of carbon-11 in brain and that the in vivo detection of labeled products in brain after the injection of [11C]L-deprenyl provides a record of MAO activity.  相似文献   

15.
A high-affinity (Kd= 5.9 nM) specific binding site for [3H]harmaline was detected in membranes from rat and bovine brains. Studies of the regional and subcellular distributions of this binding indicated its close association with monoamine oxidase type A activity (MAO A) measured with [3H]serotonin ([3H]5-HT) as the substrate. Maximal binding capacity and MAO A activity were found in mitochondrial enriched fractions. Mitochondria of synaptosomal or extra-synaptosomal origin exhibited very similar properties with respect to [3H]harmaline binding characteristics and MAO A activity. Among psychoactive drugs, only monoamine oxidase inhibitors (MAO I) prevented the specific binding of [3H]harmaline. Logit-log inhibition curves of binding by MAO I gave only one slope which was not significantly different from 1.0, suggesting the existence of only 1 category of specific sites for [3H]harmaline in the membrane preparations from rat and bovine brains. Consistent with the preferential inhibition of MAO A by harmaline, other MAO I of this class, i.e. clorgyline and Lilly 51641, were 102-2 × 103 times more efficient than deprenyl and pargyline, two inhibitors of MAO type B, in displacing [3H]harmaline from its specific binding site. Ki and IC50 values for the inhibition of [3H]harmaline binding by MAO I and MAO substrates (tryptamine, 5-HT, norepinephrine) were almost identical with those characterizing their action on MAO A activity with [3H]5-HT as the substrate. In conclusion, the specific binding site for [3H]harmaline exhibited all the expected properties of the active site of MAO A. Like the technique of precipitation with a specific antibody, binding of [3H]harmaline should be of great help for studying the structural characteristics of the active site of MAO A and determining the number of MAO molecules in tissues under various physiological conditions.  相似文献   

16.
[3H]Pargyline has been covalently linked to active sites of both type A and type B monoamine oxidase (MAO) obtained from various tissues. Rat heart and human placenta were chosen to represent predominantly type A MAO, pig and bovine livers to represent type B MAO, and rat liver and brain to represent mixed type A and type B MAO's. The [3H]pargyline-MAO adducts were isolated and hydrolyzed by proteolytic enzymes, and the labelled peptides (pargyline-binding sites) separated and compared by paper chromatography and by paper electrophoresis at various pH values. Only one common pargyline peptide was obtained from all the different MAO's. The alternative A and B sites were assessed after preincubation of rat liver MAO with the selective inhibitors deprenyl (to block the B site) and clorgyline (to block the A site). Following proteolysis of the [3H]pargyline of both type A and type B MAO from this pretreated rat liver, MAO has been purified by a series of chromatographic and electrophoretic procedures. Micro-Edman degradation, followed by dansylation, revealed the amino acid sequence to be Ser-Gly-Gly-Cys(X)-Tyr. It is concluded that the primary structures immediately surrounding the pargyline-binding sites are identical for both type A and type B MAO in these tissues.  相似文献   

17.
Furuta T  Namekawa T  Shibasaki H  Kasuya Y 《Steroids》1999,64(12):805-811
A method is described for the preparation of multi-labeled tetrahydrocortisol (3alpha,11beta,17alpha,21-tetrahydroxy-5beta-[1, 2,3,4,5-2H5]pregnan-20-one, THF-d5), allo-tetrahydrocortisol (3alpha,11beta,17alpha,21-tetrahydroxy-5alpha-[1 ,2,3,4,5-2H5]pregnan-20-one, allo-THF-d5), and tetrahydrocortisone (3alpha,17alpha,21-trihydroxy-5beta-[1,2,3,4,5-2H5]pre gnane-11,20-dione, THE-d5) containing five non-exchangeable deuterium atoms in the steroid ring A. Reductive deuteration at C-1, C-2, C-3, C-4, and C-5 of prednisolone or prednisone was performed in CH3COOD with rhodium (5%) on alumina under the deuterium atmosphere. The isotopic purities of the labeled compounds as [2H5]-form were estimated to be 86.17 atom%D for THF-d5, 74.46 atom%D for allo-THF-d5 and 81.90 atom%D for THE-d5, based on the ion intensities in the region of the molecular ion of methoxime-trimethylsilyl (MO-TMS) derivatives measured by GC-MS.  相似文献   

18.
A model system consisting of donor membrane (egg lecithin liposomes) and acceptor membrane (human erythrocyte ghosts or rat liver mitochondria) were used to investigate the alpha-tocopherol binding protein (alpha TBP) mediated transfer of alpha-tocopherol. Liposomes containing RRR-[alpha-3H]tocopherol ([alpha-3H]T) were incubated with acceptor membrane at 37 degrees C for 0-45 min in the presence or absence of rat liver cytosol or a dialyzed 30-60% saturated ammonium sulfate precipitated fraction of rat liver cytosol (Fraction B). Erythrocyte ghosts and liver mitochondria were compared and found to behave similarly in the presence of Fraction B. alpha-Tocopherol transfer activity (alpha TTA) typically varied 0- to 27-fold greater than buffer blanks, depending upon type and concentration of protein preparation. Gel filtration of Fraction B yielded one alpha TTA peak (liver mitochondria as acceptor) with an estimated Mr of 39,000. [alpha-3H]T recovered from erythrocyte ghosts pellets by HPLC suggest that the [alpha-3H]T was transferred intact. alpha TTA of Fraction B in the presence of varying concentrations of erythrocyte ghosts and liposomal [alpha-3H]T followed saturation kinetics. Optimal concentrations gave alpha TTA responses directly proportional to rat liver cytosol concentration. alpha TTA was inhibited only 5% in the presence of a 32-fold excess of cold liposomal alpha-tocopheryl acetate suggesting that the free hydroxyl group on the chromanol ring of alpha-tocopherol is needed for transfer. Coefficient of variation of repeated measures of alpha TTA in rat liver cytosol was 2.9%. Thus, the intermembrane transfer phenomenon of alpha-tocopherol can be studied quantitatively and can be used to compare liver protein preparations exhibiting transfer activity.  相似文献   

19.
Insulin and IGF-1 receptors contain covalently bound palmitic acid   总被引:2,自引:0,他引:2  
We have studied the biosynthesis of the insulin receptor in a human hepatoma cell line, HepG2. As previously reported, these cells synthesize a disulphide-bonded alpha 2 beta 2 tetrameric insulin receptor. Labelling of HepG2 cells with [3H]palmitate or [3H]myristate followed by immunoprecipitation with a polyclonal antireceptor antibody revealed the incorporation of palmitate, but not myristate, into the beta-subunit and alpha beta-precursor of the receptor in a hydroxylamine-sensitive linkage. The extracellular alpha-subunit was not labelled, demonstrating the specificity of incorporation. Acylation of the insulin receptor was an early event as judged by fatty acid incorporation into the alpha beta-precursor and prevention by protein synthesis inhibitors. Pulse-chase studies demonstrated the expected processing of the alpha beta-precursor to mature alpha- and beta-subunits, but no evidence for preferential turnover of the fatty acid moiety was found. The site of acylation appears to be in the transmembrane or cytoplasmic domain since proteolytic treatment of intact cells produced a truncated beta-subunit still containing label. Binding studies showed that HepG2 cells contain approximately half as many insulin-like growth factor-1 receptors as insulin receptors, raising the possibility that this receptor may also be acylated. Indeed, immunoprecipitation with the antiinsulin receptor serum of MDCK cells expressing IGF-1 receptors, but not insulin receptors, revealed bands corresponding to the alpha beta-precursor, alpha- and beta-subunits, of which the alpha beta-precursor and beta-subunits incorporated [3H]palmitate but the alpha-subunit did not.  相似文献   

20.
[3H]Quinpirole is a dopamine agonist with high affinity for the D2 and D3 dopamine receptors. A variety of monoamine oxidase inhibitors (MAOIs) inhibit equilibrium binding of [3H]quinpirole binding in rat striatal membranes suggesting that MAOIs interact with a novel binding site that is labeled by [3H]quinpirole or that allosterically modulates [3H]quinpirole binding. To determine whether the D2 receptor is essential for [3H]quinpirole binding and/or modulation of [3H]quinpirole binding by MAOIs, D2 receptor-deficient mice were studied. [3H]Quinpirole binding was decreased in D2 receptor-deficient mice to 3% of that observed in wild-type controls indicating that [3H]quinpirole binding is associated with the D2 dopamine receptors. Then, in an attempt to label the site mediating the modulation of [3H]quinpirole binding, binding of the MAOI [3H]Ro 41-1049 was characterized in rat striatal membranes. [3H]Ro-41-1049 labeled a single binding site with a pharmacological profile with respect to MAOIs that was similar to both [3H]quinpirole binding (Spearman r=0.976) and MAO(A) activity. To determine whether MAO(A) plays a role in the modulation of [3H]quinpirole binding by MAOIs, MAO(A)-deficient mice were examined. In these mice, [3H]Ro-41-1049 binding was decreased to 7% of wild-type control. [3H]Spiperone binding was unaltered. Spiperone-displaceable [3H]quinpirole binding was decreased to 43% of wild-type control; however, the remaining [3H]quinpirole binding in MAO(A)-deficient animals was inhibited by Ro 41-1049 similar to wild-type. [3H]Ro-41-1049 binding was not decreased in D2 receptor-deficient mice. These data suggest that [3H]Ro-41-1049 labels multiple sites and that MAOIs modulate [3H]quinpirole binding to the D2 receptor via interactions at a novel, non-MAO binding site with MAO(A)-like pharmacology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号