首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arabidopsis thaliana histidine phosphotransfer proteins (AHPs) are similar to bacterial and yeast histidine phosphotransfer proteins (HPts), which act in multistep phosphorelay signaling pathways. A phosphorelay pathway is the current model for cytokinin signaling. To assess the role of AHPs in cytokinin signaling, we isolated T-DNA insertions in the five AHP genes that are predicted to encode functional HPts and constructed multiple insertion mutants, including an ahp1,2,3,4,5 quintuple mutant. Single ahp mutants were indistinguishable from wild-type seedlings in cytokinin response assays. However, various higher-order mutants displayed reduced sensitivity to cytokinin in diverse cytokinin assays, indicating both a positive role for AHPs in cytokinin signaling and functional overlap among the AHPs. In contrast with the other four AHPs, AHP4 may play a negative role in some cytokinin responses. The quintuple ahp mutant showed various abnormalities in growth and development, including reduced fertility, increased seed size, reduced vascular development, and a shortened primary root. These data indicate that most of the AHPs are redundant, positive regulators of cytokinin signaling and affect multiple aspects of plant development.  相似文献   

2.
Arabidopsis thaliana brassinosteroid signaling kinases (BSKs) constitute a receptor‐like cytoplasmic kinase sub‐family (RLCK‐XII) with 12 members. Previous analysis demonstrated a positive role for BSK1 and BSK3 in the initial steps of brassinosteroid (BR) signal transduction. To investigate the function of BSKs in plant growth and BR signaling, we characterized T‐DNA insertion lines for eight BSK genes (BSK1–BSK8) and multiple mutant combinations. Simultaneous elimination of three BSK genes caused alterations in growth and the BR response, and the most severe phenotypes were observed in the bsk3,4,7,8 quadruple and bsk3,4,6,7,8 pentuple mutants, which displayed reduced rosette size, leaf curling and enhanced leaf inclination. In addition, upon treatment with 24‐epibrassinolide, these mutants showed reduced hypocotyl elongation, enhanced root growth and alteration in the expression of BR‐responsive genes. Some mutant combinations also showed antagonistic interactions. In support of a redundant function in BR signaling, multiple BSKs interacted in vivo with the BR receptor BRI1, and served as its phosphorylation substrates in vitro. The BIN2 and BIL2 GSK3‐like kinases, which are negative regulators of BR signaling, interacted in vivo with BSKs and phosphorylated them in vitro, probably at different sites to BRI1. This study demonstrates redundant biological functions for BSKs, and suggests the existence of a regulatory link between BSKs and GSK3‐like kinases.  相似文献   

3.
4.
5.
6.
7.
8.
Changes in the duration, quality and intensity of light affect flowering time. Compared with the effects of light duration and quality, less is known about the effects of light intensity on flowering. Here we describe two paralogous single Myb domain genes, MYB‐RELATED PROTEIN 1 (MYR1) and MYB‐RELATED PROTEIN 2 (MYR2), and their roles as repressors of responses to decreased light intensity in Arabidopsis. Homozygous myr1 myr2 double mutants flowered early under low light intensities. Additionally, myr1 myr2 mutants exhibited increases in petiole length, leaf angle and apical dominance. Genetic analyses involving mutants in the long‐day, gibberellin (GA) and phyB flowering pathways indicated that all aspects of the myr1 myr2 phenotype required GA biosynthesis. The early‐flowering phenotype of myr1 myr2 also required FLOWERING LOCUS T, and myr1 myr2 mutants showed an epistatic interaction with the phyB‐9 mutant. Over‐expression of MYR1 or MYR2 produced GA‐deficiency symptoms that were rescued by application of gibberellic acid (GA3). Loss of MYR1 and MYR2 function was associated with a twofold increase in GA20ox2 expression and a 30% increase in GA4 levels, while over‐expression of MYR2 led to a threefold decrease in GA20ox2 expression and a 50% decrease in GA4 levels. Considered together, these results suggest that the ability of MYR1 and MYR2 to repress flowering and organ elongation is at least partly due to their negative effect on levels of bioactive GA.  相似文献   

9.
The 26S proteasome is a 2-MDa complex with a central role in protein turn over. The 26S proteasome is comprised of one 20S core particle and two 19S regulatory particles (RPs). The RPN12a protein, a non-ATPase subunit of the 19S RP, was previously shown to be involved in cytokinin signaling in Arabidopsis. To further investigate cellular roles of RPN12a, RNAi transgenic plants of RPN12a were constructed. As expected, the 35S:RNAi-RPN12a plants showed cytokinin signaling defective phenotypes, including abnormal formation of leaves and inflorescences. Furthermore, RNAi knock-down transgenic plants exhibited additional unique phenotypes, including concave and heart-shape cotyledons, triple cotyledons, irregular and clustered guard cells, and defects in phyllotaxy, all of which are typical for defective cytokinin signaling. We next examined the mRNA level of cytokinin signaling components, including type-A ARRs, type-B ARRs, and CRFs. The expression of type-A ARRs, encoding negative regulators of cytokinin signaling, was markedly reduced in 35S:RNAi-RPN12a transgenic plants relative to that in wild type plants, while type-B ARRs and CRFs were unaffected. Our results also indicate that in vivo stability of the ARR5 protein, a negative regulator of cytokinin signaling, is mediated by the 26S proteasome complex. These results suggest that RPN12a participates in feedback inhibitory mechanism of cytokinin signaling through modulation of the abundance of ARR5 protein in Arabidopsis.  相似文献   

10.
11.
12.
SPINDLY (SPY) is a negative regulator of gibberellin (GA) responses; however, spy mutants exhibit various phenotypic alterations not found in GA-treated plants. Assaying for additional roles for SPY revealed that spy mutants are resistant to exogenously applied cytokinin. GA also repressed the effects of cytokinin, suggesting that there is cross talk between the two hormone-response pathways, which may involve SPY function. Two spy alleles showing severe (spy-4) and mild (spy-3) GA-associated phenotypes exhibited similar resistance to cytokinin, suggesting that SPY enhances cytokinin responses and inhibits GA signaling through distinct mechanisms. GA and spy repressed numerous cytokinin responses, from seedling development to senescence, indicating that cross talk occurs early in the cytokinin-signaling pathway. Because GA3 and spy-4 inhibited induction of the cytokinin primary-response gene, type-A Arabidopsis response regulator 5, SPY may interact with and modify elements from the phosphorelay cascade of the cytokinin signal transduction pathway. Cytokinin, on the other hand, had no effect on GA biosynthesis or responses. Our results demonstrate that SPY acts as both a repressor of GA responses and a positive regulator of cytokinin signaling. Hence, SPY may play a central role in the regulation of GA/cytokinin cross talk during plant development.  相似文献   

13.
Regulation of the actin cytoskeleton is critical for neurite formation. Tropomodulins (Tmods) regulate polymerization at actin filament pointed ends. Previous experiments using a mouse model deficient for the neuron specific isoform Tmod2 suggested a role for Tmods in neuronal function by impacting processes underlying learning and memory. However, the role of Tmods in neuronal function on the cellular level remains unknown. Immunofluorescence localization of the neuronal isoforms Tmod1 and Tmod2 in cultured rat primary hippocampal neurons revealed that Tmod1 is enriched along the proximal part of F-actin bundles in lamellipodia of spreading cells and in growth cones of extending neurites, while Tmod2 appears largely cytoplasmic. Functional analysis of these Tmod isoforms in a mouse neuroblastoma N2a cell line showed that knockdown of Tmod2 resulted in a significant increase in the number of neurite-forming cells and in neurite length. While N2a cells compensated for Tmod2 knockdown by increasing Tmod1 levels, over-expression of exogenous Tmod1 had no effect on neurite outgrowth. Moreover, knockdown of Tmod1 increased the number of neurites formed per cell, without effect on the number of neurite-forming cells or neurite length. Taken together, these results indicate that Tmod1 and Tmod2 have mechanistically distinct inhibitory roles in neurite formation, likely mediated via different effects on F-actin dynamics and via differential localizations during early neuritogenesis.  相似文献   

14.
15.
16.
17.
Alexa A  Varga J  Reményi A 《The FEBS journal》2010,277(21):4376-4382
Signaling cascades, in addition to proteins with obvious signaling-relevant activities (e.g. protein kinases or receptors), also employ dedicated 'inactive' proteins whose functions appear to be the organization of the former components into higher order complexes through protein-protein interactions. The core function of signaling adaptors, anchors and scaffolds is the recruitment of proteins into one macromolecular complex. Several recent studies have demonstrated that the recruiter and the recruited molecules mutually influence each other in a scaffolded complex. This yields fundamentally novel properties for the signaling complex as a whole. Because these are not merely additive to the properties of the individual components, scaffolded signaling complexes may behave as functionally distinct modules.  相似文献   

18.
Environmental time cues, such as photocycles (light/dark) and thermocycles (warm/cold), synchronize (entrain) endogenous biological clocks to local time. Although much is known about entrainment of the Arabidopsis thaliana clock to photocycles, the determinants of thermoperception and entrainment to thermocycles are not known. The Arabidopsis PSEUDO-RESPONSE REGULATOR (PRR) genes, including the clock component TIMING OF CAB EXPRESSION 1/PRR1, are related to bacterial, fungal, and plant response regulators but lack the conserved Asp that is normally phosphorylated by an upstream sensory kinase. Here, we show that two PRR family members, PRR7 and PRR9, are partially redundant; single prr7-3 or prr9-1 mutants exhibit modest period lengthening, but the prr7-3 prr9-1 double mutant shows dramatic and more than additive period lengthening in the light and becomes arrhythmic in constant darkness. The prr7-3 prr9-1 mutant fails both to maintain an oscillation after entrainment to thermocycles and to reset its clock in response to cold pulses and thus represents an important mutant strongly affected in temperature entrainment in higher plants. We conclude that PRR7 and PRR9 are critical components of a temperature-sensitive circadian system. PRR7 and PRR9 could function in temperature and light input pathways or they could represent elements of an oscillator necessary for the clock to respond to temperature signals.  相似文献   

19.
The regulation of tyrosine phosphorylation represents a key mechanism governing cell proliferation. In fibroblasts, inputs from both growth factor and extracellular matrix receptors are required for cell division. Triggering such receptors induces a wave of tyrosine phosphorylation on key signaling molecules, culminating in the activation of cyclin-dependent kinases and cell cycle progression. In general, protein tyrosine kinases stimulate, while protein tyrosine phosphatases inhibit, such cell proliferation pathways. The role of protein tyrosine kinases in mitogenesis has been extensively studied, but the identity and targets of the protein tyrosine phosphatases that regulate cell growth are not well described. In this review, I will survey recent advances in the identification and regulation of protein tyrosine phosphatases that downregulate cell proliferation. J. Cell. Physiol. 180:173–181, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

20.
Ski and SnoN: negative regulators of TGF-beta signaling   总被引:8,自引:0,他引:8  
Ski and SnoN are unique proto-oncoproteins in that they can induce both oncogenic transformation and terminal muscle differentiation when expressed at high levels. Recent studies using in vitro and in vivo approaches have begun to unravel the complex roles of Ski and SnoN in tumorigenesis and embryonic development. The identification of Ski and SnoN as important negative regulators of signal transduction by the transforming growth factor-beta superfamily of cytokines provides a valuable molecular basis for the complex functions of Ski and SnoN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号