首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several cardiovascular risk factors are characterized by the coexistence of low-grade inflammation, enhanced oxidative stress and lipid peroxidation. It has been hypothesized that F2-isoprostanes, a product of in vivo lipid peroxidation, may transduce the effects of metabolic and hemodynamic abnormalities into increased cardiovascular risk. Thus, the formation of these compounds, including urinary 8-iso-Prostaglandin (PG) F2alpha, has been investigated in clinical settings putatively associated with oxidant stress. Enhanced lipid peroxidation together with increased in vivo platelet activation have been found in association with the major cardiovascular risk factors. Thus, F2-isoprostanes may transduce the effects of oxidant stress associated with complex metabolic disorders into specialized forms of cellular activation. In particular, the low-grade inflammatory state characterizing metabolic disorders such as obesity, hypercholesterolemia, type 2 diabetes mellitus, and homozygous homocystinuria may be the primary trigger of thromboxane-dependent platelet activation mediated, at least in part, through enhanced lipid peroxidation. Moreover, oxidative stress may promote endothelial dysfunction through increased production of reactive oxygen species that inactivate nitric oxide. Accumulation and activation of leukocytes plays a key role in atherosclerosis and its complications. Interestingly, neutrophil adhesion induced by minimally modified low-density lipoproteins is mainly mediated by F2-isoprostanes. Although epidemiological studies suggest an inverse relationship between antioxidant vitamin intake and cardiovascular disease, several clinical trials have obtained conflicting results on the effects of vitamin E supplementation on the risk of cardiovascular events. On the other hand, the use of F2-isoprostane formation as a biochemical end-point for dose-finding studies of vitamin E supplementation has helped clarifying the unique features of its pharmacodynamic effects on lipid peroxidation. This information could be extremely valuable in the selection of the appropriate patient subgroups that may benefit from antioxidant interventions.  相似文献   

2.
PURPOSE OF REVIEW: This review summarizes the evidence for benefits of magnesium on metabolic abnormalities, inflammatory parameters, and cardiovascular risk factors and related-potential mechanisms. Controversy due to contrasting results in the literature is also discussed. RECENT FINDINGS: Increased dietary magnesium intake confers protection against the incidence of diabetes, metabolic syndrome, hypertension, and cardiovascular disease. It ameliorates insulin resistance, serum lipid profiles, and lowers inflammation, endothelial dysfunction, oxidative stress, and platelet aggregability. Magnesium acts as a mild calcium antagonist on vascular smooth muscle tone, and on postreceptor insulin signaling; it is critically involved in energy metabolism, fatty acid synthesis, glucose utilization, ATPase functions, release of neurotransmitters, and endothelial cell function and secretion. Prospective studies, however, have found only a modest effect for dietary magnesium on incident pathologies. Furthermore, magnesium supplementation on glucose metabolism, blood lipid levels, and ischemic heart disease has given inconsistent results. SUMMARY: There is strong biological plausibility for the direct impact of magnesium intake on metabolic and cardiovascular risk factors, but in-vivo magnesium deficiency might play only a modest role. Reverse causality, the strong association between magnesium and other beneficial nutrients, or the possibility that people who choose magnesium-rich foods are more health-conscious may be confounding factors.  相似文献   

3.
Coronary heart disease is the leading cause of death in the developed world. Current surgical and pharmacological interventions are essentially palliative and interest in preventive strategies, particularly through nutrition and avoidance of tobacco has increased in recent years. Basic scientific, clinical and epidemiological evidence indicates a positive association between the plasma level of the amino acid homocysteine and vascular disease. Homocysteine levels are inversely related to both intake and plasma levels of folate. Less strong evidence indicates an inverse relationship between folate intake and coronary heart disease risk. It is likely that current estimates of dietary folate requirements are lower than optimal. Folic acid supplementation reliably reduces homocysteine levels, and may also modify endothelial function independent of this effect on homocysteine. Such treatment is cheap and appears to be essentially free of risk. However, until present randomised control trials are complete, it will not be known definitively whether or not increasing folate intake reduces cardiovascular risk.  相似文献   

4.
We previously demonstrated that black tea consumption reverses endothelial dysfunction in patients with coronary artery disease. To investigate potential mechanisms of this effect, we examined plasma catechins and systemic markers of oxidation, inflammation, and antioxidant protection from 66 subjects enrolled in that study. We collected samples at baseline, 2 h after 450 ml of black tea (acute), after 4 weeks of 900 ml of black tea per day (chronic), and after acute and chronic consumption of water. Total catechins increased 33% after acute tea (P < 0.05) and 29% after chronic tea (P < 0.05). Of individual catechins, plasma epicatechin gallate (ECG) concentration significantly increased with acute tea consumption, and plasma epicatechin (EC) increased with chronic tea consumption. Tea consumption did not improve plasma antioxidant capacity and did not reduce urinary 8-hydroxy-2'-deoxyguanosine, or urinary 8-isoprostane levels. Changes in catechin levels did not correlate with changes in endothelial function, plasma markers of oxidative stress, or C-reactive protein. In contrast, endothelial function at baseline correlated with dietary flavonoid intake (beta = 0.32, P = 0.02) and with baseline plasma EC concentration after adjusting for confounding variables (beta = 0.39, P = 0.03). These findings suggest that the benefits of black tea consumption on endothelial function may not be attributable to tea catechins or a systemic antioxidant or anti-inflammatory effect. Chronic dietary flavonoid status appears to relate to endothelial function, possibly suggesting that other flavonoids or polyphenolic components of tea favorably influence vascular health and risk for cardiovascular disease.  相似文献   

5.
6.
Homocysteine is a sulfur-containing amino acid produced during the metabolism of methionine and elevated plasma levels of homocysteine have been linked to an increased risk of atherosclerosis and cardiovascular ischemic events by numerous authors. Several mechanisms by which elevated homocysteine impairs vascular function have been proposed including impairment of endothelial function and at least some of those mechanisms are induced via homocysteine-associated DNA hypomethylation. Oral administration of folic acid and B vitamins, required for remethylation of homocysteine to methionine, decreased plasma total homocysteine levels but clinical trials using folic acid and B vitamins did not confirm that the decreased plasma levels of homocysteine through diet or drugs may be paralleled by a reduction in cardiovascular risk. In our view a plausible explanation for the discordance between the epidemiologic studies and the results of the clinical trials may be related to the homocysteine-associated global DNA hypomethylation which cannot easily be reversed by homocysteine-lowering therapy.  相似文献   

7.
Testosterone (T) deficiency (TD) is a common clinical condition, which contributes to co-morbidities including loss of muscle mass, increased fat mass, increased inflammation, insulin resistance, risk of vascular disease, sexual dysfunction, fatigue, depressed mood and reduced quality of life. T therapy attenuates inflammation, increases insulin sensitivity, muscle mass and reduces fat mass and adiposity. T therapy improves lipid profiles and endothelial function and reduces systolic and diastolic blood pressure. In addition, T therapy may reduce risk of vascular disease and mortality. T therapy improves bone mineral density and increases energy and vitality and improves mood and sexual function and overall quality of life. T therapy appears to be safe if treatment and monitoring are appropriately executed. The evidence available to date does not support alleged concerns regarding risk of cardiovascular disease and prostate cancer. Indeed, T therapy remains controversial. The data in the contemporary literature suggest that T therapy reduces cardiovascular risk and fears promoted by some recent studies should be re-evaluated. The cardiovascular risk and mortality with T therapy must await large prospective controlled clinical trials, which depend on many complex factors. Such studies may be prohibitive in the current environment due to logistical challenges, such as recruiting large number of men to be treated for long-durations with appropriate follow-up, requiring astronomical cost.  相似文献   

8.
9.
Folate, homocysteine, endothelial function and cardiovascular disease   总被引:22,自引:0,他引:22  
Evidence reported from numerous clinical studies over the past decade has revealed an association between increased plasma total homocysteine (tHcy) concentrations and cardiovascular disease (CVD). In addition, epidemiological studies have identified an inverse association between blood folate concentrations, folate intake and cardiovascular endpoints, that are independent of homocysteine. Folic acid supplementation can lower plasma tHcy concentrations safely and inexpensively. Furthermore, folic acid can reverse endothelial dysfunction observed in patients with CVD. This reversal in endothelial dysfunction with folic acid has been shown to be independent of plasma tHcy lowering, suggesting that folate has pleiotropic effects on the vasculature other than homocysteine lowering. In vitro evidence demonstrates that 5-methyltetrahydrofolate (5MeTHF) the main circulating metabolite of folate, can increase nitric oxide production and can directly scavenge superoxide radicals. The potential beneficial role of folic acid supplements on vascular disease are currently being tested in randomized placebo controlled studies.  相似文献   

10.
Endothelial cells synthesize and release various factors that regulate angiogenesis, inflammatory responses, hemostasis, as well as vascular tone and permeability. Endothelial dysfunction has been associated with a number of pathophysiological processes. Oxidative stress appears to be a common denominator underlying endothelial dysfunction in cardiovascular diseases. However, depending on the pathology, the vascular bed studied, the stimulant, and additional factors such as age, sex, salt intake, cholesterolemia, glycemia, and hyperhomocysteinemia, the mechanisms underlying the endothelial dysfunction can be markedly different. A reduced bioavailability of nitric oxide (NO), an alteration in the production of prostanoids, including prostacyclin, thromboxane A2, and/or isoprostanes, an impairment of endothelium-dependent hyperpolarization, as well as an increased release of endothelin-1, can individually or in association contribute to endothelial dysfunction. Therapeutic interventions do not necessarily restore a proper endothelial function and, when they do, may improve only part of these variables.  相似文献   

11.
The balance between lesion and regeneration of the endothelium is critical for the maintenance of vessel integrity. Exposure to cardiovascular risk factors (CRF) alters the regulatory functions of the endothelium that progresses from a quiescent state to activation, apoptosis and death. In the last 10 years, identification of circulating endothelial cells (CEC) and endothelial-derived microparticles (EMP) in the circulation has raised considerable interest as non-invasive markers of vascular dysfunction. Indeed, these endothelial-derived biomarkers were associated with most of the CRFs, were indicative of a poor clinical outcome in atherothrombotic disorders and correlated with established parameters of endothelial dysfunction. CEC and EMP also behave as potential pathogenic vectors able to accelerate endothelial dysfunction and promote disease progression. The endothelial response to injury has been enlarged by the discovery of a powerful physiological repair process based on the recruitment of circulating endothelial progenitor cells (EPC) from the bone marrow. Recent studies indicate that reduction of EPC number and function by CRF plays a critical role in the progression of cardiovascular diseases. This EPC-mediated repair to injury response can be integrated into a clinical endothelial phenotype defining the 'vascular competence' of each individual. In the future, provided that standardization of available methodologies could be achieved, multimarker strategies combining CEC, EMP and EPC levels as integrative markers of 'vascular competence' may offer new perspectives to assess vascular risk and to monitor treatment efficacy.  相似文献   

12.
Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.  相似文献   

13.
Complications of atherosclerosis remain the leading cause of morbidity and mortality in industrialized countries. Epidemiological studies have repeatedly demonstrated that moderate alcohol intake has a beneficial effect on cardiovascular disease. The purpose of this review is to examine the epidemiological and biological evidence supporting the intake of red wine as a means of reducing atherosclerosis. On the basis of epidemiological studies, moderate intake of alcoholic beverages, including red wine, reduces the risk of cardiovascular, cerebrovascular, and peripheral vascular disease in populations. In addition to the favorable biological effects of alcohol on the lipid profile, on hemostatic factors, and in reducing insulin resistance, the phenolic compounds in red wine appear to interfere with the molecular processes underlying the initiation, progression, and rupture of atherosclerotic plaques. Whether red wine is more beneficial than other types of alcohol remains unclear. Definitive data from a large-scale, randomized clinical end-point trial of red wine intake would be required before physicians can advise patients to use wine as part of preventative or medical therapies.  相似文献   

14.
Beyond its vasodilator role, vascular nitric oxide (NO), which is synthesized by endothelial NO synthase (eNOS) via its activation, has been shown to play a number of other beneficial roles in the vascular system; it inhibits proliferation of vascular smooth muscle cells, prevents platelet aggregation, and regulates endothelial apoptosis. Such beneficial roles have been shown to be implicated in the regulation of endothelial functions. A loss of NO bioavailability that may result either from decreased eNOS expression and activity or from increased NO degradation is associated with endothelial dysfunction, a key factor in the development of vascular diseases. Heme oxygenase-1 (HO-1), an inducible enzyme, catalyzes the oxidative degradation of heme to free iron, carbon monoxide, and biliverdin, the latter being subsequently converted into bilirubin. In the vascular system, HO-1 and heme degradation products perform important physiological functions, which are ultimately linked to the protection of vascular cells. Studies have shown that HO-1 and heme degradation products exert vasodilatory, antioxidant, anti-inflammatory, antiproliferative and anti-apoptotic effects on vascular cells. Interestingly, these effects of HO-1 and its by-products are similar, at least in part, to those of eNOS-derived NO; this similarity may prompt investigators to study a possible relationship between eNOS-derived NO and HO-1 pathways. Many studies have been reported, and accumulating evidence suggests that HO-1 and heme degradation products can improve vascular function, at least in part, by compensating for the loss of NO bioavailability. This paper will provide the possible pathway explaining how HO-1 and heme degradation products can preserve vascular NO.  相似文献   

15.
Prospective studies indicate that high intake of dietary flavanols, such as those contained in cocoa/chocolate, are associated with reduced rates of cardiovascular-related morbidity and mortality in humans. Numerous mechanisms may underlie these associations such as favorable effects of flavanols on blood pressure, platelet aggregation, thrombosis, inflammation, and the vascular endothelium. The brachial artery flow-mediated dilation (FMD) technique has emerged as a robust method to quantify endothelial function in humans. Collectively, the preponderance of evidence indicates that FMD is a powerful surrogate measure for firm cardiovascular endpoints, such as cardiovascular-related mortality, in humans. Thus, literally thousands of studies have utilized this technique to document group differences in FMD, as well as to assess the effects of various interventions on FMD. In regards to the latter, numerous studies indicate that both acute and chronic ingestion of cocoa/chocolate increases FMD in humans. Increases in FMD after cocoa/chocolate ingestion appear to be dose-dependent such that greater increases in FMD are observed after ingestion of larger quantities. The mechanisms underlying these responses are likely diverse, however most data suggest an effect of increased nitric oxide bioavailability. Thus, positive vascular effects of cocoa/chocolate on the endothelium may underlie (i.e., be linked mechanistically to) reductions in cardiovascular risk in humans.  相似文献   

16.
Nitric oxide and atherosclerosis: an update.   总被引:2,自引:0,他引:2  
Nitric oxide (NO) is a molecule that has gained recognition as a crucial modulator of vascular disease. NO has a number of intracellular effects that lead to vasorelaxation, endothelial regeneration, inhibition of leukocyte chemotaxis, and platelet adhesion. Endothelium damage induced by atherosclerosis leads to the reduction in bioactivity of endothelial NO synthase (eNOS) with subsequent impaired release of NO together with a local enhanced degradation of NO by increased generation of reactive oxygen species with subsequent cascade of oxidation-sensitive mechanisms in the arterial wall. Many commonly used vasculoprotective agents have their therapeutic actions through the production of NO. L-Arginine, the precursor of NO, has demonstrated beneficial effects in atherosclerosis and disturbed shear stress. Finally, eNOS gene polymorphism might be an additional risk factor that may contribute to predict cardiovascular events. However, further studies are needed to understand the possible clinical implications of these correlations.  相似文献   

17.
Recent clinical studies such as HOPE, SECURE, and APRES show that angiotensin-converting enzyme (ACE) inhibitors like ramipril improve the prognosis of patients with a high risk of atherothrombotic cardiovascular events. Atherosclerosis, as a chronic inflammatory condition of the vascular system, can turn into an acute clinical event through the rupture of a vulnerable atherosclerotic plaque followed by thrombosis. ACE inhibition has a beneficial effect on the atherogenic setting and on fibrinolysis. Endothelial dysfunction is the end of a common process in which cardiovascular risk factors contribute to inflammation and atherogenesis. By inhibiting the formation of angiotensin II, ACE inhibitors prevent any damaging effects on endothelial function, vascular smooth muscle cells, and inflammatory vascular processes. An increase in the release of NO under ACE inhibition has a protective effect. Local renin-angiotensin systems in the tissue are involved in the inflammatory processes in the atherosclerotic plaque. Circulating ACE-containing monocytes, which adhere to endothelial cell lesions, differentiate within the vascular wall to ACE-containing macrophages or foam cells with increased local synthesis of ACE and angiotensin II. Within the vascular wall, angiotensin II decisively contributes to the instability of the plaque by stimulating growth factors, adhesion molecules, chemotactic proteins, cytokines, oxidized LDL, and matrix metalloproteinases. Suppression of the increased ACE activity within the plaque can lead to the stabilization and deactivation of the plaque by reducing inflammation in the vascular wall, thus lessening the risk of rupture and thrombosis and the resultant acute clinical cardiovascular events. The remarkable improvement in the long-term prognosis of atherosclerotic patients with increased cardiovascular risk might be the clinical result of the contribution made by ACE inhibition in the vascular wall.  相似文献   

18.
Circulating endothelial progenitor cells (EPCs) have been demonstrated to correlate negatively with vascular endothelial dysfunction and cardiovascular risk factors. However, translation of basic research into the clinical practice has been limited by the lack of unambiguous and consistent definitions of EPCs and reduced EPC cell number and function in subjects requiring them for clinical use. This article critically reviews the definition of EPCs based on commonly used protocols, their value as a biomarker of cardiovascular risk factor in subjects with cardiovascular disease, and strategies to enhance EPCs for treatment of ischemic diseases.  相似文献   

19.
Clinical and therapeutical implications of EPC biology in atherosclerosis   总被引:15,自引:0,他引:15  
Bone marrow-derived circulating endothelial progenitor cells have been successfully used to enhance angiogenesis after tissue ischemia. The role of endothelial progenitor cells in endothelial cell homeostasis and their putative role in atherogenesis have been recently investigated. Cardiovascular risk factors negatively influence endothelial progenitor cell number and function while vasculoprotection e.g. by statins, estrogens and physical activity may be partly mediated by progenitor cells. Endogenous mobilization or injection of ex-vivo generated endothelial progenitor cells is associated with an enhanced reendothelialization, an improvement of endothelial function and reduced atherosclerotic burden. In contrast, endothelial progenitor cells may promote plaque angiogenesis in animal models and may negatively influence plaque development and stability. However, in humans with coronary atherosclerotic disease, endothelial progenitor cells are a novel risk predictor for cardiovascular mortality and morbidity. In this review we focus on the role of circulating endothelial progenitor cells in endothelial cell repair mechanisms at the vascular wall and their potentially protective and therapeutic role in atherosclerotic disease.  相似文献   

20.
The effects of protein intake on blood pressure and cardiovascular disease   总被引:7,自引:0,他引:7  
PURPOSE OF REVIEW: Investigators, especially those from western countries, have commonly assumed that there is either no association or a direct association of protein intake with elevated blood pressure and atherosclerosis. In contrast, recent observational studies and clinical trials have suggested that increased protein intake, particularly protein from plant sources, might actually reduce blood pressure and prevent cardiovascular disease. RECENT FINDINGS: In epidemiological studies, an increased intake of protein has been associated with lower blood pressure and an attenuated increase in blood pressure over time. Furthermore, such studies also suggest that the beneficial effects of increased protein intake result from an increased consumption of protein from plant rather than animal sources. In several predominantly small trials, an increased intake of soy protein lowered blood pressure. With respect to clinical outcomes, reports from large cohort studies suggest that increased protein intake is associated with a reduced risk of ischemic heart disease and perhaps intraparenchymal hemorrhage. In other reports, a higher protein intake is one characteristic of a dietary pattern associated with a reduced risk of ischemic heart disease. The mechanisms by which protein could exert its beneficial effects include an increased intake of biologically active amino acids, peptides, or highly correlated nutrients. SUMMARY: Recent evidence suggests that an increased intake of protein, particularly plant protein, may lower blood pressure and reduce the risk of cardiovascular disease. However, the data are not sufficiently compelling to advocate an increased consumption of protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号