首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
iota-Carrageenases are polysaccharide hydrolases that cleave the beta-1,4 linkages between the d-galactose-4-sulfate and 3, 6-anhydro-d-galactose-2-sulfate residues in the red algal galactans known as iota-carrageenans. We report here on the purification of iota-carrageenase activity from the marine bacterium Zobellia galactanovorans and on the characterization of iota-carrageenase structural genes. Genomic libraries from this latter bacterium as well as from Alteromonas fortis were functionally screened for the presence of iota-carrageenase(+) clones. The Z. galactanovorans and A. fortis iota-carrageenase genes encode homologous proteins of 53.4 and 54.8 kDa, respectively. Based on hydrophobic cluster analysis and on the (1)H NMR monitoring of the products of the overexpressed A. fortis iota-carrageenase, these enzymes appear to form a new family of glycoside hydrolases, unrelated to that of kappa-carrageenases and with an inverting mechanism of hydrolysis. They both feature a 45-amino acid-long N-terminal segment with sequence similarity to the N-terminal region of several other polysaccharidases. In those for which a three-dimensional structure is available, this conspicuous segment, also deemed "glycanase motif" (Chua, J. E. H., Manning, P. A., and Morona, R. (1999) Microbiology (Reading) 145, 1649-1659), corresponds to a strand-helix-strand "cap" that covers the N-terminal end of a common, right-handed beta-helical fold.  相似文献   

2.
The fungus Aspergillus niger is an industrial producer of pectin-degrading enzymes. The recent solving of the genomic sequence of A. niger allowed an inventory of the entire genome of the fungus for potential carbohydrate-degrading enzymes. By applying bioinformatics tools, 12 new genes, putatively encoding family 28 glycoside hydrolases, were identified. Seven of the newly discovered genes form a new gene group, which we show to encode exoacting pectinolytic glycoside hydrolases. This group includes four exo-polygalacturonan hydrolases (PGAX, PGXA, PGXB and PGXC) and three putative exo-rhamnogalacturonan hydrolases (RGXA, RGXB and RGXC). Biochemical identification using polygalacturonic acid and xylogalacturonan as substrates demonstrated that indeed PGXB and PGXC act as exo-polygalacturonases, whereas PGXA acts as an exo-xylogalacturonan hydrolase. The expression levels of all 21 genes were assessed by microarray analysis. The results from the present study demonstrate that exo-acting glycoside hydrolases play a prominent role in pectin degradation.  相似文献   

3.
Chitin and its derivates have many industrial and medical uses. There is a demand for chitin-modifying enzymes with new or modified properties and as microorganisms are the primary degraders of chitin in the environment, they provide a source of chitin-modifying enzymes with novel properties. We have analyzed the diversity, domain structure and phylogenetic relationships between family 18 chitinases based on complete genome sequences of bacteria, archaea, viruses, fungi, plants and animals. Our study shows that family 18 chitinases are divided into three main clusters, A, B and C. Clusters A and B both contain family 18 chitinases from bacteria, fungi and plants, suggesting that the differentiation of cluster A and B chitinases preceded the appearance of the eukaryotic lineage. Subgroups within clusters can have specific domain structures, as well as specific amino acid replacements in catalytic sites, which imply functional adaptation. This work provides a comprehensive overview of the evolutionary relationships of family 18 chitinases and provides a context for further investigations on functional aspects of family 18 chitinases in ecology and biotechnology.  相似文献   

4.
5.
Family 28 belongs to the largest families of glycoside hydrolases. It covers several enzyme specificities of bacterial, fungal, plant and insect origins. This study deals with all available amino acid sequences of family 28 members. First, it focuses on the detailed analysis of 115 sequences of polygalacturonases yielding their evolutionary tree. The large data set allowed modification of some of the existing family 28 sequence characteristics and to draw the sequence features specific for bacterial and fungal exopolygalacturonases discriminating them from the endopolygalacturonases. The evolutionary tree reflects both the taxonomy and specificity so that bacterial, fungal and plant enzymes form their own clusters, the endo- and exo-mode of action being respected, too. The only insect (animal) representative is most related to fungal endopolygalacturonases. The present study brings further: (i) the analysis of available rhamnogalacturonase sequences; (ii) the elucidation of relatedness between the recently added member, the endo-xylogalacturonan hydrolase and the rest of the family; and (iii) revealing the sequence features characteristic of the individual enzyme specificities and the evolutionary relationships within the entire family 28. The disulfides common for the individual enzyme groups were also proposed. With regard to functionally important residues of polygalacturonases, xylogalacturonan hydrolase possesses all of them, while the rhamnogalacturonases, known to lack the histidine residue (His223; Aspergillus niger polygalacturonase II numbering), have a further tyrosine (Tyr291) replaced by a conserved tryptophan. Evolutionarily, the xylogalacturonan hydrolase is most related to fungal exopolygalacturonases and the rhamnogalacturonases form their own cluster on the adjacent branch.  相似文献   

6.
An alpha-L-rhamnosidase clone was isolated from a genomic library of the thermophilic anaerobic bacterium Clostridium stercorarium and its primary structure was determined. The recombinant gene product, RamA, was expressed in Escherichia coli, purified to homogeneity and characterized. It is a dimer of two identical subunits with a monomeric molecular mass of 95 kDa in SDS polyacrylamide gel electrophoresis. At pH 7.5 it is optimally active at 60 degrees C and insensitive to moderate concentrations of Triton X100, ethanol and EDTA. It hydrolysed p-nitrophenyl-alpha-L-rhamnopyranoside, naringin and hesperidin with a specific activity of 82, 1.5 and 0.46 U mg-1 respectively. Hydrolysis occurs by inversion of the anomeric configuration as detected using 1H-NMR, indicating a single displacement mechanism. Naringin was hydrolysed to rhamnose and prunin, which could further be degraded by incubation with a thermostable beta-glucosidase. The secondary structure of RamA consists of 27% alpha-helices and 50% beta-sheets, as detected by circular dichroism. The primary structure of the ramA gene has no similarity to other glycoside hydrolase sequences and possibly is the first member of a new enzyme family.  相似文献   

7.
Extensin is a glycoprotein that is rich in hydroxyprolines linked to β-L-arabinofuranosides. In this study, we cloned a hypBA2 gene that encodes a novel β-L-arabinobiosidase from Bifidobacterium longum JCM 1217. This enzyme does not have any sequence similarity with other glycoside hydrolase families but has 38-98% identity to hypothetical proteins in Bifidobacterium and Xanthomonas strains. The recombinant enzyme liberated L-arabinofuranose (Araf)-β1,2-Araf disaccharide from carrot extensin, potato lectin, and Araf-β1,2-Araf-β1,2-Araf-β-Hyp (Ara(3)-Hyp) but not Araf-α1,3-Araf-β1,2-Araf-β1,2-Araf-β-Hyp (Ara(4)-Hyp) or Araf-β1,2-Araf-β-Hyp (Ara(2)-Hyp), which indicated that it was specific for unmodified Ara(3)-Hyp substrate. The enzyme also transglycosylated 1-alkanols with retention of the anomeric configuration. This is the first report of an enzyme that hydrolyzes Hyp-linked β-L-arabinofuranosides, which defines a new family of glycoside hydrolases, glycoside hydrolase family 121.  相似文献   

8.
Enzyme intramolecular mobility and conformational changes of loops in particular play a significant role in biocatalysis. In this respect, the highly conserved thumb loop of glycoside hydrolase family (GH) 11 xylanases is an intriguing and characteristic structural element, of which the true dynamic nature and function in catalysis is still unknown. Crystallographic analysis of the structure of a Bacillus subtilis xylanase A mutant, found as a dimer in an asymmetric unit, revealed that the thumb region can adopt an extended conformation, which is stabilized in the crystal lattice through intermolecular contacts. In contrast to the closed thumb conformation of GH11 xylanases and the previously observed small conformational changes upon substrate binding, a relocation of the tip of the thumb of more than 15 Å was observed. Site‐directed mutagenesis of five thumb residues, including putative hinge point residues, and enzyme kinetics assays showed that Arg112, Asn114, and Thr126 play a role in the open‐close thumb movement. Replacement of Arg112 by glycine or proline caused a strong decrease of turnover numbers and elevated Michaelis constants on xylan. Mutant N114P hindered thumb movement, provoking a fourfold decrease of turnover numbers and a sharp rise in Michaelis constants, whereas the proline mutant of Thr126 displayed an increase in specific activity. The observation that extensive thumb opening is possible combined with the kinetic data suggests that the thumb plays a crucial role in both binding of substrate and release of product from the active site. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
In rice (Oryza sativa L., var Nipponbare) seeds, there were three mRNAs encoding for function-unknown hydrolase family 31 homologous proteins (ONGX-H1, ONGX-H3 and ONGX-H4): ONGX-H1 mRNA was expressed in ripening stage and mRNAs of ONGX-H3 and ONGX-H4 were found in both the ripening and germinating stages [Nakai et al., (2007) Biochimie 89, 49-62]. This article describes that the recombinant proteins of ONGX-H1 (rONGXG-H1), ONGX-H3 (rONGXG-H3) and ONG-H4 (rONGXG-H4) were overproduced in Pichia pastoris as fusion protein with the alpha-factor signal peptide of Saccharomyces cerevisiae. Purified rONGXG-H1 and rONGXG-H3 efficiently hydrolysed malto-oligosaccharides, kojibiose, nigerose and soluble starch, indicating that ONGX-H1 and ONGX-H3 are alpha-glucosidases. Their substrate specificities were similar to that of ONG2, a main alpha-glucosidase in the dry and germinating seeds. The rONGXG-H1 and rONGX-H3 demonstrated the lower ability to adsorb to and degradation of starch granules than ONG2 did, suggesting that three alpha-glucosidases, different in action to starch granules, were expressed in ripening stage. Additionally, purified rONGXG-H4 showed the high activity towards alpha-xylosides, in particular, xyloglucan oligosaccharides. The enzyme hardly hydrolysed alpha-glucosidic linkage, so that ONGX-H4 was an alpha-xylosidase. Alpha-xylosidase encoded in rice genome was found for the first time.  相似文献   

10.
Sulfated fucans are matrix polysaccharides from marine brown algae, consisting of an alpha-L-fucose backbone substituted by sulfate-ester groups, masked with ramifications, and containing other monosaccharide residues. We here report on the characterization of a novel glycoside hydrolase (FcnA) specific for the degradation of sulfated fucans. This glycoside hydrolase was purified to electrophoretic homogeneity from a Flavobacteriaceae referred to as SW5. The gene fcnA was cloned and sequenced (3021 nucleotides), and the protein (1007 amino acids) was produced in Escherichia coli. FcnA exhibited a modular architecture consisting of a 400-residue-long N-terminal domain followed by three repeated domains predicted to adopt an immunoglobulin fold and by an 80-amino acid-long C-terminal domain. A truncated recombinant protein encompassing the N-terminal domain and the immunoglobulin-like repeats was shown to retain the enzyme activity. The N-terminal catalytic domain shared approximately 25% of sequence identity with two patented fucanase genes, and these three fucanases delineate a new family of glycoside hydrolases. As shown by size-exclusion chromatography (SEC) and 1H-NMR analyses, the fucanase FcnA proceeds according to an endolytic mode of action and cleaves the alpha-(1-->4) glycosidic linkages within the blocks of repeating motifs [-->4)-alpha-L-fucopyranosyl-2,3-disulfate-(1-->3)-alpha-L-fucopyranosyl-2-sulfate-(1-->]n.  相似文献   

11.
Rigden DJ 《FEBS letters》2002,518(1-3):17-22
A catalytic sequence motif PDX10-30(E/D)XK is found in many restriction enzymes. On the basis of sequence similarities and mapping of the conserved residues to the crystal structure of NgoMIV we suggest that residues D160, K182, R186, R188 and E195 contribute to the catalytic/DNA binding site of the Ecl18kI restriction endonuclease. Mutational analysis confirms the functional significance of the conserved residues of Ecl18kI. Therefore, we conclude that the active site motif 159VDX21KX12E of Ecl18kI differs from the canonical PDX10-30(E/D)XK motif characteristic for most of the restriction enzymes. Moreover, we propose that two subfamilies of endonucleases Ecl18kI/PspGI/EcoRII and Cfr10I/Bse634I/NgoMIV, specific, respectively, for CCNGG/CCWGG and RCCGGY/GCCGGC sites, share conserved active site architecture and DNA binding elements.  相似文献   

12.
Mimicry and extensive geographical subspecies polymorphism combine to make species in the ithomiine butterfly genus Mechanitis (Lepidoptera; Nymphalidae) difficult to determine. We use mitochondrial DNA (mtDNA) barcoding, nuclear sequences and amplified fragment length polymorphism (AFLP) genotyping to investigate species limits in this genus. Although earlier biosystematic studies based on morphology described only four species, mtDNA barcoding revealed eight well-differentiated haplogroups, suggesting the presence of four new putative 'cryptic species'. However, AFLP markers supported only one of these four new 'cryptic species' as biologically meaningful. We demonstrate that in this genus, deep genetic divisions expected on the basis of mtDNA barcoding are not always reflected in the nuclear genome, and advocate the use of AFLP markers as a check when mtDNA barcoding gives unexpected results.  相似文献   

13.
Carbohydrate isomerases/epimerases are essential in carbohydrate metabolism, and have great potential in industrial carbohydrate conversion. Cellobiose 2-epimerase (CE) reversibly epimerizes the reducing end d-glucose residue of β-(1→4)-linked disaccharides to d-mannose residue. CE shares catalytic machinery with monosaccharide isomerases and epimerases having an (α/α)6-barrel catalytic domain. Two histidine residues act as general acid and base catalysts in the proton abstraction and addition mechanism. β-Mannoside hydrolase and 4-O-β-d-mannosyl-d-glucose phosphorylase (MGP) were found as neighboring genes of CE, meaning that CE is involved in β-mannan metabolism, where it epimerizes β-d-mannopyranosyl-(1→4)-d-mannose to β-d-mannopyranosyl-(1→4)-d-glucose for further phosphorolysis. MGPs form glycoside hydrolase family 130 (GH130) together with other β-mannoside phosphorylases and hydrolases. Structural analysis of GH130 enzymes revealed an unusual catalytic mechanism involving a proton relay and the molecular basis for substrate and reaction specificities. Epilactose, efficiently produced from lactose using CE, has superior physiological functions as a prebiotic oligosaccharide.  相似文献   

14.
We found endo-alpha-N-acetylgalactosaminidase in most bifidobacterial strains, which are predominant bacteria in the human colon. This enzyme catalyzes the liberation of galactosyl beta1,3-N-acetyl-D-galactosamine (Galbeta1,3GalNAc) alpha-linked to serine or threonine residues from mucin-type glycoproteins. The gene (engBF) encoding the enzyme has been cloned from Bifidobacterium longum JCM 1217. The protein consisted of 1,966 amino acid residues, and the central domain (590-1381 amino acid residues) exhibited 31-53% identity to hypothetical proteins of several bacteria including Clostridium perfringens and Streptococcus pneumoniae. The recombinant protein expressed in Escherichia coli liberated Galbeta1,3GalNAc disaccharide from Galbeta1,3GalNAcalpha1pNP and asialofetuin, but did not release GalNAc, Galbeta1,3(GlcNAcbeta1,6)GalNAc, GlcNAcbeta1,3GalNAc, and Galbeta1,3GlcNAc from each p-nitrophenyl (pNP) substrate, and also did not release sialo-oligosaccharides from fetuin, indicating its strict substrate specificity for the Core 1-type structure. The stereochemical course of hydrolysis was determined by (1)H NMR and was found to be retention. Site-directed mutagenesis of a total of 22 conserved Asp and Glu residues suggested that Asp-682 and Asp-789 are critical residues for the catalytic activity of the enzyme. The enzyme also exhibited transglycosylation activity toward various mono- and disaccharides and 1-alkanols, demonstrating its potential to synthesize neoglycoconjugates. This is the first report for the isolation of a gene encoding endo-alpha-N-acetylgalactosaminidase from any organisms and for the establishment of a new glycoside hydrolase family (GH family 101).  相似文献   

15.
Chlamydia spp. express a functional type III secretion system (T3SS) necessary for pathogenesis and intracellular growth. However, certain essential components of the secretion apparatus have diverged to such a degree as to preclude their identification by standard homology searches of primary protein sequences. One example is the needle subunit protein. Electron micrographs indicate that chlamydiae possess needle filaments, and yet database searches fail to identify a SctF homologue. We used a bioinformatics approach to identify a likely needle subunit protein for Chlamydia. Experimental evidence indicates that this protein, designated CdsF, has properties consistent with it being the major needle subunit protein. CdsF is concentrated in the outer membrane of elementary bodies and is surface exposed as a component of an extracellular needle-like projection. During infection CdsF is detectible by indirect immunofluorescence in the inclusion membrane with a punctuate distribution adjacent to membrane-associated reticulate bodies. Biochemical cross-linking studies revealed that, like other SctF proteins, CdsF is able to polymerize into multisubunit complexes. Furthermore, we identified two chaperones for CdsF, termed CdsE and CdsG, which have many characteristics of the Pseudomonas spp. needle chaperones PscE and PscG, respectively. In aggregate, our data are consistent with CdsF representing at least one component of the extended Chlamydia T3SS injectisome. The identification of this secretion system component is essential for studies involving ectopic reconstitution of the Chlamydia T3SS. Moreover, we anticipate that CdsF could serve as an efficacious target for anti-Chlamydia neutralizing antibodies.  相似文献   

16.
The beta-galactosidase from an extreme thermophile, Thermus thermophilus A4 (A4-beta-Gal), is thermostable and belongs to the glycoside hydrolase family 42 (GH-42). As the first known structures of a GH-42 enzyme, we determined the crystal structures of free and galactose-bound A4-beta-Gal at 1.6A and 2.2A resolution, respectively. A4-beta-Gal forms a homotrimeric structure resembling a flowerpot. Each monomer has an active site located inside a large central tunnel. The N-terminal domain of A4-beta-Gal has a TIM barrel fold, as predicted from hydrophobic cluster analysis. The putative catalytic residues of A4-beta-Gal (Glu141 and Glu312) superimpose well with the catalytic residues of Escherichia coli beta-galactosidase. The environment around the catalytic nucleophile (Glu312) is similar to that in the case of E.coli beta-galactosidase, but the recognition mechanism for a substrate is different. Trp182 of the next subunit of the trimer constitutes a part of the active-site pocket, indicating that the trimeric structure is essential for the enzyme activity. Structural comparison with other glycoside hydrolases revealed that many features of the 4/7 superfamily are conserved in the A4-beta-Gal structure. On the basis of the results of 1H NMR spectroscopy, A4-beta-Gal was determined to be a "retaining" enzyme. Interestingly, the active site was similar with those of retaining enzymes, but the overall fold of the TIM barrel domain was very similar to that of an inverting enzyme, beta-amylase.  相似文献   

17.
Fatty acid amide hydrolase (FAAH) is a membrane-bound enzyme responsible for the catabolism of neuromodulatory fatty acid amides, including anandamide and oleamide. FAAH's primary structure identifies this enzyme as a member of a diverse group of alkyl amidases, known collectively as the "amidase signature family". At present, this enzyme family's catalytic mechanism remains poorly understood. In this study, we investigated the catalytic features of FAAH through mutagenesis, affinity labeling, and steady-state kinetic methods. In particular, we focused on the respective roles of three serine residues that are conserved in all amidase signature enzymes (S217, S218, and S241 in FAAH). Mutation of each of these serines to alanine resulted in a FAAH enzyme bearing significant catalytic defects, with the S217A and S218A mutants showing 2300- and 95-fold reductions in k(cat), respectively, and the S241A mutant exhibiting no detectable catalytic activity. The double S217A:S218A FAAH mutant displayed a 230 000-fold decrease in k(cat), supporting independent catalytic functions for these serine residues. Affinity labeling of FAAH with a specific nucleophile reactive inhibitor, ethoxy oleoyl fluorophosphonate, identified S241 as the enzyme's catalytic nucleophile. The pH dependence of FAAH's k(cat) and k(cat)/K(m) implicated a base involved in catalysis with a pK(a) of 7.9. Interestingly, mutation of each of FAAH's conserved histidines (H184, H358, and H449) generated active enzymes, indicating that FAAH does not contain a Ser-His-Asp catalytic triad commonly found in other mammalian serine hydrolytic enzymes. The unusual properties of FAAH identified here suggest that this enzyme, and possibly the amidase signature family as a whole, may hydrolyze amides by a novel catalytic mechanism.  相似文献   

18.
We have isolated an endo-beta-galactosidase designated E-ABase from Clostridium perfringens ATCC 10543 capable of liberating both the A trisaccharide (A-Tri; GalNAcalpha1-->3(Fucalpha1-->2)Gal) and B trisaccharide (B-Tri; Galalpha1-->3(Fucalpha1-->2)Gal) from glycoconjugates containing blood group A and B glycotopes, respectively. We have subsequently cloned the gene (eabC) that encodes E-ABase from this organism. This gene was found to be identical to the CPE0329 gene of C. perfringens strain 13, whose product was labeled as a hypothetical protein (Shimizu, T., Ohtani, K., Hirakawa, H., Ohshima, K., Yamashita, A., Shiba, T., Ogasawara, N., Hattori, M., Kuhara, S., and Hayashi, H. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 996-1001). Since the amino acid sequence of E-ABase does not bear detectable similarity to any of the 97 existing families of glycoside hydrolases, we have proposed to assign this unusual enzyme to a new family, GH98. We also expressed eabC in Escherichia coli BL21(DE3) and obtained 27 mg of fully active recombinant E-ABase from 1 liter of culture. Recombinant E-ABase not only destroyed the blood group A and B antigenicity of human type A and B erythrocytes, but also released A-Tri and B-Tri from blood group A(+)- and B(+)- containing glycoconjugates. The structures of A-Tri and B-Tri liberated from A(+) porcine gastric mucin and B(+) human ovarian cyst glycoprotein were established by NMR spectroscopy. The unique specificity of E-ABase should make it useful for studying the structure and function of blood group A- and B-containing glycoconju-gates as well as for identifying other glycosidases belonging to the new GH98 family.  相似文献   

19.
Unsaturated beta-glucuronyl hydrolase of Bacillus sp. GL1 catalyzes the hydrolytic release of unsaturated glucuronic acids from oligosaccharides produced through the reactions of polysaccharide lyases such as gellan, xanthan, hyaluronate, and chondroitin lyases. An overexpression system for the enzyme was constructed in Escherichia coli cells involving regulation of the enzyme gene under the T7 promoter and terminator. The expression level of the enzyme in E. coli cells was 250-fold higher than that in Bacillus sp. GL1 cells. The enzyme expressed in E. coli cells was purified and characterized. The optimal pH and temperature, and substrate specificity of the purified enzyme were similar to those of the native enzyme from Bacillus sp. GL1 cells, although the enzyme expressed in E. coli cells underwent self-assembly into polymeric forms through the formation of intermolecular disulfide bonds. Circular dichroism analysis indicated that the secondary structure of the enzyme was rich in alpha-helices. Genes showing high identity (over 40% identity) with that of the enzyme were found in the genomes of some pathogenic bacteria, such as Streptococcus pyogenes and Streptococcus pneumoniae, which cause serious diseases (e.g., meningitis and pneumonia). Therefore, the enzyme of Bacillus sp. GL1 and the streptococcal proteins form a new glycoside hydrolase family, 88.  相似文献   

20.
Branching enzyme (EC 2.4.1.18; glycogen branching enzyme; GBE) catalyzes the formation of α1,6-branching points in glycogen. Until recently it was believed that all GBEs belong to glycoside hydrolase family 13 (GH13). Here we describe the cloning and expression of the Thermus thermophilus family GH57-type GBE and report its biochemical properties and crystal structure at 1.35-Å resolution. The enzyme has a central (β/α)7-fold catalytic domain A with an inserted domain B between β2 and α5 and an α-helix-rich C-terminal domain, which is shown to be essential for substrate binding and catalysis. A maltotriose was modeled in the active site of the enzyme which suggests that there is insufficient space for simultaneously binding of donor and acceptor substrates, and that the donor substrate must be cleaved before acceptor substrate can bind. The biochemical assessment showed that the GH57 GBE possesses about 4% hydrolytic activity with amylose and in vitro forms a glucan product with a novel fine structure, demonstrating that the GH57 GBE is clearly different from the GH13 GBEs characterized to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号