首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas aeruginosa causes sepsis-induced acute lung injury, a disorder associated with deficiency of surfactant phosphatidylcholine (PtdCho). P. aeruginosa (PA103) utilizes a type III secretion system (TTSS) to induce programmed cell death. Herein, we observed that PA103 reduced alveolar PtdCho levels, resulting in impaired lung biophysical activity, an effect partly attributed to caspase-dependent cleavage of the key PtdCho biosynthetic enzyme, CTP:phosphocholine cytidylyltransferase-alpha (CCTalpha). Expression of recombinant CCTalpha variants harboring point mutations at putative caspase cleavage sites in murine lung epithelia resulted in partial proteolytic resistance of CCTalpha to PA103. Further, caspase-directed CCTalpha degradation, decreased PtdCho levels, and cell death in murine lung epithelia were lessened after exposure of cells to bacterial strains lacking the TTSS gene product, exotoxin U (ExoU), but not ExoT. These observations suggest that during the proapoptotic program driven by P. aeruginosa, deleterious effects on phospholipid metabolism are mediated by a TTSS in concert with caspase activation, resulting in proteolysis of a key surfactant biosynthetic enzyme.  相似文献   

2.
CTP:phosphocholine cytidylyltransferase (CCT) is a rate-determining enzyme in the de novo synthesis of phosphatidylcholine (PtdCho). Alveolar type II cells synthesize large quantities of disaturated PtdCho, the surface-active agent of pulmonary surfactant, particularly at late gestation when the lung prepares itself for postnatal air breathing. To clarify the role of CCTalpha in lung surfactant maturation, we overexpressed CCTalpha(1-367) using the surfactant protein-C promoter. Lungs of transgenic mice were analyzed at day 18 of gestation (term = 19 days). Overexpression of CCTalpha(1-367) increased the synthesis and content of PtdCho in fetal type II cells isolated from the transgenic mice. Also, PtdCho content of fetal lung fluid was increased. No changes in surfactant protein content were detected. Interestingly, fetal type II cells of transgenic mice contained more glycogen than control cells. Incorporation studies with [U-(14)C]glucose demonstrated that overexpression of CCTalpha(1-367) in fetal type II cells increased glycogen synthesis without affecting glycogen breakdown. To determine which domain contributes to this glycogen phenotype, two additional transgenes were created overexpressing either CCTalpha(1-239) or CCTalpha(239-367). Glycogen synthesis and content were increased in fetal type II cells expressing CCTalpha(239-367) but not CCTalpha(1-239)(.) We conclude that overexpression of CCTalpha increases surfactant PtdCho synthesis without affecting surfactant protein levels but that it disrupts glycogen metabolism in differentiating type II cells via its regulatory domain.  相似文献   

3.
Surfactant deficiency contributes to acute lung injury and may result from the elaboration of bioactive lipids such as oxysterols. We observed that the oxysterol 22-hydroxycholesterol (22-HC) in combination with its obligate partner, 9-cis-retinoic acid (9-cis-RA), decreased surfactant phosphatidylcholine (PtdCho) synthesis by increasing phosphorylation of the regulatory enzyme CTP:phosphocholine cytidylyltransferase-alpha (CCTalpha). Phosphorylation of CCTalpha decreased its activity. 22-HC/9-cis-RA inhibition of PtdCho synthesis was blocked by PD98059 or dominant-negative ERK (p42 kinase). Overexpression of constitutively active MEK1, the kinase upstream of p42 kinase, increased CCTalpha phosphorylation. Expression of truncated CCTalpha mutants lacking proline-directed sites within the C-terminal phosphorylation domain partially blocked oxysterol-mediated inhibition of PtdCho synthesis. Mutagenesis of Ser315 within CCTalpha was both required and sufficient to confer significant resistance to 22-HC/9-cis-RA inhibition of PtdCho synthesis. A novel putative ERK-docking domain N-terminal to this phosphoacceptor site was mapped within the CCTalpha membrane-binding domain (residues 287-300). The results are the first demonstration of a physiologically relevant phosphorylation site and docking domain within CCTalpha that serve as targets for ERKs, resulting in inhibition of surfactant synthesis.  相似文献   

4.
We investigated the effects of tumor necrosis factor alpha (TNFalpha), a key cytokine involved in inflammatory lung disease, on phosphatidylcholine (PtdCho) biosynthesis in a murine alveolar type II epithelial cell line (MLE-12). TNFalpha significantly inhibited [(3)H]choline incorporation into PtdCho after 24 h of exposure. TNFalpha reduced the activity of CTP:phosphocholine cytidylyltransferase (CCT), the rate-regulatory enzyme within the CDP-choline pathway, by 40% compared with control, but it did not alter activities of choline kinase or cholinephosphotransferase. Immunoblotting revealed that TNFalpha inhibition of CCT activity was associated with a uniform decrease in the mass of CCTalpha in total cell lysates, cytosolic, microsomal, and nuclear subfractions of MLE cells. Northern blotting revealed no effects of the cytokine on steady-state levels of CCTalpha mRNA, and CCTbeta mRNA was not detected. Incorporation of [(35)S]methionine into immunoprecipitable CCTalpha protein in pulse and pulse-chase studies revealed that TNFalpha did not alter de novo synthesis of enzyme, but it substantially accelerated turnover of CCTalpha. Addition of N-acetyl-Leu-Leu-Nle-CHO (ALLN), the calpain I inhibitor, or lactacystin, the 20 S proteasome inhibitor, blocked the inhibition of PtdCho biosynthesis mediated by TNFalpha. TNFalpha-induced degradation of CCTalpha protein was partially blocked by ALLN or lactacystin. CCT was ubiquitinated, and ubiquitination increased after TNFalpha exposure. m-Calpain degraded both purified CCT and CCT in cellular extracts. Thus, TNFalpha inhibits PtdCho synthesis by modulating CCT protein stability via the ubiquitin-proteasome and calpain-mediated proteolytic pathways.  相似文献   

5.
CTP:phosphocholine cytidylyltransferase (CCTalpha) is a proteolytically sensitive enzyme essential for production of phosphatidylcholine, the major phospholipid of animal cell membranes. The molecular signals that govern CCTalpha protein stability are unknown. An NH(2)-terminal PEST sequence within CCTalpha did not serve as a degradation signal for the proteinase, calpain. Calmodulin (CaM) stabilized CCTalpha from calpain proteolysis. Adenoviral gene transfer of CaM in cells protected CCTalpha, whereas CaM small interfering RNA accentuated CCTalpha degradation by calpains. CaM bound CCTalpha as revealed by fluorescence resonance energy transfer and two-hybrid analysis. Mapping and site-directed mutagenesis of CCTalpha uncovered a motif (LQERVDKVK) harboring a vital recognition site, Gln(243), whereby CaM directly binds to the enzyme. Mutagenesis of CCTalpha Gln(243) not only resulted in loss of CaM binding but also led to complete calpain resistance in vitro and in vivo. Thus, calpains and CaM both access CCTalpha using a structurally similar molecular signature that profoundly affects CCTalpha levels. These data suggest that CaM, by antagonizing calpain, serves as a novel binding partner for CCTalpha that stabilizes the enzyme under proinflammatory stress.  相似文献   

6.
7.
CTP:phosphocholine cytidylyltransferase (CCTalpha) is a rate-regulatory enzyme required for phosphatidylcholine (PtdCho) synthesis. CCTalpha is also a phosphoenzyme, but the physiologic role of kinases on enzyme function remains unclear. We report high-level expression of two major isoforms of the c-Jun N-terminal kinase family (JNK1 and JNK2) in murine lung epithelia. Further, JNK1 and JNK2 phosphorylated purified CCTalpha in vitro, and this was associated with a dose-dependent decrease (approximately 40%) in CCT activity. To evaluate JNK in vivo, lung epithelial cells were infected with a replication defective adenoviral vector encoding murine JNK2 (Adv-JNK2) or an empty vector. Adv-JNK2 infection, unlike the empty vector, markedly increased JNK2 expression concomitant with increased incorporation of [32P]orthophosphate into endogenous CCTalpha. Although Adv-JNK2 infection only modestly reduced CCT activity, it reduced PtdCho synthesis by approximately 30% in cells. These observations suggest a role for JNK kinases as negative regulators of phospholipid synthesis in murine lung epithelia.  相似文献   

8.
The nucleus contains a network of tubular invaginations of the nuclear envelope (NE), termed the nucleoplasmic reticulum (NR), implicated in transport, gene expression, and calcium homeostasis. Here, we show that proliferation of the NR, measured by the frequency of NE invaginations and tubules, is regulated by CTP:phosphocholine cytidylyltransferase-alpha (CCTalpha), the nuclear and rate-limiting enzyme in the CDP-choline pathway for phosphatidylcholine (PtdCho) synthesis. In Chinese hamster ovary (CHO)-K1 cells, fatty acids triggered activation and translocation of CCTalpha onto intranuclear tubules characteristic of the NR. This was accompanied by a twofold increase in NR tubules quantified by immunostaining for lamin A/C or the NE. CHO MT58 cells expressing a temperature-sensitive CCTalpha allele displayed reduced PtdCho synthesis and CCTalpha expression and minimal proliferation of the NR in response to oleate compared with CHO MT58 cells stably expressing CCTalpha. Expression of CCTalpha mutants in CHO58 cells revealed that both enzyme activity and membrane binding promoted NR proliferation. In support of a direct role for membrane binding in NR tubule formation, recombinant CCTalpha caused the deformation of liposomes into tubules in vitro. This demonstrates that a key nuclear enzyme in PtdCho synthesis coordinates lipid synthesis and membrane deformation to promote formation of a dynamic nuclear-cytoplasmic interface.  相似文献   

9.
In addition to suppressing cholesterol synthesis and uptake, oxysterols also activate glycerophospholipid and SM (sphingomyelin) synthesis, possibly to buffer cells from excess sterol accumulation. In the present study, we investigated the effects of oxysterols on the CDP-choline pathway for PtdCho (phosphatidylcholine) synthesis using wild-type and sterol-resistant CHO (Chinese-hamster ovary) cells expressing a mutant of SCAP [SREBP (sterol-regulatory-element-binding protein) cleavage-activating protein] (CHO-SCAP D443N). [(3)H]Choline-labelling experiments showed that 25OH (25-hydroxycholesterol), 22OH (22-hydroxycholesterol) and 27OH (27-hydroxycholesterol) increased PtdCho synthesis in CHO cells as a result of CCTalpha (CTP:phosphocholine cytidylyltransferase alpha) translocation and activation at the NE (nuclear envelope). These oxysterols also activate PtdCho synthesis in J774 macrophages. in vitro, CCTalpha activity was stimulated 2- to 2.5-fold by liposomes containing 5 mol% 25OH, 22OH or 27OH. Inclusion of up to 5 mol% cholesterol did not further activate CCTalpha. 25OH activated CCTalpha in CHO-SCAP D443N cells leading to a transient increase in PtdCho synthesis and accumulation of CDP-choline. CCTalpha translocation to the NE and intranuclear tubules in CHO-SCAP D443N cells was complete after 1 h exposure to 25OH compared with only partial translocation by 4-6 h in CHO-Mock cells. These enhanced responses in CHO-D443N cells were sterol-dependent since depletion with cyclodextrin or lovastatin resulted in reduced sensitivity to 25OH. However, the lack of effect of cholesterol on in vitro CCT activity indicates an indirect relationship or involvement of other sterols or oxysterol. We conclude that translocation and activation of CCTalpha at nuclear membranes by side-chain hydroxylated sterols are regulated by the cholesterol status of the cell.  相似文献   

10.
Phosphatidylcholine (PtdCho) is a major membrane phospholipid, and its loss is sufficient in itself to induce cell death. PtdCho homeostasis is regulated by the balance between hydrolysis and synthesis. PtdCho is hydrolyzed by phospholipase A2 (PLA2), PtdChospecific phospholipase C (PtdCho-PLC), and phospholipase D (PLD). PtdCho synthesis is rate-limited by CTP:phosphocholine cytidylyltransferase (CCT), which makes CDP-choline. The final step of PtdCho synthesis is catalyzed by CDP-choline:1,2-diacylglycerol cholinephosphotransferase. PtdCho synthesis in the brain is predominantly through the CDP-choline pathway. Transient middle cerebral artery occlusion (tMCAO) significantly increased PLA2 activity, secretory PLA2 (sPLA2)-IIA mRNA and protein levels, PtdCho-PLC activity, and PLD2 protein expression following reperfusion. CDP-choline treatment significantly attenuated PLA2 activity, sPLA2-IIA mRNA and protein levels, and PtdCho-PLC activity, but did not affect PLD2 protein expression. tMCAO also resulted in loss of CCT activity and CCTalpha protein, which were partially restored by CDP-choline. No changes were observed in cytosolic PLA2 or calcium-independent PLA2 tMCAO. protein levels after Up-regulation of PLA2, PtdCho-PLC, and PLD and regulation of CCT collectively down-resulted in loss of PtdCho, which was significantly restored by CDP-choline treatment. CDP-choline treatment significantly attenuated the infarction volume by 55 +/- 5% after 1 h of tMCAO and 1 day of reperfusion. Taken together, these results suggest that CDP-choline significantly restores Ptd-Cho levels by differentially affecting sPLA2-IIA, PtdCho-PLC, and CCTalpha after transient focal cerebral ischemia. A hypothetical scheme is proposed integrating results from this study and from other reports in the literature.  相似文献   

11.
12.
The uptake of modified low density lipoprotein (LDL) by arterial macrophages is a key event in the atherogenesis. We studied 1) the uptake and degradation of modified LDL, 2) LDL recognition by specific receptors, and 3) the foam cell formation with murine macrophage-like RAW 264 cells in vitro. The cells took up and degraded effectively 125I-labeled acetylated LDL (Ac-LDL) and aggregated LDL (Aggr-LDL). Also oxidized LDL (Ox-LDL) was taken up but it was degraded poorly. The degradation of 125I-Ac-LDL was efficiently competed by both unlabeled Ac-LDL and Ox-LDL, whereas the degradation of 125I-Ox-LDL was partially competed by unlabeled Ox-LDL and Aggr-LDL but not at all by unlabeled Ac-LDL. The incubation with increasing concentrations of Ac-LDL, Aggr-LDL or Ox-LDL resulted in marked foam cell formation in the RAW 264 cells. Ox-LDL was cytotoxic at 500 to 1000 microg/ml concentrations. The results show that RAW 264 cells have at least two classes of receptors for modified lipoproteins: one that recognizes both Ox-LDL and Ac-LDL, and is similar to the scavenger receptors, and another that recognizes Ox-LDL but not Ac-LDL. RAW 264 cells are a convenient model cell line for examining the metabolism of modified lipoproteins, not only that of Ac-LDL but also that of Ox-LDL and Aggr-LDL, and cellular accumulation of lipids derived from modified LDL.  相似文献   

13.
Oxidatively modified low density lipoproteins (Ox-LDL) may be involved in determining the formation of foam cells by inducing cellular cholesteryl ester accumulation. We studied the effect of copper oxidized LDL (Ox-LDL) on cholesterol accumulation and esterification in murine macrophages. Ox-LDL (44 micrograms/ml of lipoprotein cholesterol) increased the total cholesterol content of the cells from 29 to 69 micrograms/mg cell protein. Free cholesterol accounted for 85% of this increase. Acetyl LDL (Ac-LDL) (38 micrograms/ml of lipoprotein cholesterol), raised total cellular cholesterol content to a similar extent (76 micrograms/mg cell protein), however only 25% of the accumulated cholesterol was unesterified. When ACAT activity was determined after incubation of J774 cell with Ox- or Ac-LDL, Ox-LDL were 12 times less effective than Ac-LDL in stimulating cholesteryl ester formation. This was not due to an inhibition of ACAT by Ox-LDL since these lipoproteins failed to inhibit pre activated enzyme in cholesteryl ester-loaded macrophages. The uptake of 125I-Ox-LDL: was 175% that of 125I-Ac-LDL, while degradation was only 20%. All together these data suggest an altered intracellular processing of Ox-LDL, which may be responsible for free cholesterol accumulation.  相似文献   

14.
We examined whether administration of very low-density lipoproteins (VLDL) to pregnant rats increases surfactant phosphatidylcholine (PtdCho) content in fetal pre-type II alveolar epithelial cells. VLDL-triglycerides are hydrolyzed to fatty acids by lipoprotein lipase (LPL), an enzyme activated by heparin. Fatty acids released by LPL can incorporate into the PtdCho molecule or activate the key biosynthetic enzyme cytidylyltransferase (CCT). Dams were given BSA, heparin, VLDL, or VLDL with heparin intravenously. Radiolabeled VLDL given to the pregnant rat crossed the placenta and was distributed systemically in the fetus and incorporated into disaturated PtdCho (DSPtdCho) in pre-type II cells. Maternal administration of VLDL with heparin increased DSPtdCho content in cells by 45% compared with control (P < 0.05). VLDL produced a dose-dependent, saturable, and selective increase in CCT activity. VLDL did not significantly alter immunoreactive CCT content but increased palmitic, stearic, and oleic acids in pre-type II cells. Furthermore, hypertriglyceridemic apolipoprotein E knockout mice contained significantly greater levels of DSPtdCho content in alveolar lavage and CCT activity compared with either LDL receptor knockout mice or wild-type controls that have normal serum triglycerides. Thus the nutritional or genetic modulation of serum VLDL-triglycerides provides specific fatty acids that stimulate PtdCho synthesis and CCT activity thereby increasing surfactant content.  相似文献   

15.
The CTP:phosphocholine cytidylyltransferase (CCT) governs the rate of phosphatidylcholine (PtdCho) biosynthesis, and its activity is governed by interaction with membrane lipids. The carboxy-terminus was dissected to delineate the minimum sequences required for lipid responsiveness. The helical domain is recognized as a site of lipid interaction, and all three tandem alpha-helical repeats from residues 257 through 290 were found to be required for regulation of enzymatic activity by this domain. Truncation of the carboxy-terminus to remove one or more of the alpha-helical repeats yielded catalytically compromised proteins that were not responsive to lipids but retained sufficient activity to accelerate PtdCho biosynthesis when overexpressed in vivo. The role of the helical region in lipid-activation was tested further by excising residues 257 through 309 to yield a protein that retained a 57-residue carboxy terminal domain fused to the catalytic core. This construct tested the hypothesis that the helical region inhibits activity in the absence of lipid rather than activates the enzyme in the presence of lipid. This hypothesis predicts constitutive activity for CCTalpha[Delta257-309]; however, this protein was tightly regulated by lipid with activities comparable to the full-length CCTalpha, in both the absence and presence of lipid. Activation of CCTalpha[Delta257-309] was dependent exclusively on anionic lipids, whereas full-length CCTalpha responded to either anionic or neutral lipids. Phosphatidic acid delivered in Triton X-100 micelles was the preferred activator of the second lipid-activation domain. These data demonstrate that CCTalpha can be regulated by lipids by two independent domains: (i) the three amphipathic alpha-helical repeats that interact with both neutral and anionic lipid mixtures and (ii) the last 57 residues that interact with anionic lipids. The results show that both domains are inhibitory in the absence of lipid and activating in the presence of lipid. Removal of both domains results in a nonresponsive, dysregulated enzyme with reduced activity. The data also demonstrate for the first time that the 57-residue carboxy-terminal domain in CCTalpha participates in lipid-mediated regulation and is sufficient for maximum activation of enzyme activity.  相似文献   

16.
17.
Oxidized low-density lipoproteins (Ox-LDL) are key elements in atherogenesis. Apolipoprotein AI (apoAI) is an active component of the antiatherogenic high-density lipoproteins (HDL). In contrast, plasma apolipoprotein B (apoB), the main component of LDL, is highly correlated with coronary risk. Our results, obtained in HepG2 cells, show that Ox-LDL, unlike native LDL, leads to opposite effects on apoB and apoAI, namely a decrease in apoAI and an increase in apoB secretion as evaluated by [(3)H]leucine incorporation and specific immunoprecipitation. Parallel pulse-chase studies show that Ox-LDL impaired apoB degradation, whereas apoAI degradation was increased and mRNA levels were decreased. We also found that enhanced lipid biosynthesis of both triglycerides and cholesterol esters was involved in the Ox-LDL-induced increase in apoB secretion. Our data suggest that the increase in apoB and decrease in apoAI secretion may in part contribute to the known atherogenicity of Ox-LDL through an elevated LDL/HDL ratio, a strong predictor of coronary risk in patients.  相似文献   

18.
The p53 tumor suppressor protein is activated in cells in response to DNA damage and prevents the replication of cells sustaining genetic damage by inducing a cell cycle arrest or apoptosis. Activation of p53 is accompanied by stabilization of the protein, resulting in accumulation to high levels within the cell. p53 is normally degraded through the proteasome following ubiquitination, although the mechanisms which regulate this proteolysis in normal cells and how the p53 protein becomes stabilized following DNA damage are not well understood. We show here that p53 can also be a substrate for cleavage by the calcium-activated neutral protease, calpain, and that a preferential site for calpain cleavage exists within the N terminus of the p53 protein. Treatment of cells expressing wild-type p53 with an inhibitor of calpain resulted in the stabilization of the p53 protein. By contrast, in vitro or in vivo degradation mediated by human papillomavirus E6 protein was unaffected by the calpain inhibitor, indicating that the stabilization did not result from inhibition of the proteasome. These results suggest that calpain cleavage plays a role in regulating p53 stability.  相似文献   

19.
Lipid peroxides induce expression of catalase in cultured vascular cells   总被引:3,自引:0,他引:3  
Various forms of oxidized low-density lipoproteins (Ox-LDL) are thought to play a major role in the development of atherosclerosis. The lipid components of Ox-LDL present a plethora of proatherogenic effects in in vitro cell culture systems, suggesting that oxidative stress could be an important risk factor for coronary artery disease. However, buried among these effects are those that could be interpreted as antiatherogenic. The present study demonstrates that various oxidants, including oxidized fatty acids and mildly oxidized forms of LDL (MO-LDL), are able to induce catalase (an antioxidant enzyme) expression in rabbit femoral arterial smooth muscle cells (RFASMC), RAW cells (macrophages), and human umbilical vein endothelial cells (HUVEC). In RFASMC, catalase protein, mRNA, and the enzyme activity are increased in response to oxidized linoleic acid (13-hydroperoxy-9,11-octadecadienoic acid [13-HPODE] and 13-hydroxy-9,11-octadecadienoic acid [13-HODE]), MO-LDL, or hydrogen peroxide (H(2)O(2)). Such an increase in catalase gene expression cannot totally be attributed to the cellular response to an intracellular generation of H(2)O(2) after the addition of 13-HPODE or 13-HODE because these agents induce a further increase of catalase as seen in catalase-transfected RFASMC. Taken together with the induction of heme oxygenase, NO synthase, manganese superoxide dismutase (Mn-SOD), and glutathione synthesis by oxidative stress, our results provide yet more evidence suggesting that a moderate oxidative stress can induce cellular antioxidant response in vascular cells, and thereby could be beneficial for preventing further oxidative stress.  相似文献   

20.
Human low density lipoprotein was oxidized (Ox-LDL) by exposure to 5 microM Cu2+ and its fate in vivo was compared to acetylated low density lipoprotein (Ac-LDL). Ox-LDL, when injected into rats, is rapidly removed from the blood circulation by the liver, similarly as Ac-LDL. A separation of rat liver cells into parenchymal, endothelial, and Kupffer cells at 10 min after injection of Ox-LDL or Ac-LDL indicated that the Kupffer cell uptake of Ox-LDL is 6.8-fold higher than for Ac-LDL, leading to Kupffer cells as the main liver site for Ox-LDL uptake. In vitro studies with isolated liver cells indicated that saturable high affinity sites for Ox-LDL were present on both endothelial and Kupffer cells, whereby the capacity of Kupffer cells to degrade Ox-LDL is 6-fold higher than for endothelial cells. Competition studies showed that unlabeled Ox-LDL competed as efficiently (90%) as unlabeled Ac-LDL with the cell association and degradation of 125I-labeled Ac-LDL by endothelial and Kupffer cells. However, unlabeled Ac-LDL competed only partially (20-30%) with the cell association and degradation of 125I-labeled Ox-LDL by Kupffer cells, while unlabeled Ox-LDL or polyinosinic acid competed for 70-80%. It is concluded that the liver contains, in addition to the scavenger (Ac-LDL) receptor which interacts efficiently with both Ac-LDL and Ox-LDL and which is concentrated on endothelial cells, an additional specific Ox-LDL receptor which is highly concentrated on Kupffer cells. In vivo the specific Ox-LDL recognition site on Kupffer cells will form the major protection system against the occurrence of the atherogenic Ox-LDL particles in the blood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号