首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
N Junakovic  P Ballario 《Plasmid》1984,11(2):109-115
We find that in the circular extrachromosomal DNA from Drosophila tissue culture cells the transposable elements copia, 412, 297, and mdg 1 are present in variable amounts. There is no detectable circular DNA homologous to B104 . From the relationship between the intra- and extrachromosomal forms it appears that the amount of different circular elements is not related to the amount of the respective chromosomal elements.  相似文献   

2.
Structural heterogeneity of five long terminal repeat (LTR) retrotransposon families (297, mdg 1, 412, copia, and 1731) was investigated in Drosophila melanogaster. The genomic distribution of canonical and rearranged elements was studied by comparing hybridization patterns of Southern blots on salivary glands from adult females and males with in situ hybridization on polytene chromosomes. The proportion and genomic distribution of noncanonical copies is distinctive to each family and presents constant features in the four different D. melanogaster strains studied. Most elements of families 297 and mdg 1 were noncanonical and presented large interstock and intrastock polymorphism. Noncanonical elements of these two families were mostly located in euchromatin, although not restricted to it. The elements of families 412 and copia were better conserved. The proportion of noncanonical elements was lower. The 1731 family is mainly composed of noncanonical, beta-heterochromatic elements that are highly conserved among stocks. The relation of structural polymorphism to phylogeny, transpositional activity and the role of natural selection in the maintenance of transposable elements are discussed.  相似文献   

3.
Summary The genomic distributions of the copia, 297, 412, mdg 1, and B 104 transposable elements have been compared by the Southern technique among two Oregon R and four Canton SDrosophila laboratory lines that have been maintained separately for defined periods of a few years. The heterogeneity of the autoradiographic patterns suggests that multiple transposition events have occurred during the time of separation. The hypothesis that transposition could be induced by, variations of environmental parameters is discussed.Presented at the FEBS Symposium on Genome Organization and Evolution, held in Crete, Greece, September 1–5, 1986  相似文献   

4.
The elements of the transposon families G, copia, mdg 1, 412, and gypsy that are located in the heterochromatin and on the Y chromosome have been identified by the Southern blotting technique in Drosophila simulans and D. melanogaster populations. Within species, the abundance of such elements differs between transposon families. Between species, the abundance in the heterochromatin and on the Y chromosome of the elements of the same family can differ greatly suggesting that differences within a species are unrelated to structural features of elements. By shedding some new light on the mechanism of accumulation of transposable elements in the heterochromatin, these data appear relevant to the understanding of the long-term interaction between transposable elements and the host genome. Received: 8 August 1997 / Accepted: 11 December 1997  相似文献   

5.
Drosophila melanogaster embryos and cells in culture were screened for the presence of unintegrated covalently closed circular DNA forms that hybridize to copia-like transposable elements, the F element and uncharacterized dispersed middle repetitive DNA elements. Our results indicate that the majority of copia-like elements (including copia, 297, 412, mdg1, mdg3 and gypsy), the F elements, and 9 of 12 middle repetitive DNA elements are present as free DNA forms in cultured cells and embryos. An 18 base-pair inverted repeat has been reported to flank the long direct repeat of mdg3, implying that mdg3 is not an orthodox copia-like element; however, we have sequenced two independently isolated mdg3 clones and shown that the inverted repeat is not part of the element. The relative abundance with which free DNA forms are found varies between the cultured cells used, and between cultured cells and embryos. This variation, which can be up to 20-fold for some elements, does not correlate well with either the amount of element-specific poly(A)+ RNA present per cell or the number of element-specific sequences integrated in the genome.  相似文献   

6.
7.
Summary The Drosophila melanogaster mobile DNA sequences P factors and P elements transpose at elevated rates when P strain males are mated to M strain females in a hybrid dysgenic cross (Engels 1983). Isofemale lines derived from such a cross were analysed by in situ hybridisation using cloned copies of the transposable elements copia, 412 and F. It was found that lines derived from dysgenic crosses showed a statistically significant number of new sites for these elements when compared to a non-dysgenic control cross. This result suggests a functional coupling of copia, 412 and F transposition and some component present in the P-M dysgenic system.  相似文献   

8.
C. Hoogland  C. Biemont 《Genetics》1996,144(1):197-204
Data of insertion site localization and site occupancy frequency of P, hobo, I, copia, mdg1, mdg3, 412, 297, and roo transposable elements (TEs) on the polytene chromosomes of Drosophila melanogaster were extracted from the literature. We show that TE insertion site number per chromosomal division was significantly correlated with the amount of DNA. The insertion site number weighted by DNA content was not correlated with recombination rate for all TEs except hobo, for which a positive correlation was detected. No global tendency emerged in the relationship between TE site occupancy frequency, weighted by DNA content, and recombination rate; a strong negative correlation was, however, found for the 3L arm. A possible dominant deleterious effect of chromosomal rearrangements due to recombination between TE insertions is thus not the main factor explaining the dynamics of TEs, since this hypothesis implies a negative relationship between recombination rate and both TE insertion site number and site occupancy frequency. The alternative hypothesis of selection against deleterious effects of insertional mutations is discussed.  相似文献   

9.
Fifteen species belonging to the obscura group of the genus Drosophila were screened for sequences homologous to Drosophila melanogaster transposable elements (TEs) as an initial step in the examination of the possible occurrence of TEs at chromosomal inversion breakpoints. Blots of genomic DNAs from species of the obscura group were hybridized at three different stringencies with 14 probes representing the major families of TEs described in D. melanogaster. The probe DNAs included copia, gypsy, 412, 297, mdg1, mdg3, 3S18, F, G, I, jockey, P, hobo, and FB3. D. melanogaster TEs were not well represented in the species of the obscura group analyzed. The TEs that were observed generally exhibited heterogeneous distributions, with the exception of F, gypsy and 412 which were ubiquitous, and 297, G, Sancho 2, hobo and FB which were not detected.by A. Bird  相似文献   

10.
We wanted to determine whether there is a correlation between the quantitative character, the penetrance of the loss of humeral bristles in scute lines, and the distribution of transposable genetic elements in their genomes. We derived 18 isogenic lines with penetrance ranging between 2.8% and 92.0% from six mutant lines. The localization of the transposable elements (TEs) P, mdg1, Dm412, copia, gypsy and B104 was determined in all isogenic derivatives by in situ hybridization. The total number of the TE sites over all lines was 180. A comparison of the distribution of the TEs in the isogenic lines revealed the location of sites typical of lines with similar penetrance, no matter which parental line was involved. The results obtained suggest that such typical sites appear to tag the genome regions where the polygenes affecting the character in question are most likely to be found.  相似文献   

11.
The stability of the elements of eleven transposon families (412, B 104, blood, 297, 1731, G, copia, mdg 4, hobo, jockey and I) has been compared by the Southern technique among individuals of a Drosophila line that has been subjected to 30 generations of sister sib matings. The 412, B104, blood, 297, 1731 and G elements appear stable. Heterochromatic copia and hobo elements and euchromatic I elements appear highly polymorphic. In addition, copia, mdg 4, jockey and I elements undergo an instability resulting in significant variations in relative intensity among autoradiographic bands. The extent of the polymorphisms detected strongly suggests de novo rearrangements of transposable elements.  相似文献   

12.
13.
To investigate the main forces controlling the containment of transposable elements (TE) in natural populations, we analyzed the copia, mdg1, and 412 elements in various populations of Drosophila melanogaster and D. simulans. A lower proportion of insertion sites on the X chromosome in comparison with the autosomes suggests that selection against the detrimental effects of TE insertions is the major force containing TE copies in populations of Drosophila. This selection effect hypothesis is strengthened by the absence of the negative correlation between recombination rate and TE copy number along the chromosomes, which was expected under the alternative ectopic exchange model (selection against the deleterious rearrangements promoted by recombination between TE insertions). A cline in 412 copy number in relation to latitude was observed among the natural populations of D. simulans, with very high numbers existing in some local populations (around 60 copies in a sample from Canberra, Australia). An apparent absence of selection effects in this Canberra sample and a value of transposition rate equal to 1–2 × 10-3 whatever the population and its copy number agree with the idea of recent but temporarily drastic TE movements in local populations. The high values of transposition rate in D. simulans clearly disfavor the hypothesis that the low amount of transposable elements in this species could result from a low transposition rate. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
The increasing amount of data generated in recent years has opened the way to exhaustive studies of the relationships among different members of the Ty3/gypsy group of LTR retrotransposons, a widespread group of eukaryotic transposable elements. Former research led to the identification of several independent lineages within this group. One of the worse represented of them is that of mdg1, integrated so far only by the Drosophila retrotransposons mdg1 and 412. Our exhaustive database searches indicate the existence of three other Drosophila members of this lineage. Two of them correspond to elements already known, namely, Stalker and blood, but the third one is a new element, which we have called Pilgrim. This element is well represented within the D. melanogaster genome, as revealed by our Southern blot analysis of different strains. The case of Stalker is particularly remarkable, since its phylogenetic relationships clearly point to the mosaic origin of its genome. Finally, our analysis of the evolution of a small ORF preserved within the 5′ leader region of these elements indicates different evolutionary rates, presumably as a result of distinct selective constraints. Received: 16 October 2000 / Accepted: 6 April 2001  相似文献   

15.
Summary The laboratory imitator strain (MS) of Drosophila melanogaster is characterized by an elevated frequency of spontaneous mutation (10–3–10–4). Mutations occur in both sexes at premeiotic stages of germ cell development. The increased mutability is a characteristic feature of MS itself, since it appears in the absence of outcrossing. Most of the mutations arising in this strain are unstable: reversions to wild type, high frequency mutation to new mutant states and replicating instability were observed. We have investigated the localization of the transposable genetic elements mdg1, 412, mdg3, gypsy (mdg4), copia and P in the X chromosomes of the MS and in the mutant lines y, ct, sbt derived from it by in situ hybridization. The P element was not found in any of these strains. The distributions of mdg1, 412, mdg3 and copia were identical in the X chromosomes of the MS and its derivatives. However, the sites of hybridization with gypsy differ in the various lines tested. In the polytene chromosomes of MS animals significant variation in location and number of copies of the gypsy element was demonstrated between different larvae; copy numbers as high as 30–40 were observed. These results suggest autonomous transposition of gypsy in the MS genome while several other mobile elements remain stable.  相似文献   

16.
The genome of Drosophila melanogaster strain y cn bw sp has been sequenced and the transposable elements insertion sites have been determined. We hybridized fluorescence-labeled probes directed to the hobo transposon, Dm412 and mdg1 retrotransposons to polytene chromosomes and compared the observed sites to those published in the annotated genome sequence. We observed an almost twofold increase in the number of hobo hybridization sites (46 found as compared to 24 annotated sites). There was no evidence that the hobo transposition rate is slowing over the 10-year period. The patterns of Dm412 and mdg1 sites have changed less dramatically since the time of genome sequencing. Three novel Dm412 hybridization sites were detected while 4 out of 30 annotated sites were missing. Only one additional mdg1 site was found, while 1 out of 29 annotated sites has been lost.  相似文献   

17.
18.
In situ hybridization on polytene chromosomes of Drosophila melanogaster was used to compare the insertion patterns of copia and mdgl transposable elements on chromosome 2 in male gametes sampled by two different methods: (i) by crossing the males tested with females from a highly inbred line with known copia and mdgl insertion profiles; (ii) by crossing the same males with females from a marked strain, and analysing the resulting homozygous chromosomes. Crossing of the males with the inbred line led to homogeneous insertion profiles for both the copia and mdgl elements in larvae, thus giving an accurate estimation of the patterns in the two gamete classes of each male. Crossing with the marked strain led, however, to heterogeneity in insertion patterns of the copia transposable element, while no significant polymorphism was observed for mdgl. The use of balancer chromosomes is thus not an adequate way of inferring transposable element insertion patterns of Drosophila males, at least for the copia element. This technique could, however, be powerful for investigating the control of movements of this element.  相似文献   

19.
Horizontal (interspecific) transfer is regarded as a possible strategy for the propagation of transposable elements through evolutionary time. To date, however, conclusive evidence that transposable elements are capable of horizontal transfer from one species to another has been limited to class II or DNA-type elements. We tested the possibility of such transfer for several Drosophila melanogaster LTR retrotransposons of the gypsy group in an experiment in which D. melanogaster and D. virilis somatic cell lines were used as donor and recipient cells, respectively. This approach was chosen in light of the high levels of LTR retrotransposon amplification and expression observed in cultured D. melanogaster cells. In the course of the experiment, parallel analysis for mdg1, mdg3, 17.6, 297, 412 and B104/roo retrotransposons was performed to detect their presence in the genome of recipient cells. Only the mdg3 retrotransposon, which lacks an env gene, was found to be transmitted into recipient cells. This model, based on the use of cultured cells, is a promising system for further investigating the mechanisms of LTR retrotransposon transfer.  相似文献   

20.
Laboratory mutator strain of Drosophila melanogaster is characterized by increased (up to 10(-3)-10(-4) frequency of spontaneous mutability. Mutations appear in premeiotic stages of gametes development. The majority of mutations were unstable (high frequencies of reversions, appearance of new mutations at the same and other loci, replicating instability). Localization of mobile elements mdg1, mdg2, mdg3, mdg4, copia and P element in X chromosomes of mutator individuals and its mutations y, ct, sbt was studied by hybridization in situ. In all strains P element was absent. The distribution of mdg1, mdg2, mdg3 and copia was identical in mutator strains and its derivatives, but distribution of mdg4 was different. The essential heterogeneity in localization of mdg4 and increased (up to 30-40) copy number in the mutator strain individuals was observed. The ability of single element mdg4 to autonomous transpositions was thus shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号