首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fever has generally been shown to benefit infected hosts. However, fever temperatures also carry costs. While endotherms are able to limit fever costs physiologically, the means by which behavioral thermoregulators constrain these costs are less understood. Here we investigated the behavioral fever response of house flies (Musca domestica L.) challenged with different doses of the fungal entomopathogen, Beauveria bassiana. Infected flies invoked a behavioral fever selecting the hottest temperature early in the day and then moving to cooler temperatures as the day progressed. In addition, flies infected with a higher dose of fungus exhibited more intense fever responses. These variable patterns of fever are consistent with the observation that higher fever temperatures had greater impact on fungal growth. The results demonstrate the capacity of insects to modulate the degree and duration of the fever response depending on the severity of the pathogen challenge and in so doing, balance the costs and benefits of fever.  相似文献   

2.
A comparison has been made between the effects of wounding, chemical stimulation of the immune system and fungal infection on acid phosphatase (AcP) activity in the haemolymph of the desert locust, Schistocerca gregaria. Untreated control locusts had constitutive levels of AcP. As a lysosomal enzyme, AcP may have a role in autophagy and cell turn over as well as defence. Injection of saline and beta-1,3-glucan caused significant increases in haemocyte and plasma AcP. AcP activity also increased in the haemolymph on the 3rd day after inoculation with the entomopathogenic fungus M. anisopliae var acridum. This coincided with a decline in the total haemocyte count and a marked reduction in the proportion of plasmatocytes and coagulocytes that stained positive for AcP. Therefore a priori it seemed unlikely that the extra AcP in infected insects came from the host. A fungal origin for the enzyme was suggested by the identification of AcP isoforms from haemolymph of different treatments. Control inoculated (oil only) insects had an AcP at a pI of 4.3 that was stimulated further by the injection of laminarin. Additional isoforms appeared at around 7.3-7.5 in the laminarin treatment. However, the 4.3 isoform appeared to be suppressed in the insects infected with M. anisopliae var acridum. The band intensity was more like that of the control than the laminarin-injected insects. Two new isoforms appeared later on in infection. These enzymes had pIs that corresponded to some of the AcPs produced in vitro by the fungus. The results are discussed in the light of the possible benefits of secreted fungal acid phosphatases to the pathogen.  相似文献   

3.
During an infection locusts behaviourally fever by seeking out higher environmental temperatures. This behaviour places the pathogen at sub-optimal growth temperatures while improving the efficiency of the immune system, thereby prolonging the lifespan of the host. It is therefore in the interest of the pathogen to either adapt to fever-like temperatures or to evolve mechanisms to interfere with, or inhibit fever. We investigated the behavioural fever response of desert locusts to two fungal pathogens. A prolonged fever was observed in locusts infected with Metarhizium acridum. However, fever was comparatively short-lived during infection with Metarhizium robertsii. In both cases restriction of thermoregulation reduced lifespan. Destruxin A (dtx A) produced by M. robertsii, but not M. acridum has previously been associated with the inhibition of the insect immune system. Injection of dtx A during infection with the fever-causing M. acridum inhibited fever and was particularly effective when administered early on in infection. Furthermore, locusts injected with dtx A were more susceptible to M. acridum infection. Therefore engineering M. acridum isolates currently used for locust biocontrol, to express dtx A may improve efficiency of control by interfering with fever.  相似文献   

4.
Altering one’s temperature preference (e.g. behavioral fever or behavioral chill) is a common immune defense among ectotherms that is likely to be evolutionarily conserved. However, the temperature chosen by an infected host may not be optimal for pathogen defense, causing preference to be inefficient. Here we examined the efficiency of temperature preference in Drosophila melanogaster infected with an LD50 of the gram negative bacteria Pseudomonas aeruginosa. To this end, we estimated the host’s uninfected and infected temperature preferences as well as their optimal survival temperature. We found that flies decreased their preference from 26.3 °C to 25.2 °C when infected, and this preference was stable over 48 h. Furthermore, the decrease in temperature preference was associated with an increased chance of surviving the infection. Nevertheless, the infected temperature preference did not coincide with the optimum temperature for infection survival, which lies at or below 21.4 °C. These data suggest that the behavioral response to P. aeruginosa infection is considerably inefficient, and the mechanisms that may account for this pattern are discussed. Future studies of infected temperature preferences should document its efficiency, as this understudied aspect of behavioral immunity can provide important insight into preference evolution.  相似文献   

5.
We demonstrate how variable temperatures, mediated by host thermoregulation and behavioural fever, critically affect the interaction between a host (the desert locust, Schistocerca gregaria) and a pathogen (the fungus Metarhizium anisopliae var. acridum). By means of behavioural thermoregulation, infected locusts can raise their body temperatures to fever levels. The adaptive value of this behaviour was examined using three thermal regimes wherein maximum body temperatures achievable were: (i) below, or (ii) at normally preferred temperatures, or were (iii) unrestricted, allowing heightened fever temperatures. All infected locusts ultimately succumbed to disease, with median survival times of 8, 15 and 21 days post-infection, respectively. Crucially, only those locusts able to fever produced viable offspring. This represents, to our knowledge, the first demonstration of the adaptive value of behavioural fever following infection with a naturally occurring pathogen. By contrast, although normal host thermoregulation moderately reduced pathogen reproduction (by 35%), there was no additional negative effect of fever, resulting in an asymmetry in the fitness consequences of fever for the host and the pathogen. The dependency of the host-pathogen interaction upon external abiotic conditions has implications for how virulence and resistance are treated both theoretically and in the management of pests and diseases.  相似文献   

6.
Pathogens may induce different immune responses in hosts contingent on pathogen characteristics, host characteristics, or interactions between the two. We investigated whether the broadly effective acute-phase response (APR), a whole body immune response that occurs in response to constitutive immune receptor activation and includes fever, secretion of immune peptides, and sickness behaviors such as anorexia and lethargy, varies with pathogen identity in the house sparrow (Passer domesticus). Birds were challenged with a subcutaneous injection of either a glucan at 0.7 mg/kg (to simulate fungal infection), a synthetic double-stranded RNA at 25 mg/kg (to simulate viral infection), or LPS at 1 mg/kg (to simulate a gram-negative bacterial infection), and then body mass, core body temperature changes, sickness behaviors, and secretion of an acute-phase protein, haptoglobin, were compared. Despite using what are moderate-to-high pyrogen doses for other vertebrates, only house sparrows challenged with LPS showed measurable APRs. Febrile, behavioral, and physiological responses to fungal and viral mimetics had minimal effects.  相似文献   

7.
在对小菜蛾Plutella xylostella幼虫血淋巴酚氧化酶原的存在部位及免疫激活作用特点研究的基础上,比较了根虫瘟霉Zoophthora radicans不同菌株对酚氧化酶原激活系统的免疫激化及防御作用的差异。研究发现, 酚氧化酶原主要位于小菜蛾幼虫血细胞膜及血细胞裂解液中,极少存在于血浆中。在免疫激活剂昆布多糖存在下,分别测得小菜蛾幼虫血细胞碎片、血细胞裂解液和血浆的酚氧化酶活性为26.80 U,16.68 U和2.53 U。酚氧化酶原显著地受血浆和昆布多糖同时存在的激活,但两者单独存在时对酚氧化酶原的激活作用较弱。根虫瘟霉菌丝裂解液对酚氧化酶原有不同程度的激活作用,其激活作用在有血浆存在时显著增强,其酚氧化酶活性可提高2.9~3.4倍。各菌株间对酚氧化酶原的激活作用则以ARSEF1342菌株最强,ARSEF2699和F99101菌株次之,ARSEF1100菌株最弱。被激活的酚氧化酶可粘附于根虫瘟霉菌丝上并能产生黑化反应,各菌株间酚氧化酶粘附于ARSEF1342菌株的能力最强,粘附于ARSEF2699和F99101菌株的次之,粘附于ARSEF1100菌株的最弱。但酚氧化酶粘附于昆布多糖的能力显著强于各虫霉菌株,表明各菌株在一定程度上能逃避寄主的免疫识别;各菌株激活酚氧化酶原及酚氧化酶粘附于菌株强弱,与对小菜蛾毒力呈负相关性,表明高毒力菌株具有易逃避寄主免疫识别的趋向。  相似文献   

8.
While fever is known to occur in invertebrates and vertebrates, the mechanisms of fever in animals other than mammals have received scant attention. We look initially at the recognition, by the avian immune system, of pathogen associated molecular patterns and the likely role of toll-like receptors in signaling the presence of bacteria and viruses. Several mediators of fever are subsequently released by immune cells, including interleukin-6 and interleukin-1β, that eventually reach the brain and alter thermoregulatory function. As is the case in mammals, prostaglandins appear to be the ultimate mediators of fever in birds, since the febrile response is attenuated when prostaglandin synthesis is inhibited. Ambient temperature modulates the fever response, with larger fevers at higher, and smaller fevers at lower ambient temperatures. Glucocorticoid levels are increased during fever and seem to play an important role by modulating the extent of fever generation, possibly playing a role in the attenuation of fever after repeated exposure to a pathogen in a process termed tolerance, suggesting that the fever process can be phenotypically adapted to likely future conditions. While fever has an ancient phylogenetic history and many of the underling mechanisms in birds appear similar to mammals, there are several important differences that suggest fever has evolved quite differently in these two homeothermic classes.  相似文献   

9.
Bats play a key role as host for multiple microorganism and virus without showing clinical manifestations of disease. After recognition of a potential threat, innate immunity triggers acute phase response, a systemic reaction that contributes to restrain microbial and viral growth. APR is characterized by fever, leukocytosis, and production of acute phase proteins, but also by behavioral changes, including somnolence, lethargy, and anorexia. Deploying immune responses, such as acute phase response, represents an energetic cost for vertebrates. In bats, it has been suggested that higher metabolic rates reached during flight might subsidize any inherent cost of raising metabolism to activate an immune response. Therefore, a central question is whether immune response represents a significant cost to bats and, if so, how much is the metabolic cost of these responses. Here, we assess the resting metabolic rate of Artibeus lituratus in response to challenge with LPS. In addition, we assessed parameters of acute phase response including fever, body mass loss, and leukocytosis in this specie. We found that challenge with LPS leads to an increase of 40% in resting metabolic rate of A. lituratus, concomitant with body mass loss and an increase in body temperature of 1.5 °C.  相似文献   

10.
Insects that become parasitized may behave differently than unparasitized individuals. For instance, some parasitized caterpillars bask at the top of vegetation. Caterpillars of Platyprepia virginalis that had previously been infected by the tachinid parasitoid, Thelaira americana, were more likely to bask on dead vegetation than were unparasitized caterpillars. This behavior was associated with elevated body temperatures compared to individuals that were not basking. This is the first report of behavioral fever by a caterpillar, by any insect in the field, and by any insect caused by a macroparasite rather than a pathogen. The results are consistent with the hypothesis that parasitized caterpillars are induced to develop behavioral fever by basking and this may help them recover from their parasitoids; other interpretations are also possible.  相似文献   

11.
The acutephase response (APR) is a systemic response to severe trauma, infection, and cancer, although many of the numerous cytokine-mediated components of the APR are incompletely understood. Some of these components, such as fever, reduced availability of iron and zinc, and nutritional restriction due to anorexia, appear to be stressors capable of causing harm to both the pathogen and the host. We review how the host benefits from differences in susceptibility to stress between pathogens and the host. Pathogens, infected host cells, and neoplastic cells are generally more stressed or vulnerable to additional stress than the host because: (a) targeted local inflammation works in synergy with APR stressors; (b) proliferation/growth increases vulnerability to stress; (c) altered pathogen physiology results in pathogen stress or vulnerability; and (d) protective heat shock responses are partially abrogated in pathogens since their responses are utilized by the host to enhance immune responses. Therefore, the host utilizes a coordinated system of endogenous stressors to provide additional levels of defense against pathogens. This model of immune brinksmanship can explain the evolutionary basis for the mutually stressful components of the APR.  相似文献   

12.

Background

Climate warming is causing environmental change making both marine and terrestrial organisms, and even humans, more susceptible to emerging diseases. Coral reefs are among the most impacted ecosystems by climate stress, and immunity of corals, the most ancient of metazoans, is poorly known. Although coral mortality due to infectious diseases and temperature-related stress is on the rise, the immune effector mechanisms that contribute to the resistance of corals to such events remain elusive. In the Caribbean sea fan corals (Anthozoa, Alcyonacea: Gorgoniidae), the cell-based immune defenses are granular acidophilic amoebocytes, which are known to be involved in wound repair and histocompatibility.

Methodology/Principal Findings

We demonstrate for the first time in corals that these cells are involved in the organismal response to pathogenic and temperature stress. In sea fans with both naturally occurring infections and experimental inoculations with the fungal pathogen Aspergillus sydowii, an inflammatory response, characterized by a massive increase of amoebocytes, was evident near infections. Melanosomes were detected in amoebocytes adjacent to protective melanin bands in infected sea fans; neither was present in uninfected fans. In naturally infected sea fans a concurrent increase in prophenoloxidase activity was detected in infected tissues with dense amoebocytes. Sea fans sampled in the field during the 2005 Caribbean Bleaching Event (a once-in-hundred-year climate event) responded to heat stress with a systemic increase in amoebocytes and amoebocyte densities were also increased by elevated temperature stress in lab experiments.

Conclusions/Significance

The observed amoebocyte responses indicate that sea fan corals use cellular defenses to combat fungal infection and temperature stress. The ability to mount an inflammatory response may be a contributing factor that allowed the survival of even infected sea fan corals during a stressful climate event.  相似文献   

13.
Insects have a highly developed innate immune system, including humoral and cellular components. The cellular immune responses refer to hemocyte-mediated processes such as phagocytosis, nodulation, and encapsulation. Nodulation is considered the predominant defense reaction to infection in insects. Treating third instar larvae of the grey flesh fly, Neobellieria bullata, with laminarin (beta-1,3-glucan, a typical component of fungal cell walls) induced nodulation in a dose-dependent manner. This reaction was initiated very soon after injection and reached its maximal response level after 4 h. The nodules were not randomly distributed in the hemocoel, but were concentrated around the crop. The possible role of eicosanoids in this nodulation process was determined by treating larvae with the phospholipase A(2) inhibitor, dexamethasone, the cyclooxygenase inhibitor, naproxen, and the lipoxygenase inhibitor, esculetin. Both dexamethasone and naproxen significantly impaired the ability of N. bullata larvae to form nodules in response to laminarin. Supplying dexamethasone-treated larvae with the eicosanoid precursor, arachidonic acid, restored the full response. On the other hand, treating larvae with esculetin did not influence the formation of nodules in response to laminarin. This is the first study that demonstrates the occurrence of a laminarin-induced nodulation response in Diptera. Phospholipase A(2) and cyclooxygenase activities, both involved in prostaglandin biosynthesis, appear to play an important role in the regulation of this process.  相似文献   

14.
Natural enemy attack can cause transgenerational shifts in phenotype such that offspring are less vulnerable to future attack. Desert locusts (Schistocerca gregaria) show density‐dependent variation in their resistance to pathogens, such that they are less vulnerable to pathogens when in the high‐density gregarious phase state (when they would probably be more exposed to pathogens) than when in the solitarious phase state. We therefore hypothesized that infected gregarious parents would maintain this phenotype in their offspring. We infected gregarious desert locust nymphs with the fungal pathogen Metarhizium anisopliae var. acridum, and allowed them to survive to reproduction by means of behavioural fever. The phase state of the locust offspring was assessed by their colouration and behavioural assays. Contrary to our hypothesis, we found an increase in solitarization in the infected population (14.6% solitarious offspring from infected parents, vs. <2% from uninfected counterparts at equivalent density). In a second experiment, we simulated behavioural fever temperatures and obtained a similar result (13.6% solitarious offspring vs. 4.4% from controls), implying that the phenomenon is probably a side‐effect of the hosts’ fever response. Identification of this novel environmental factor affecting locust phase state could have important implications for the biological control of these major pests.  相似文献   

15.
16.
A host's defensive response to a pathogen is a phylogenetically ancient reaction that consists of a CNS-mediated series of autonomic, hormonal and behavioral responses that combine to combat infection. The absence of such defense results in greater morbidity and mortality and thus, these responses are essential for survival. The postnatal period represents a malleable phase in which the long-term behavior and physiology of the developing organism, including its immune responses, can be influenced. Postnatal challenge of the immune system by introduction of live replicating infections, or administration of bacterial and viral mimetics, can result in a multidomain alteration to the defenses of the adult host. Findings from our laboratory and others' indicate that the postnatal administration of lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (PolyI:C), which mimic bacterial and viral infections respectively, can influence the neuroimmune response (generation of fever and production of cytokines) to a second challenge to the immune system in adulthood. This long-lasting alteration in the innate immune response is associated with myriad other effects on the animal's physiology and appears to be primarily mediated by a sensitized hypothalamic-pituitary-adrenal axis. Thus, a transient immunological perturbation to a developing animal may program the organism for subsequent health complications as an adult. In this review we discuss some of the potential mechanisms for these phenomena.  相似文献   

17.
During relapsing fever borreliosis, a high pathogen load in the blood occurs at times of peak bacteremia. Specific IgM Abs are responsible for spirochetal clearance so in absence of B cells there is persistent high-level bacteremia. Previously, we showed that B cell-deficient mice persistently infected with Borrelia turicatae produce high levels of IL-10 and that exogenous IL-10 reduces bacteremia. This suggested that IL-10 helps reduce bacteremia at times of high pathogen load by a B cell-independent mechanism, most likely involving innate immunity. To investigate this possibility, we compared B. turicatae infection in RAG2/IL-10(-/-) and RAG2(-/-) mice. The results showed that IL-10 deficiency resulted in significantly higher bacteremia, higher TNF levels, and early mortality. Examination of the spleen and peripheral blood showed markedly increased apoptosis of immune cells in infected RAG2/IL-10(-/-) mice. Neutralization of TNF reduced apoptosis of leukocytes and splenocytes, increased production of IFN-gamma by NK cells, increased phagocytosis in the spleen, decreased spirochetemia, and rescued mice from early death. Our results indicate that at times of high pathogen load, as during peak bacteremia in relapsing fever borreliosis, IL-10 protects innate immune cells from apoptosis via inhibition of TNF resulting in improved pathogen control.  相似文献   

18.
1. Thermoregulatory behaviour of the Senegalese grasshopper, Oedaleus senegalensis (Krauss), was investigated in the field following a spray application of an oil-based formulation of Metarhizium flavoviride Gams and Rozsypal in Niger, West Africa.
2. Measurements of environmental temperature, wind speed and solar radiation were made in conjunction with measurements of internal body temperatures of grasshoppers from a control (unsprayed) and treated plot using microthermocouples and hand-held thermometers. Grasshoppers were monitored for 4 days from the third day after application.
3. Oedaleus senegalensis utilized a range of thermoregulatory behaviours to maximize body temperatures during periods of low insolation and ambient temperature, and to minimize excessive heat loading during the hottest periods. Preferred body temperature of uninfected grasshoppers was 39 °C, with a range from 24 °C in the early morning to a high of 46 °C during periods of high insolation and ambient temperature.
4. Infected grasshoppers altered their thermoregulatory behaviour and showed a behavioural fever response to the pathogen. Preferred body temperatures of infected individuals were raised to a new set point of ≈ 42 °C. This is believed to be the first evidence for a behavioural fever in response to a microbial infection for any natural population. In the present study, its effects appeared to provide little therapeutic advantage to hosts infected following application. Preliminary evidence from other studies, however, indicates that modifications to host thermoregulation could be a significant constraint to the pathogen and may limit its impact under certain conditions.  相似文献   

19.
对椰心叶甲Brontispa longissima(Gestro)成虫血淋巴中酚氧化酶的特性进行分析,并研究绿僵菌(Metarhizium anisopliae)侵染对血浆甲酚氧化酶活性的影响。结果显示,椰心叶甲成虫的血浆及血细胞裂解液中均检测到酚氧化酶活性,且昆布多糖及胰蛋白酶可显著提高其活性。绿僵菌MA-4侵染组在侵染后第1至第5d的血浆酚氧化酶活性高于未侵染组(P<0.05),但是椰心叶甲成虫体内注射10μg昆布多糖后,侵染组的酚氧化酶活性显著低于未侵染组(P<0.05),表明绿僵菌一方面对可激活椰心叶甲的酚氧化酶原激活系统,另一方面又可抑制昆布多糖对椰心叶甲酚氧化酶原激活系统的诱导作用。  相似文献   

20.
The challenges posed by parasites and pathogens evoke behavioral as well as physiological responses. Such behavioral responses are poorly understood for most ectothermic species, including anuran amphibians. We quantified effects of simulated infection (via injection of bacterial lipopolysaccharide [LPS]) on feeding, activity, and thermoregulation of cane toads Bufo marinus within their invasive range in tropical Australia. LPS injection reduced feeding rates in laboratory trials. For toads in outdoor enclosures, LPS injection reduced activity and shifted body temperature profiles. Although previous research has attributed such thermal shifts to behavioral fever (elevated body temperatures may help fight infection), our laboratory studies suggest instead that LPS-injected toads stopped moving. In a thermal gradient, LPS-injected toads thus stayed close to whichever end of the gradient (hot or cold) they were first introduced; the introduction site (rather than behavioral thermoregulation) thus determined body temperature regimes. Shifts in thermal profiles of LPS-injected toads in outdoor enclosures also were a secondary consequence of inactivity. Thus, the primary behavioral effects of an immune response in cane toads are reduced rates of activity and feeding. Thermoregulatory modifications also occur but only as a secondary consequence of inactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号