首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Hairpin loop structure of African swine fever virus DNA.   总被引:17,自引:2,他引:15       下载免费PDF全文
The ends of African swine fever virus genome are formed by a 37 nucleotide-long hairpin loop composed, almost entirely, of incompletely paired A and T residues. The loops at each DNA end were present in two equimolar forms that, when compared in opposite polarities, were inverted and complementary (flip-flop), as in the case of poxvirus DNA. The hairpin loops of African swine fever and vaccinia virus DNAs had no homology, but both DNAs had a 16 nucleotide-long sequence, close to the hairpin loops, with an homology of about 80%. An analysis of African swine fever virus replicating DNA showed head-to-head and tail-to-tail linked molecules that may be replicative intermediates.  相似文献   

3.
Spirochetes of the genus Borrelia have double-stranded linear plasmids with covalently closed ends. The physical nature of the terminal connections was determined for the 16-kb linear plasmid of the B31 strain of the Lyme disease agent Borrelia burgdorferi. Native telomeric fragments representing the left and right ends of this plasmid were isolated and subjected to Maxam-Gilbert sequence analysis. At the plasmid ends the two DNA strands formed an uninterrupted, perfectly palindromic, AT-rich sequence. This Borrelia linear plasmid consisted of a continuous polynucleotide chain that is fully base paired except for short single-stranded hairpin loops at each end. The left and right telomeres of the 16-kb plasmid were identical for 16 of the first 19 nucleotide positions and constituted an inverted terminal repeat with respect to each other. The left telomere of the 49-kb plasmid of strain B31 was identical to the corresponding telomere of the 16-kb plasmid. Different-sized plasmids of other strains of B. burgdorferi also contained sequences homologous to the left end of the 16-kb plasmid. When the borrelia telomeres were compared with telomeric sequences of other linear double-stranded DNA replicons, sequence similarities were noted with poxviruses and particularly with the iridovirus agent of African swine fever. The latter virus and a Borrelia sp. share the same tick vector. These findings suggest that the novel linear plasmids of Borrelia originated through a horizontal genetic transfer across kingdoms.  相似文献   

4.
5.
6.
A method to enrich large size DNA fragments obtained by digestion with rare cutting restriction endonucleases was developed and applied for the isolation of a 150 kb SfiI fragment containing the beta-globin gene cluster. The digested DNA is rendered single stranded at the ends by diffusing a strand specific exonuclease into an agarose plug containing DNA. The plug is melted and solution hybridization is then performed with a bridge RNA containing specific sequences from the end of a desired fragment linked to a common probe sequence. The common probe sequence is annealed to a biotinylated RNA and the resulting tripartite hybrid is retained onto a solid matrix containing avidin and specifically released by ribonuclease action. Enrichments of greater than 350 fold have been achieved consistently. Such directed purification of large DNA fragments without cloning can considerably expedite mapping and gene localization in a complex genome and facilitate the construction of sublibraries from defined regions of the genome.  相似文献   

7.
Peter Palese 《Cell》1977,10(1):1-10
The 5′ terminal sequences of several adenovirus 2 (Ad2) mRNAs, isolated late in infection, are complementary to sequences within the Ad2 genome which are remote from the DNA from which the main coding sequence of each mRNA is transcribed. This has been observed by forming RNA displacement loops (R loops) between Ad2 DNA and unfractionated polysomal RNA from infected cells. The 5′ terminal sequences of mRNAs in R loops, variously located between positions 36 and 92, form complex secondary hybrids with single-stranded DNA from restriction endonuclease fragments containing sequences to the left of position 36 on the Ad2 genome. The structures visualized in the electron microscope show that short sequences coded at map positions 16.6, 19.6 and 26.6 on the R strand are joined to form a leader sequence of 150–200 nucleotides at the 5′ end of many late mRNAs. A late mRNA which maps to the left of position 16.6 shows a different pattern of second site hybridization. It contains sequences from 4.9?6.0 linked directly to those from 9.6?10.9. These findings imply a new mechanism for the biosynthesis of Ad2 mRNA in mammalian cells.  相似文献   

8.
EcoRI digestion of total mouse DNA yields a prominant 1.3 kb fragment amounting to between 1 and 2% of the mouse genome. The majority of the 1.3 kb EcoRI fragments have a single Bg1II site 800 bp from one end. This EcoRI-Bg1II sequence family shows HindIII and HaeIII sequence heterogeneity. We have cloned representatives of the EcoRI-Bg1II gene family in Charon 16A and studied their structure and organization within the genome. The cloned 1.3 kb fragments show the expected restriction enzyme patterns as well as additional heterogeneity. Representatives of the EcoRI-Bg1II sequence family were found to be interspersed throughout the mouse genome as judged by CsCl density gradient centrifugation experiments. Family members were also found to be organized in higher order repeating units. Homologous sequences were also found in other rodent species including rat and Chinese hamster. Cross hybridization between a cloned 1.3 kb mouse fragment and a cloned CHO repeated sequence is of special interest since the latter has been shown to contain sequences homologous to the Human A1uI family by nucleotide sequencing.  相似文献   

9.
We have looked for conserved DNA sequences between four herpes simplex virus type 1 (HSV-1) glycoprotein genes encoding gB, gC, gD, and gE and pseudorabies virus (PRV) DNA, HSV-1 DNA fragments representing these four glycoprotein-coding sequences were hybridized to restriction enzyme fragments of PRV DNA by the Southern blot procedure. Specific hybridization was observed only when HSV-1 gB DNA was used as probe. This region of hybridization was localized to a 5.2-kilobase (kb) region mapping at approximately 0.15 map units on the PRV genome. Northern blot (RNA blot) analysis, with a 1.2-kb probe derived from this segment, revealed a predominant hybridizing RNA species of approximately 3 kb in PRV-infected PK15 cells. DNA sequence analysis of the region corresponding to this RNA revealed a single large open reading frame with significant nucleotide homology with the gB gene of HSV-1 KOS 321. In addition, the beginning of the sequenced PRV region also contained the end of an open reading frame with amino acid homology to HSV-1 ICP 18.5, a protein that may be involved in viral glycoprotein transport. This sequence partially overlaps the PRV gB homolog coding sequence. We have shown that the PRV gene with homology to HSV-1 gB encoded the gII glycoprotein gene by expressing a 765-base-pair segment of the PRV open reading frame in Escherichia coli as a protein fused to beta-galactosidase. Antiserum, raised in rabbits, against this fusion protein immunoprecipitated a specific family of PRV glycoproteins of apparent molecular mass 110, 68, and 55 kilodaltons that have been identified as the gII family of glycoproteins. Analysis of the predicted amino acid sequence indicated that the PRV gII protein shares 50% amino acid homology with the aligned HSV-1 gB protein. All 10 cysteine residues located outside of the signal sequence, as well as 4 of 6 potential N-linked glycosylation sites, were conserved between the two proteins. The primary protein sequence for HSV-1 gB regions known to be involved in the rate of virus entry into the cells and cell-cell fusion, as well as regions known to be associated with monoclonal antibody resistance, were highly homologous with the PRV protein sequence. Furthermore, monospecific antibody made against PRV gII immunoprecipitated HSV-1 gB from infected cells. Taken together, these findings suggest significant conservation of structure and function between the two proteins and may indicate a common evolutionary history.  相似文献   

10.
RNA was extracted from the Burkitt lymphoma-derived cell line Raji and from Burkitt lymphoma tumor biopsies, isotope labeled in vitro by iodination with 125I, and hybridized to electrophoretically separated restriction endonuclease fragments of Epstein-Barr virus DNA on nitrocellulose membranes. The results indicated that only certain parts of the Epstein-Barr virus genome are represented as polyribosomal RNA in Raji cells, with a pronounced dominance of RNA sequences complementary to a 2.0 x 10(6)-dalton segment of Epstein-Barr virus DNA located close to the left end of the viral genome. A map of virus-specific polyribosomal RNA sequences was constructed, which indicated that a minimum of three regions of the Epstein-Barr virus genome are expressed in Raji cells. Total-cell RNA preparations from five Burkitt lymphoma biopsies contained RNA sequences homologous to the same regions of Epstein-Barr virus DNA as polyribosomal RNA from Raji cells, albeit at different relative proportions.  相似文献   

11.
We have identified a DNA sequence in adenovirus type 16 which contains recognition signals for encapsidation of the viral DNA. The sequence acts in cis to direct the encapsidation of DNA from the end of the viral genome where it is located. The sequence is normally contained in the first 390–400 bp of the left end of the genome. The location was determined by analyzing a series of spontaneous mutants of Ad16 which carried reduplications of 200 to >500 bp of left end sequences at the right end of the genome, thus giving rise to enlarged inverted terminal repetitions (ITR). In plaque-purified (PP) Ad16 prototype virus the subgenomic DNA found in incomplete virus particles exclusively represents left end sequences. When the reduplication mutants were analyzed, we found that a reduplication of about 390 bp enabled subgenomic DNA molecules containing the right end to be encapsidated into incomplete particles as well. A reduplication of about 290 bp, however, did not allow subgenomic DNA containing the right end to be encapsidated. The difference in encapsidation described could not be attributed to an asymetric DNA replication in the mutants, since subgenomic DNA originating from both ends of the genome was produced in equal amounts in the infected cells. We conclude that an essential part of the encapsidation sequence must be located between 290 and 390 bp from the left end of the Ad16 genome.  相似文献   

12.
A random sequencing strategy applied to two large SalI restriction fragments (SB and SD) of the African swine fever virus (ASFV) genome revealed that they might encode proteins similar to the two largest RNA polymerase subunits of eukaryotes, poxviruses and Escherichia coli. After further mapping by dot-blot hybridization, two large open reading frames (ORFs) were completely sequenced. The first ORF (NP1450L) encodes a protein of 1450 amino acids with extensive similarity to the largest subunit of RNA polymerases. The second one (EP1242L) codes for a protein of 1242 amino acids similar to the second largest RNA polymerase subunit. Proteins NP1450L and EP1242L are more similar to the corresponding subunits of eukaryotic RNA polymerase II than to those of vaccinia virus, the prototype poxvirus, which shares many functional characteristics with ASFV. ORFs NP1450L and EP1242L are mainly expressed late in ASFV infection, after the onset of DNA replication.  相似文献   

13.
We have investigated the process by which the single-stranded RNA genome of Moloney murine leukemia virus is copied into DNA in vitro. DNA synthesis if initiated near the 5' end of the genome, and the elongation of the growing chain occurs by a jumping mechanism whereby the DNA synthesized at the 5' end of the genome is elongated along the 3' end. Unique DNA fragments synthesized beyond the 5' end of the genome in vitro have, at their 5' and 3' ends, copies of unique sequences from the 5' and 3' ends of the genome. These flank a copy of the 49- to 60-nucleotide terminally redundant sequence. These results indicate that the terminal redundancy serves as a "bridge" to allow a DNA molecule synthesized at the 5' end of the genome to serve as a primer for synthesis from the 3' end.  相似文献   

14.
Maize nuclear DNA sequences capable of promoting the autonomous replication of plasmids in yeast were isolated by ligating Eco RI-digested fragments into yeast vectors unable to replicate autonomously. Three such autonomously replicating sequences (ARS), representing two families of highly repeated sequences within the maize genome, were isolated and characterized. Each repetitive family shows hybridization patterns on a Southern blot characteristic of a dispersed sequence. Unlike most repetitive sequences in maize, both ARS families have a constant copy number and characteristic genomic hybridization pattern in the inbred lines examined. Larger genome clones with sequence homology to the ARS-containing elements were selected from a lambda library of maize genomic DNA. There was typically only one copy of an ARS-homologous sequence on each 12–15 kb genomic fragment.  相似文献   

15.
Transcription map for adenovirus type 12 DNA.   总被引:1,自引:1,他引:0  
The regions of the adenovirus type 12 genome which encode l- and r-strand-specific cytoplasmic RNA were mapped by the following procedure. Radioactive, intact, separated complementary strands of the viral genome were hybridized to saturating amounts of unlabeled late cytoplasmic RNA. The segments of each DNA strand complementary to the RNA were then purified by S1 nuclease digestion of the hybrids. The arrangement of the coding regions of each strand was deduced from the pattern of hybridization of these probes to unlabeled viral DNA fragments produced by digestion with EcoRI, BamHI, and HindIII.. The resulting map is similar, if not identical, to that of adenovirus type 2. The subset of the late cytoplasmic RNA sequences which are expressed at early times were located on the map by hybridizing labeled, early cytoplasmic RNA to both unlabeled DNA fragments and unlabeled complementary strands of specific fragments. Early cytoplasmic RNA hybridized to the r-strand to EcoRI-C and BamHI-B and to the l-strand of BamHI-E. Hybridization to BamHI-C was also observed. The relative rates of accumulation of cytoplasmic RNA complementary to individual restriction fragments was measured at both early and late times. Early during infection, most of the viral RNA appearing in the cytoplasm was derived from the molecular ends of the genome. Later (24 to 26 h postinfection) the majority of the newly labeled cytoplasmic RNA was transcribed from DNA sequences mapping between 25 and 60 map units on the genome.  相似文献   

16.
An unusually long repeated DNA sequence was identified in cloned DNA, three kb 3' to the human beta-globin gene. Other members of this repeated sequence family were isolated from a human genomic DNA library and characterized by Southern blotting techniques, electron microscopy, and solution hybridization. The copy located next to the beta-globin gene was found to be 6.4 +/- 0.2 kb long and continuous over that length. This repeated sequence family comprises about 1% of the human genome and contains 3000-4800 copies of moderate sequence divergence which are interspersed with other less-highly repeated DNA. The 6.4 kb repeated unit does not appear to be composed of any smaller tandemly repeated subunits, nor is it expressed at a high level in bone marrow cell RNA.  相似文献   

17.
Isolation and characterization of six different chicken actin genes.   总被引:14,自引:4,他引:10       下载免费PDF全文
Genes representing six different actin isoforms were isolated from a chicken genomic library. Cloned actin cDNAs as well as tissue-specific mRNAs enriched in different actin species were used as hybridization probes to group individual actin genomic clones by their relative thermal stability. Restriction maps showed that these actin genes were derived from separate and nonoverlapping regions of genomic DNA. Of the six isolated genes, five included sequences from both the 5' and 3' ends of the actin-coding area. Amino acid sequence analysis from both the NH2- and COOH-terminal regions provided for the unequivocal identification of these genes. The striated isoforms were represented by the isolated alpha-skeletal, alpha-cardiac, and alpha-smooth muscle actin genes. The nonmuscle isoforms included the beta-cytoplasmic actin gene and an actin gene fragment which lacked the 5' coding and flanking sequence; presumably, this region of DNA was removed from this gene during construction of the genomic library. Unexpectedly, a third nonmuscle chicken actin gene was found which resembled the amphibian type 5 actin isoform (J. Vandekerckhove, W. W. Franke, and K. Weber, J. Mol. Biol., 152:413-426). This nonmuscle actin type has not been previously detected in warm-blooded vertebrates. We showed that interspersed, repeated DNA sequences closely flanked the alpha-skeletal, alpha-cardiac, beta-, and type 5-like actin genes. The repeated DNA sequences which surround the alpha-skeletal actin-coding regions were not related to repetitious DNA located on the other actin genes. Analysis of genomic DNA blots showed that the chicken actin multigene family was represented by 8 to 10 separate coding loci. The six isolated actin genes corresponded to 7 of 11 genomic EcoRI fragments. Only the alpha-smooth muscle actin gene was shown to be split by an EcoRI site. Thus, in the chicken genome each actin isoform appeared to be encoded by a single gene.  相似文献   

18.
Genetic and physical mapping in the early region of bacteriophage T7 DNA.   总被引:14,自引:0,他引:14  
A detailed physical map of the early region of bacteriophage T7 DNA has been constructed. This map contains: locations for all the cuts made by the restriction endonucleases HindII, HpaII, HaeIII and HaeII, and many of the cuts by HhaI; the approximate end points for each of 61 different deletions; initiation sites and the termination site for RNAs made by Escherichia coli RNA polymerase; an initiation site for RNA made by T7 RNA polymerase; the five primary RNase III cleavage sites of the early region; and the coding sequences for perhaps nine different early proteins. Virtually all of the non-overlapping coding capacity of the five early messenger RNAs is used, except for untranslated stretches of perhaps 30 or so nucleotides at the ends. It seems likely that each of the nine early proteins is made from its own ribosome-binding and initiation site. The mapped restriction cuts provide fixed reference points, and allow DNA fragments containing specific genetic signals to be identified and isolated.The nucleotide sequences around the ends of three different T7 deletions have been determined. Each deletion eliminated a segment of DNA between repeated sequences of seven, eight or ten base-pairs, located 578 to 2100 base-pairs apart in the wild-type sequence. In each case, one copy of the repeated sequence was retained in the deletion mutant. This is consistent with the deletions having arisen by a genetic crossover between the repeated sequences. The approximate frequency of genetic recombination per base-pair has been estimated within two early genes; in both cases, the value was close to 0.01% recombination per base-pair, consistent with the value expected from the total length of the T7 genetic map. Genetic recombination between non-overlapping deletions appears to be severely depressed when the distance between the deletions is closer than about 40 to 50 base-pairs, but recombination between a point mutation and a deletion does not appear to be similarly depressed. This suggests that efficient genetic recombination in T7 may require a base-paired “synapse” of some minimum size between the recombining DNA molecules.  相似文献   

19.
Summary The major families of repeated DNA sequences in the genome of tomato (Lycopersicon esculentum) were isolated from a sheared DNA library. One thousand clones, representing one million base pairs, or 0.15% of the genome, were surveyed for repeated DNA sequences by hybridization to total nuclear DNA. Four major repeat classes were identified and characterized with respect to copy number, chromosomal localization by in situ hybridization, and evolution in the family Solanaceae. The most highly repeated sequence, with approximately 77000 copies, consists of a 162 bp tandemly repeated satellite DNA. This repeat is clustered at or near the telomeres of most chromosomes and also at the centromeres and interstitial sites of a few chromosomes. Another family of tandemly repeated sequences consists of the genes coding for the 45 S ribosomal RNA. The 9.1 kb repeating unit in L. esculentum was estimated to be present in approximately 2300 copies. The single locus, previously mapped using restriction fragment length polymorphisms, was shown by in situ hybridization as a very intense signal at the end of chromosome 2. The third family of repeated sequences was interspersed throughout nearly all chromosomes with an average of 133 kb between elements. The total copy number in the genome is approximately 4200. The fourth class consists of another interspersed repeat showing clustering at or near the centromeres in several chromosomes. This repeat had a copy number of approximately 2100. Sequences homologous to the 45 S ribosomal DNA showed cross-hybridization to DNA from all solanaceous species examined including potato, Datura, Petunia, tobacco and pepper. In contrast, with the exception of one class of interspersed repeats which is present in potato, all other repetitive sequences appear to be limited to the crossing-range of tomato. These results, along with those from a companion paper (Zamir and Tanksley 1988), indicate that tomato possesses few highly repetitive DNA sequences and those that do exist are evolving at a rate higher than most other genomic sequences.  相似文献   

20.
Three major species of viral DNA have been observed in cells infected by retroviruses: a linear, double-stranded copy of a subunit of viral RNA; closed circular DNA; and proviral DNA inserted covalently into the genome of the host cell. We have studied the structures of the unintegrated forms of avian sarcoma virus (ASA) DNA using agarose gel electrophoresis in conjunction with restriction endonucleases and molecular hybridization techniques. The linear duplex DNA is approximately the same length as a subunit of viral RNA (approximately 10 kb) and it bears natural repeats of approximately 300 nucleotides at its termini. The repeats are composed of sequences derived from both the 3' and 5' termini of viral RNA in a manner suggesting that the viral DNA polymerase is transferred twice between templates. Thus the first end begins with a sequence from the 5' terminus of viral RNA and is permuted by about 100 nucleotides with respect to the 3' terminus of viral RNA; the linear DNA terminates with a sequence of about 200 nucleotides derived from the 3' end of viral RNA. We represent this structure, synthesized from right to left, as 3'5'-----3'5'. Two closed circular species of approximately monomeric size have been identified. The less abundant species contain all the sequences identified in linear DNA, including two copies in tandem of the 300 nucleotide 3'5' repeat. The major species lacks about 300 base pairs (bp) mapped to the region of the repeated sequence; thus it presumably contains only a single copy of that sequence. The strategies used to determine these structures involved the assignment of over 20 cleavage sites for restriction endonucleases on the physical maps of ASV DNA. Several strains of ASV were compared with respect to these sites, and the sites have been located in relation to deletions frequently observed in the env and src genes of ASV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号