首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
The IL-1 receptor/Toll-like receptor superfamily comprises a diverse family of cell surface receptors defined by a characteristic conserved sequence in their cytosolic regions, termed the Toll/IL-1 receptor domain, which function in inflammation and host defence against microbial pathogens. Members include receptors for the proinflammatory cytokines IL-1 and IL-18 and Toll-like receptors 2 and 4, which are involved in host responses to Gram-positive and Gram-negative bacteria, respectively. Signalling pathways activated by these receptors are conserved and the superfamily represents a pan-genomic system involved in the host response to infection and injury.  相似文献   

2.
The Toll/interleukin-1 receptor (TIR) domain is conserved in the intracellular regions of Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1Rs) as well as in several cytoplasmic adapter molecules. This domain has crucial roles in signal transduction by these receptors for host immune response. Here we report the crystal structure at 2.3-A resolution of the TIR domain of human IL-1RAPL, the first structure of a TIR domain of the IL-1R superfamily. There are large structural differences between this TIR domain and that of TLR1 and TLR2. Helix alphaD in IL-1RAPL is almost perpendicular to its equivalent in TLR1 or TLR2. The BB loop contains a hydrogen bond unique to IL-1RAPL between Thr residues at the 8th and 10th positions. The structural and sequence diversity among these domains may be important for specificity in the signal transduction by these receptors. A dimer of the TIR domain of IL-1RAPL is observed in the crystal, although this domain is monomeric in solution. Residues in the dimer interface are mostly unique to IL-1RAPL, which is consistent with the distinct functional roles of this receptor. Our functional studies show IL-1RAPL can activate JNK but not the ERK or the p38 MAP kinases, whereas its close homolog, TIGIRR, cannot activate JNK. Deletion mutagenesis studies show that the activation of JNK by IL-1RAPL does not depend on the integrity of its TIR domain, suggesting a distinct mechanism of signaling through this receptor.  相似文献   

3.
Periodontitis is induced by periodontal dysbiosis characterized by the predominance of anaerobic species. TLRs constitute the classical pathway for cell activation by infection. Interestingly, the Toll/IL-1 receptor homology domain adapters initiate signaling events, leading to the activation of the expression of the genes involved in the host immune response. The aim of this study was to evaluate the effects of Porphyromonas gingivalis on the expression and protein-protein interactions among five TIR adapters (MAL, MyD88, TRIF, TRAM and SARM) in gingival epithelial cells and endothelial cells. It was observed that P. gingivalis is able to modulate the signaling cascades activated through its recognition by TLR4/2 in gingival epithelial cells and endothelial cells. Indeed, MAL-MyD88 protein-protein interactions associated with TLR4 was the main pathway activated by P. gingivalis infection. When transient siRNA inhibition was performed, cell viability, inflammation, and cell death induced by infection decreased and such deleterious effects were almost absent when MAL or TRAM were targeted. This study emphasizes the role of such TIR adapter proteins in P. gingivalis elicited inflammation and the precise evaluation of TIR adapter protein interactions may pave the way for future therapeutics in both periodontitis and systemic disease with a P. gingivalis involvement, such as atherothrombosis.  相似文献   

4.
5.
Toll-like receptor signaling requires interactions of the Toll/IL-1 receptor (TIR) domains of the receptor and adapter proteins. Using the mammalian protein-protein interaction trap strategy, homology modeling, and site-directed mutagenesis, we identify the interaction surfaces in the TLR4 TIR domain for the TLR4-TLR4, TLR4-MyD88 adapter-like (MAL), and TLR4-TRIF-related adapter molecule (TRAM) interaction. Two binding sites are equally important for TLR4 dimerization and adapter recruitment. In a model based on the crystal structure of the dimeric TLR10 TIR domain, the first binding site mediates TLR4-TLR4 TIR-TIR interaction. Upon dimerization, two identical second binding sites of the TLR4 TIR domain are juxtaposed and form an extended binding platform for both MAL and TRAM. In our mammalian protein-protein interaction trap assay, MAL and TRAM compete for binding to this platform. Our data suggest that adapter binding can stabilize the TLR4 TIR dimerization.  相似文献   

6.
The Toll/interleukin 1 (IL-1) receptor family plays an important role in both innate and adaptive immunity. These receptors are characterized by a C-terminal homology motif called the Toll/IL-1 receptor (TIR) domain. A principal function of the TIR domain is mediating homotypic protein-protein interactions in the signal transduction pathway. To suggest interaction sites of TIR domains in the IL-1 receptor complex, we modeled the putative three-dimensional structure of the TIR domain within the co-receptor chain, IL-1 receptor accessory protein. The model was based on homology with the crystal structures of human TLR1 and TLR2. The final structure of the IL-1 receptor accessory protein TIR domain suggests the conserved regions box 1 and 2, including Pro-446, as well as box 3 within the C-terminal alpha-helix as possible protein-protein interaction sites due to their exposure and their electrostatic potential. Pro-446, corresponding to the Pro/His mutation in dominant negative TLR4, is located in the third loop at the outmost edge of the TIR domain and does not play any structural role. Inhibition of IL-1 responsiveness seen after substitution of Pro-446 by charged amino acids is due to the loss of an interaction site for other TIR domains. Amino acids 527-534 as part of the loop close to the conserved box 3 are critical for recruitment of myeloid differentiation factor 88 and to a lesser extent for IL-1 responsiveness. Modeling suggests that native folding of the TIR domain may be approached by the responsive deletion mutants delta528-534 and delta527-533, whereas the C-terminal beta-strand and/or alpha-helix is displaced in the nonresponsive mutant delta527-534.  相似文献   

7.
8.
Pathogenic microbes have evolved sophisticated molecular strategies to subvert host defenses. Here we show that virulent bacteria interfere directly with Toll-like receptor (TLR) function by secreting inhibitory homologs of the Toll/interleukin-1 receptor (TIR) domain. Genes encoding TIR domain containing-proteins (Tcps) were identified in Escherichia coli CFT073 (TcpC) and Brucella melitensis (TcpB). We found that TcpC is common in the most virulent uropathogenic E. coli strains and promotes bacterial survival and kidney pathology in vivo. In silico analysis predicted significant tertiary structure homology to the TIR domain of human TLR1, and we show that the Tcps impede TLR signaling through the myeloid differentiation factor 88 (MyD88) adaptor protein, owing to direct binding of Tcps to MyD88. Tcps represent a new class of virulence factors that act by inhibiting TLR- and MyD88-specific signaling, thus suppressing innate immunity and increasing virulence.  相似文献   

9.
10.
The Toll/interleukin-1 (IL-1) receptor (TIR) family comprises two groups of transmembrane proteins, which share functional and structural properties. The members of the IL-1 receptor (IL-1R) subfamily are characterized by three extracellular immunoglobulin (Ig)-like domains. They form heterodimeric signaling receptor complexes consisting of receptor and accessory proteins. The members of the Toll-like receptor (TLR) subfamily recognize alarm signals that can be derived either from pathogens or the host itself. TLRs possess leucine-rich repeats in their extracellular part. TLRs can form dimeric receptor complexes consisting of two different TLRs or homodimers in the case of TLR4. The TLR4 receptor complex requires supportive molecules for optimal response to its ligand lipopolysaccharide (LPS). A hallmark of the TIR family is the cytoplasmic TIR domain that is indispensable for signal transduction. The TIR domain serves as a scaffold for a series of protein-protein interactions which result in the activation of a unique signaling module consisting of MyD88, interleukin-1 receptor associated kinase (IRAK) family members and Tollip, which is used exclusively by TIR family members. Subsequently, several central signaling pathways are activated in parallel, the activation of NFkappaB being the most prominent event of the inflammatory response. Recent developments indicate that in addition to the common signaling module MyD88/IRAK/Tollip, other molecules can modulate signaling by TLRs, especially of TLR4, resulting in differential biological answers to distinct pathogenic structures. Subtle differences in TLR signaling pathways are now becoming apparent, which reveal how the innate immune system decides at a very early stage the direction in which the adaptive immune response will develop. The creation of pathogen-specific mediator environments by dendritic cells defines whether a cellular or humoral response will be activated in response to the pathogen.  相似文献   

11.
Toll and interleukin-1 receptor (TIR) domains were originally described from comparisons of proteins found in mammals and Drosophila. They are now known to occur in several organisms, with the most TIR proteins being found in ARABIDOPSIS: our analysis of the sequenced Arabidopsis genome has revealed the presence of at least 135 proteins containing TIR domains. Several novel types of TIR-domain-containing proteins are found in Arabidopsis that are not found in other genomes. Here, we discuss the roles of TIR-domain-containing proteins in pathogen resistance and as candidate signaling modules.  相似文献   

12.
HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway   总被引:31,自引:0,他引:31  
Human heat-shock protein (HSP)70 activates innate immune cells and hence requires no additional adjuvants to render bound peptides immunogenic. Here we tested the assumption that endogenous HSP70 activates the Toll/IL-1 receptor signal pathway similar to HSP60 and pathogen-derived molecular patterns. We show that HSP70 induces interleukin-12 (IL-12) and endothelial cell-leukocyte adhesion molecule-1 (ELAM-1) promoters in macrophages and that this is controlled by MyD88 and TRAF6. Furthermore, HSP70 causes MyD88 relocalization and MyD88-deficient dendritic cells do not respond to HSP70 with proinflammatory cytokine production. Using the system of genetic complementation with Toll-like receptors (TLR) we found that TLR2 and TLR4 confer responsiveness to HSP70 in 293T fibroblasts. The expanding list of endogenous ligands able to activate the ancient Toll/IL-1 receptor signal pathway is in line with the "danger hypothesis" proposing that the innate immune system senses danger signals even if they originate from self.  相似文献   

13.
Agonist-induced dimerization of TLR4 Toll/IL-1R (TIR) domains initiates intracellular signaling. Therefore, identification of the TLR4-TIR dimerization interface is one key to the rational design of therapeutics that block TLR4 signaling. A library of cell-permeating decoy peptides, each of which represents a nonfragmented patch of the TLR4 TIR surface, was designed such that the peptides entirely encompass the TLR4 TIR surface. Each peptide was synthesized in tandem with a cell-permeating Antennapedia homeodomain sequence and tested for the ability to inhibit early cytokine mRNA expression and MAPK activation in LPS-stimulated primary murine macrophages. Five peptides--4R1, 4R3, 4BB, 4R9, and 4αE--potently inhibited all manifestations of TLR4, but not TLR2 signaling. When tested for their ability to bind directly to TLR4 TIR by F?rster resonance energy transfer using time-resolved fluorescence spectroscopy, Bodipy-TMR-X-labeled 4R1, 4BB, and 4αE quenched fluorescence of TLR4-Cerulean expressed in HeLa or HEK293T cells, whereas 4R3 was partially active, and 4R9 was least active. These findings suggest that the area between the BB loop of TLR4 and its fifth helical region mediates TLR4 TIR dimerization. Moreover, our data provide direct evidence for the utility of the decoy peptide approach, in which peptides representing various surface-exposed segments of a protein are initially probed for the ability to inhibit protein function, and then their specific targets are identified by F?rster resonance energy transfer to define recognition sites in signaling proteins that may be targeted therapeutically to disrupt functional transient protein interactions.  相似文献   

14.
Toxoplasma gondii infection can lead to life-threatening systemic disease in the immunocompromised individual and in the developing fetus. Despite intensive investigation in animal models of toxoplasmosis, the processes leading to systemic dissemination remain poorly characterized. In the present study, in vivo bioluminescence imaging (BLI) was applied to the Toxoplasma mouse model to study the dynamics of infection in real time. Photon emission analyses revealed rapid dissemination of parasites in the organism and dissemination to immunoprivileged organs (brain, eyes and testes). Spatio-temporal analysis by BLI in individual mice showed that the virulent RH strain (type I) and the non-virulent ME49/PTG strain (type II) disseminate widely, but the virulent RH strain (type I) exhibits a more dramatic expansion of parasite biomass. Assessment by BLI of the Toll/interleukin-1 receptor (TIR) signalling pathway in host resistance to T. gondii revealed that signal transduction to the adaptor protein MyD88 is probably mediated by Toll-like receptor(s) rather than by IL-1R or IL-18R signalling. However, TLR1(-/-), TLR2(-/-), TLR4(-/-), TLR6(-/-) and TLR9(-/-) animals did not exhibit increased susceptibility to infection. These results suggest that intricate mechanisms regulate TIR-mediated responses during Toxoplasma infection.  相似文献   

15.
Tumor necrosis factor receptor 1 (TNFR1) is a transmembrane receptor that plays a key role in the regulation of the inflammatory pathway. While inhibition of TNFR1 has been the focus of many studies for the treatment of autoimmune diseases such as rheumatoid arthritis, activation of the receptor is important for the treatment of immunodeficiency diseases such as HIV and neurodegenerative diseases such as Alzheimer's disease where a boost in immune signaling is required. In addition, activation of other TNF receptors such as death receptor 5 or FAS receptor is important for cancer therapy. Here, we used a previously established TNFR1 fluorescence resonance energy transfer (FRET) biosensor together with a fluorescence lifetime technology as a high‐throughput screening platform to identify a novel small molecule that activates TNFR1 by increasing inter‐monomeric spacing in a ligand‐independent manner. This shows that the conformational rearrangement of pre‐ligand assembled receptor dimers can determine the activity of the receptor. By probing the interaction between the receptor and its downstream signaling molecule (TRADD) our findings support a new model of TNFR1 activation in which varying conformational states of the receptor act as a molecular switch in determining receptor function.  相似文献   

16.
Toll/Interleukin-1 receptor (TIR) domains are integral to immune systems across all kingdoms. In plants, TIRs are present in nucleotide-binding leucine-rich repeat (NLR) immune receptors, NLR-like, and TIR-only proteins. Although TIR-NLR and TIR signaling in plants require the ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) protein family, TIRs persist in species that have no EDS1 members. To assess whether particular TIR groups evolved with EDS1, we searched for TIR-EDS1 co-occurrence patterns. Using a large-scale phylogenetic analysis of TIR domains from 39 algal and land plant species, we identified 4 TIR families that are shared by several plant orders. One group occurred in TIR-NLRs of eudicots and another in TIR-NLRs across eudicots and magnoliids. Two further groups were more widespread. A conserved TIR-only group co-occurred with EDS1 and members of this group elicit EDS1-dependent cell death. In contrast, a maize (Zea mays) representative of TIR proteins with tetratricopeptide repeats was also present in species without EDS1 and induced EDS1-independent cell death. Our data provide a phylogeny-based plant TIR classification and identify TIRs that appear to have evolved with and are dependent on EDS1, while others have EDS1-independent activity.

Plant Toll/Interleukin-1 receptor domain proteins can use different mechanisms to induce cell death.  相似文献   

17.
Phot proteins (phototropins and homologs) are blue-light photoreceptors that control mechanical processes like phototropism, chloroplast relocation, or guard-cell opening in plants. Phot receptors consist of two flavin mononucleotide (FMN)-binding light, oxygen, or voltage (LOV) domains and a C-terminal serine/threonine kinase domain. We determined crystal structures of the LOV1 domain of Phot1 from the green alga Chlamydomonas reinhardtii in the dark and illuminated state to 1.9 A and 2.8 A resolution, respectively. The structure resembles that of LOV2 from Adiantum (Crosson, S. and K. Moffat. 2001. PROC: Natl. Acad. Sci. USA. 98:2995-3000). In the resting dark state of LOV1, the reactive Cys-57 is present in two conformations. Blue-light absorption causes formation of a proposed active signaling state that is characterized by a covalent bond between the flavin C4a and the thiol of Cys-57. There are differences around the FMN chromophore but no large overall conformational changes. Quantum chemical calculations based on the crystal structures revealed the electronic distribution in the active site during the photocycle. The results suggest trajectories for electrons, protons, and the active site cysteine and offer an interpretation of the reaction mechanism.  相似文献   

18.
19.
The Toll/interleukin-1 receptor (TIR) family members play important roles in host defense. These receptors signal through TIR domain-containing adapter proteins. In this report, we identified a novel TIR domain-containing adapter protein designated as TIRP. Co-immunoprecipitation experiments suggest that TIRP is associated with IL-1 receptors. TIRP also interacts with kinase-inactive mutants of IRAK and IRAK-4, IRAK-2, IRAK-M, and TRAF6. Overexpression of TIRP activates NF-kappaB and potentiates IL-1 receptor-mediated NF-kappaB activation. A dominant negative mutant of TIRP inhibits IL-1- but not tumor necrosis factor-triggered NF-kappaB activation. Moreover, TIRP-mediated NF-kappaB activation is inhibited by dominant negative mutants of IRAK, IRAK-2, TRAF6, and IKKbeta. Our findings suggest that TIRP is involved in IL-1-triggered NF-kappaB activation and functions upstream of IRAK, IRAK-2, TRAF6, and IKKbeta  相似文献   

20.
Staphylococcus aureus is a common aetiological agent of bacterial brain abscesses. We have previously established that a considerable IL-1 (interleukin-1) response is elicited immediately following S. aureus infection, where the cytokine can exert pleiotropic effects on glial activation and blood–brain barrier permeability. To assess the combined actions of IL-1α and IL-1β during CNS (central nervous system) infection, host defence responses were evaluated in IL-1RI (IL-1 receptor type I) KO (knockout) animals. IL-1RI KO mice were exquisitely sensitive to intracerebral S. aureus infection, as demonstrated by enhanced mortality rates and bacterial burdens within the first 24 h following pathogen exposure compared with WT (wild-type) animals. Loss of IL-1RI signalling also dampened the expression of select cytokines and chemokines, concomitant with significant reductions in neutrophil and macrophage infiltrates into the brain. In addition, the opening of astrocyte hemichannels during acute infection was shown to be dependent on IL-1RI activity. Collectively, these results demonstrate that IL-1RI signalling plays a pivotal role in the genesis of immune responses during the acute stage of brain abscess development through S. aureus containment, inflammatory mediator production, peripheral immune cell recruitment, and regulation of astrocyte hemichannel activity. Taken in the context of previous studies with MyD88 (myeloid differentiation primary response gene 88) and TLR2 (Toll-like receptor 2) KO animals, the current report advances our understanding of MyD88-dependent cascades and implicates IL-1RI signalling as a major antimicrobial effector pathway during acute brain-abscess formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号