首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Friesian heifers (n = 10) were assigned randomly to receive an intravenous injection of estradiol-17β (E2; 3 mg) or saline: ethanol vehicle solution (6 ml; 1:1) on day 13 of the estrous cycle. Blood was collected collected from the jugular vein by venipuncture into heparinized vacutainer tubes at 30 minute intervals for 2 hours (h) preinjection, 10.5 h postinjection and then at 3 h intervals until estrus. Repeated hormone measurements of 15-keto-13,14-dihydro-PGF (PGFM) and progesterone (P4) were evaluated by split-plot analysis of variance. Mean concentration of PGFM for the 12.5 h acute sampling phase was 164.1 ± .14 pg/ml. A treatment by time interaction was detected (P < .01). After treatment with E2, PGFM concentrations began to increase at approximately 3.5 h, reached a mean peak of 330.4 ± 44.5 pg/ml (n = 5) at 5.5 ± .3 h, and returned to basal concentration by 9.0 ± .6 h. Vehicle treatment did not alter concentrations of PGFM. Injections of E2 on day 13 of the estrous cycle caused luteolysis (P4 concentration < 1 ng/ml) to occur earlier following injection (96.9 ± 10.6 h < 153.6 ±17.7 h; P, 0.05) than did the vehicle control treatment. During the chronic sampling phase of 3 h intervals, 39 of 606 samples (6.4%) were classified as PGFM spikes (323.0 ± 50.0 pg/ml); 21 (53%) of the spikes occurred at a mean interval of 18.9 ± 3.86 h before the time of completed luteolysis. Exogenous E2 induced an acute increase in PGFM that may be indicative of uterine PGF production. Peaks of PGFM in plasma were temporally associated with luteolysis on a within cow basis.  相似文献   

2.
Two experiments were conducted to examine the effect of estradiol-17beta (E(2)-17beta) on content of immunoreactive prostagladin F(2)alpha (PGF, ng) and total protein (TUP, mg) in uterine flushings, as well as concentrations of 13, 14-dihydro-15-keto-PGF(2)alpha (PGFM) in plasma (Pg/ml). In experiment 1, Holstein heifers were utilized in a single reversal trial in which either E(2)-17beta (3 mg in 2 ml saline/ethanol 50:50; n=5) or vehicle alone (n=6) were given intravenously on day 14 or 15 of the estrous cycle (Period 1) following an induced estrus (day of estrus = day 0). Treatment (Trt) groups were reversed in Period 2 (Day 14 or 15 of the second estrous cycle). Jugular venous plasma was obtained before treatment (Oh), and at 5, 6, and 9h posttreatment (PT). Uterine flushings were collected nonsurgically in vivo , per cervix, via Foley catheter at 6h PT (20 ml of .9% saline per uterine horn). E(2)-17beta did not significantly alter (E(2)-17beta vs vehicle; x(-) +/- S.E.M.) PGF (1674 +/- .11 +/- 338.39 vs 1889.91 +/- 400.24 ng; P> .10) or TUP (33.25 +/- 2.57 vs 39.16 +/- 3.04 mg; P > .10). However, E(2)-17beta increased (P < .05) plasma PGFM (E(2)-17beta vs vehicle) after treatment (0h, 113.2 vs 163.8; 5h, 312.5 vs 203.9; 6h, 324.5 vs 198.0; 9h, 323.2 vs 246.8, pg/ml). In experiment 2, crossbred beef cattle received comparable treatments of either E(2)-17beta (n=5) or vehicle (n=5) on day 14 or 15 postestrus. Jugular venous plasma was obtained at 0h PT, and at 6h PT. Uterine flushings (1.9% saline, 20 ml per uterine horn) and peripheral plasma were collected at slaughter. Estradiol-17beta increased PGF (30.07 +/- 5.94 vs 8.46 +/- 2.01 ng; P> <.05) in uterine flushings as well as PGFM in plasma (E(2)-17beta : 55.82 +/- 19.13 pg/ml, at 0h and 89.31 +/- 14.02 pg/ml, at 6h, vs saline: 103.46 +/- 50.73 pg/ml, at 0h and 17.78 +/- 14.22, at 6h). Estradiol-17beta stimulated uterine production and release of PGF and protein as measured in flushings (experiment 2) as well as plasma PGFM responses (experiments 1 and 2). Uterine and/or cervical stimulation of experiment 1 may have masked uterine response to E(2)-17beta.  相似文献   

3.
Following a 40-day acclimatization period, 12 cyclic beef heifers entered a 95- to 101-day test period. Prior to fenprostalene treatment, all animals were studied through two normal estrous cycles. Plasma samples were obtained daily from all animals during the course of the study and were assayed for estradiol-17beta and progesterone. Group 1 heifers (n=6) were then treated with fenprostalene at mid-cycle during two subsequent cycles. This treatment was accomplished by treating the animals 11 days after the first clinically observed signs of estrus following Study Day 21 and treating them again 11 days later. Each treatment consisted of a subcutaneous injection of 1.0 mg fenprostalene. The animals were studied through two or three estrous cycles following the second injection. The Group 2 animals (n=6) were maintained as untreated controls through a corresponding period. Fenprostalene induced estrus in five of six treated heifers within 5 d following the first injection and in five of six heifers within 3 d following the second injection. The mean time to estrus was 3.4 d (+/- 1.1 d SD) following the first injection and 2.2 d (+/-0.8 days SD) following the second injection. No significant differences were found in the plasma levels of estradiol-17beta and progesterone when comparing fenprostalene-induced cycles to those that occurred naturally. The fenprostalene injection reset the estrous cycle without changing the nature of the cycle. The time of clinically detected estrus usually coincided with a sharp peak in estradiol-17beta concentration.  相似文献   

4.
Treatment with PGF2alpha plus estradiol-17beta aborts 90-day pregnant ewes, whereas PGF2alpha or estradiol-17beta alone does not abort ewes. The objective of this experiment was to evaluate whether tamoxifen, an estrogen receptor antagonist, estradiol-17beta, prostaglandin F2alpha (PGF2alpha), indomethacin, or some of their interactions affected ovine uterine/placental secretion of PGF2alpha, estradiol-17beta or prostaglandins E (PGE), because a single treatment with PGF2alpha and estradiol-17beta given every 6 h aborts 90-day pregnant ewes. Concentrations of PGF2alpha in uterine venous blood were increased (P < or = 0.05) by estradiol-17beta, PGF2alpha + estradiol-17beta, and PGF2alpha + tamoxifen, and decreased (P < or = 0.05) by indomethacin or PGF2alpha + indomethacin at 72 h when compared to the 0 h samples. Concentrations of PGE in uterine venous blood were decreased (P < or = 0.05) by indomethacin and PGF2alpha + indomethacin and increased (P < or = 0.05) by PGF2alpha + estradiol-17beta at 72 h when compared to the 0 h samples. Concentrations of PGF2alpha in inferior vena cava blood at 6 h were increased (P < or = 0.05) by PGF2alpha either alone or in combination with indomethacin, tamoxifen, or estradiol-17beta, which is due to the PGF2alpha injected. Concentrations of PGF2alpha in inferior vena cava blood in PGF2alpha + estradiol-17beta-treated 88- to 90-day pregnant ewes increased (P < or = 0.05) linearly over the 72-h sampling period and averaged 4.0 + 0.4 ng/ml. Concentrations of PGF2alpha in inferior vena cava blood of control, PGF2alpha, tamoxifen, PGF2alpha + indomethacin, PGF2alpha + tamoxifen, and estradiol-17beta-treated ewes did not differ (P > or = 0.05) and averaged 0.4 + 0.04 ng/ml. Profiles of PGE in inferior vena cava blood of 88- to 90-day pregnant ewes treated with vehicle, PGF2alpha, estradiol-17beta, tamoxifen, tamoxifen + PGF2alpha, or estradiol-17beta + PGF2alpha did not differ (P > or = 0.05). Concentrations of PGE in inferior vena cava blood of 88- to 90-day pregnant ewes treated with indomethacin or PGF2alpha + indomethacin were lower (P < or = 0.05) than in control ewes. Concentrations of estradiol-17beta in jugular venous plasma of PGF2alpha + estradiol-17beta-treated 88- to 90-day pregnant ewes increased linearly and differed (P < or = 0.05) from controls. Profiles of estradiol-17beta in jugular venous plasma of PGF2alpha, indomethacin, tamoxifen, and PGF2alpha + tamoxifen and PGF2alpha + indomethacin, estradiol-17beta, and controls did not differ (P > or = 0.05). It is concluded that treatment with a single injection of PGF2alpha and estradiol-17beta given every 6 h causes a linear increase in PGF2alpha and estradiol-17beta.  相似文献   

5.
Enzymeimmunoassays (EIA) can be viable alternatives to radioimmunoassays (RIA). Indeed, from an environmental perspective, EIA are preferable to RIA. Therefore, the purpose of this project was to develop a quantitative EIA for 13,14-dihydro-15-keto-prostaglandin F2 alpha (PGFM) in bovine plasma. Acetylcholine esterase bound covalently to PGFM, rabbit anti-PGFM, mouse monoclonal anti-rabbit IgG, and PGFM were the principle reagents used for the EIA. Validation experiments indicated that: 1) PGFM standard curves, with doses ranging from 391 to 200,000 fg per microtiter well, were linear; 2) assay sensitivity averaged 391 fg per well; 3) for satisfactory results, PGFM had to be extracted from plasma; 4) content of PGFM in ethyl ether extracts of aliquots from serial dilutions of whole plasma with unknown amounts of PGFM and charcoal-stripped plasma supplemented with known amounts of PGFM did not deviate from parallelism with PGFM standard curves in buffer; 5) correlation between EIA and RIA measurements of PGFM in the same plasma samples was .95; 6) the regression of EIA data on RIA data was linear (Y = .93 x + 83.9; r2 = .91); 7) intra- and interassay coefficients of variation were 3.3 and 10.6%, respectively. The EIA developed in this project is a valid and reliable method for quantitating PGFM in extracts of bovine plasma.  相似文献   

6.
Luteal blood flow was studied in heifers by transrectal color-Doppler ultrasound. Data were normalized to the decrease in plasma progesterone to <1 ng/ml (Day 0 or Hour 0). Blood flow in the corpus luteum (CL) was estimated by the percentage of CL area with color flow signals. Systemic prostaglandin F2alpha (PGF) treatment (25 mg; n=4) resulted in a transient increase in CL blood flow during the initial portion of the induced decrease in progesterone. Intrauterine treatment (1 or 2 mg) was done to preclude hypothetical secondary effects of systemic treatment. Heifers were grouped into responders (luteolysis; n=3) and nonresponders (n=5). Blood flow increased transiently in both groups; induction of increased blood flow did not assure the occurrence of luteolysis. A transient increase in CL blood flow was not detected in association with spontaneous luteolysis when examinations were done every 12 h (n=6) or 24 h (n=10). The role of PGF pulses was studied by examinations every hour during a 12-h window each day during expected spontaneous luteolysis. At least one pulse of 13,14-dihydro-15-keto-PGF2alpha (PGFM) was identified in each of six heifers during the luteolytic period (Hours -48 to -1). Blood flow increased (P<0.02) during the 3-h ascending portion of the PGFM pulse, remained elevated for 2 h after the PGFM peak, and then decreased (P<0.03) to baseline. Results supported the hypothesis that CL blood flow increased and decreased with individual PGFM pulses during spontaneous luteolysis.  相似文献   

7.
Normal cyclic dairy cattle (n = 7) underwent a midventral laparotomy on day 17 of the estrous cycle and were fitted, ipsilateral to the CL, with: an electromagnetic flow transducer around the uterine artery (UA; n = 5); catheters within the ovarian vein (OV; n = 7) via a uterine branch of the ovarian vein, uterine branch of the ovarian artery (UBOA; n = 5) and facial artery (FA; n = 7). On day 18, blood samples were collected at 30 min intervals for 1 h prior to injection of estradiol-17 beta (E2; 3 mg) and 12 h post-E2. Uterine blood flow (UBF) was monitored continuously and plasma samples analyzed for PGF2 alpha and PGFM. Exact locations of catheters in reproductive tracts were verified post-slaughter. Data were analyzed by method of least squares analysis of variance. Uterine blood flow (ml/min) increased above pre-E2 flow rates within 30 min post-E2 injection, peaked between 2.5 to 3.5 h and declined between 4 to 8.5 h. A small secondary rise in UBF occurred between 9 and 12 h. Regression analysis for concentrations (pg/ml) of PGF2 alpha and PGFM in the OV (i.e., [OV]-[FA]) demonstrate a similar response as PGFM concentration in the FA in that all increased at approximately 3 h, peaked between 5 and 7 h and returned to near baseline levels by 9 to 10 h post-E2. Facial artery PGFM concentrations were positively correlated with uterine production of PGF2 alpha (r = .66) and PGFM (r = .30), whereas FA PGF2 alpha concentrations were not. In three of five cows, a difference in PGF2 alpha was detected between UBOA and FA (UBOA greater than FA); supportive of a local countercurrent exchange between the uterine venous drainage and the ovarian artery.  相似文献   

8.
Guinea-pigs treated by gavage with a total dose of 100 mg polychlorinated biphenyls (PCB: Clophen A50) during Days 17-61 of gestation had higher plasma concentrations of 15-keto-13,14-dihydroprostaglandin F-2 alpha, oestrone sulphate and oestradiol-17 beta during the later stages of gestation than did vehicle-treated guinea-pigs. No changes were observed in plasma progesterone concentrations. Our results provide no support for the hypothesis that an enzyme-induced decrease in progesterone concentrations is the main cause of the fetal death observed in PCB-treated guinea-pigs.  相似文献   

9.
The objective of this study was to determine if the primary circulating metabolite of PGF2alpha, 13,14-dihydro-15-keto-PGF2alpha (PGFM), is biologically active and would induce luteolysis in nonpregnant mares. On Day 9 after ovulation, mares (n = 7/group) were randomly assigned to receive: 1) saline control, 2) 10 mg PGF2alpha or 3) 10 mg PGFM in 5 mL 0.9% sterile saline i.m. On Days 0 through 16, blood was collected for progesterone analysis. In addition, blood was collected immediately prior to treatment, hourly for 6 h, and then at 12 and 24 h after treatment for progesterone and PGFM analysis; PGFM was measured to verify that equivalent amounts of hormone were administered to PGF2alpha- and PGFM-treated mares. Mares were considered to have undergone luteolysis if progesterone decreased to < or = 1.0 ng/mL within 24 h following treatment. Luteolysis was induced in 0/7 control, 7/7 PGF2alpha-treated, and 0/7 PGFM-treated mares. There was no difference (P>0.1) in the occurrence of luteolysis in control and PGFM-treated mares. More (P<0.001) PGF2alpha-treated mares underwent luteolysis than control or PGFM-treated mares. There was no difference (P>0.1) in progesterone concentrations between control and PGFM-treated mares on Days 10 through 16. Progesterone concentrations were lower (P<0.01) on Days 10 through 14 in PGF2alpha-treated compared with control and PGFM-treated mares. There was no difference (P>0.05) in PGFM concentrations between PGF2alpha- and PGFM-treated mares; PGFM concentrations in both groups were higher (P<0.001) than in control mares. These results do not support the hypothesis that PGFM is biologically active in the mare, since there was no difference in corpora luteal function between PGFM-treated and control mares.  相似文献   

10.
Half-life (t1/2), volume of distribution (Vd) and total body clearance (TBC) of 13,14-dihydro-15-keto PGF2 alpha (PGFM) were measured in order to determine optimal sampling frequency for accurate measurement of PGFM. Three yearling Holstein bulls (349.2 +/- 6.7 kg) and 3 yearling Holstein steers (346.7 +/- 7.0 kg) were utilized in a 3 X 3 Latin square design. Animals were given 0, 25 or 50 micrograms PGF2 alpha I.V.; blood samples collected every 2 min and plasma PGFM determined. The t1/2, Vd and TBC of PGFM were 2.3 +/- .2 min, 43.3 +/- 3.3 liters and 13.7 +/- 1.9 liters/min, respectively and were similar for 25 and 50 micrograms doses. To determine the relationship between endogenous PGFM and LH secretion in bulls, blood samples were collected every 2 min for 12 h in 4 yearling Angus bulls (489.1 +/- 11.6 kg). All animals elicited at least one LH surge and PGFM concentrations were measured in samples coincident with the LH surge. Mean plasma PGFM concentrations were greater prior to the LH surge than during the LH surge. In addition, mean plasma PGFM concentration and frequency of PGFM peaks appeared to increase prior to the LH surge suggesting an association between PGFM and pulsatile LH secretion in the bull.  相似文献   

11.
In the present study, the kinetics of the prostaglandin F2alpha (PGF2alpha)-metabolite 15-keto-13,14-dihydro-PGF2alpha after a single intramuscular application of various doses of the natural PGF2alpha dinoprost at Day 7 of the cycle in the mare were investigated. Effects of low doses on estrous cycle length and life span of corpus luteum were examined, because release of PGF2alpha is still under discussion to have detrimental influence on success rates of transcervical transfer of equine embryos. Eight Shetland pony mares were each randomly assigned to each of four treatments: (a) 0.8 mg/100 kg (group T1), (b) 0.4 mg/100 kg (group T2), (c) 0.2 mg/100 kg BM dinoprost i.m. (group T3), and (d) 1 ml physiological saline i.m. (group CO). Treatments were administered as single doses on Day 7 of the estrous cycle. Administration of dinoprost caused dose-dependent rises of plasma concentrations of PGF2alpha-metabolite, although values of individual mares showed great variation within groups. Prostaglandin treatments resulted in a distinct decrease of plasma progesterone concentrations to values between 1.6 and 7.9 ng/ml within 24 h. Treatment groups had significantly lower progesterone area under the curve (AUC: T1 942.8+/-175.9, T2 1050+/-181.2 and T3 1117+/-179.8 ng/ml/h) when compared with controls (CO 1601.9+/-227.6; t-test, P<0.05 ). There was a small, but significant negative correlation between AUC of progesterone and of PGF2alpha-metabolite ( R=-0.4; P=0.05 ). Administration of PGF2alpha caused secretion of oxytocin in three (T1, T2) and two (T3) mares out of eight ranging from 19.3 to 63.1 pg/ml. The AUC of oxytocin was positively correlated with AUC of PGF2alpha-metabolite ( R=0.4, P<0.05) and negatively correlated with AUC of progesterone ( R=-0.4, P<0.05). Administration of dinoprost yielded significantly shorter intervals from treatment to estrus and ovulation (values in parentheses), respectively, when compared with controls: T1 3.9+/-0.7 days ( 12.1+/-0.7 days), T2 4.5+/-0.6 ( 12.3+/-0.6 ), T3 4.9+/-0.5 ( 12.3+/-0.6 ), and CO 8.9+/-0.6 days ( 16.5+/-0.8 days) (t-test, P<0.01 ) (Fig. 2). Different doses of PGF2alpha caused similar effects. Data suggest that progesterone concentrations at applications influence efficacy of treatments more than doses administered, as demonstrated by their high correlation with estrous cycle patterns. It is important to note that differences we achieved are gradual and that all mares responded to treatment by luteolysis and premature estrus, regardless of doses applied.  相似文献   

12.
15-Keto-13,14-dihydro 6-ketoprostaglandin E1 was positively identified by gas chromatography-mass spectrometry with negative-ion chemical ionisation detection from samples of rat kidney high-speed supernatant incubated with prostaglandin I2 in the presence of NAD+. A decreased formation of this product was observed when NAD+ was substituted with NADP+ and none was observed in the absence of nucleotide or substrate prostaglandin I2. Experiments with [9 beta-3H]prostaglandin I2 showed a time- and concentration-dependent loss of tritium which appeared as tritiated water, typical of reaction of [9 beta-3H]prostaglandin substrates with the enzyme, 9-hydroxyprostaglandin dehydrogenase. Time-course measurements of the appearance of tritiated water showed similar rates with 6-keto[9 beta-3H]prostaglandin F1 alpha and 15-keto-13,14-dihydro 6-keto[9 beta-3H]prostaglandin F1 alpha as substrates. These experiments suggest that the transformation of prostaglandin I2 and 6-ketoprostaglandin F1 alpha into the 15-keto-13,14-dihydro 6-ketoprostaglandin E1 catabolite occurs in this in vitro preparation via the corresponding 15-keto-13,14-dihydro catabolite of 6-ketoprostaglandin F1 alpha.  相似文献   

13.
Ninety-day pregnant sheep were ovariectomized and received vehicle or trilostane every 12 h through 132 h, starting at 72 h postovariectomy. All trilostane-treated ewes aborted (P < or = 0.05) between 36 and 50 h after initiation of treatment. Profiles of progesterone in jugular venous blood differed (P < or = 0.05) and was lower (P < or = 0.05) in trilostane-treated ewes. Profiles of estradiol-17beta in jugular venous plasma of trilostane-treated ewes differed (P < or = 0.05) from controls. Estradiol-17beta increased after the first two treatments, followed by a return 2 h later to pretreatment levels (P > or = 0.05), which was followed by a sustained increase (P < or = 0.05) in estradiol-17beta. Profiles of PGF2alpha in inferior vena cava plasma of trilostane-treated ewes differed and were greater (P < or = 0.05) and occurred with the sustained increase in estradiol-17beta and the onset of most of the abortions. Profiles of PGE in inferior vena cava plasma between control and trilostane-treated 90-day pregnant ewes did not differ (P > or = 0.05). It is concluded that abortions occur at midpregnancy in sheep when the estradiol-17beta : progesterone ratio changes sufficiently to cause a sustained increase in estradiol-17beta and PGF2alpha but without changing placental secretion of PGE.  相似文献   

14.
An assay of estradiol-17beta (E217beta) in bovine peripheral plasma is described. The plasma is incubated with an antiserum to E217beta-BSA and the gamma-globulin fraction precipitated with ammonium sulphate. After extraction with diethyl ether E217beta in the precipitate is estimated by radioimmunoassay using a specific antiserum against E217beta-6-BSA. Plasma concentrations of E217beta during the normal estrous cycle determined by this method and by a method involving Sephadex LH-20 chromatography range from 4 to 23 pg/ml.  相似文献   

15.
A series of 3 experiments were conducted to evaluate superovulatory response following exogenously controlled follicular wave emergence in cattle. In Experiment 1 the hypothesis was tested that treatments with progestogen plus estradiol-17beta (E-17beta) would result in the emergence of a wave of ovarian follicles that are as responsive to exogenous gonadotropins as those of a spontaneous follicular wave. Beef cows and heifers either received a progestogen ear implant on Day 0 (ovulation) plus 5 mg im E-17beta on Day 1 and were superstimulated on Day 5, or did not receive implants but were superstimulated on Day 8 (expected day of emergence of the second follicular wave). The cattle received 400 mg NIH-FSH-P1 of Folltropin-V, given in a single subcutaneous injection or twice daily as intramuscular injections over 4 d. No significant differences were detected between the 2 groups in the number of corpora lutea (CL), ova/embryos collected, fertilized ova and transferable embryos. In Experiment 2 superstimulatory responses to a single subcutaneous injection of Folltropin-V were compared between heifers in which follicle wave emergence was synchronized with progestogen plus E-17beta at unknown stages of the estrous cycle with those treated following a conventional method of superstimulation at middiestrus. Superstimulation 4 d after E-17beta treatment in heifers with progestogen implants resulted in a similar superovulatory response and higher fertilization rates than those initiated 8 to 12 d after estrus. In Experiment 3 the ovarian response to a single- versus multiple-injection superstimulatory treatment protocol was compared in heifers given progestogen plus E-17beta to induce synchronous wave emergence. The number of CL, ova/embryos collected, fertilized ova and viable embryos were not different between groups. Superstimulatory treatments initiated 4 d after E-17beta treatment of cattle with progestogen implants resulted in comparable ovulatory responses to treatments initiated at the time of spontaneous wave emergence or during middiestrus. Synchronizing wave emergence in a group of randomly cycling cattle obviated the need of estrus detection and synchronization prior to superstimulation.  相似文献   

16.
Peripheral levels of progesterone and estradiol 17beta were quantified in 27 cycling cows following administration of a single Hydron ear implant (G. D. Searle and Co.) containing 2, 4 or 6 mg norgestomet or controls which received no implant. Implants were inserted subcutaneously in the ear on day 15 of the estrous cycle (day of estrus = day 0) and removed 9 days later. The 4 mg (seven of seven cows) and 6 mg (six of six cows) implants suppressed estrus; however, three of eight cows in the 2 mg group exhibited estrus prior to implant removal. The 6 mg implant group had a significantly longer interval from implant removal to estrus than either the 2 or 4 mg group. Failure to detect differences in the rate at which progesterone declined indicated norgestomet treatment did not affect normal corpus luteum regression. Estradiol levels rose at a similar rate approaching estrus in all treatments. There was no indication of increased endogenous estradiol levels due to norgestomet treatment.  相似文献   

17.
E2-17β and E2-17α give substantially similar yields of 3-methyl ether and dimethyl ether when methylated by Brown's procedure.  相似文献   

18.
Concentrations of progesterone and of 13,14-dihydro-15-keto-prostaglandin F-2 alpha (PGFM) were measured in plasma collected from 6 bitches every 3 h starting 2.8-4.6 days before parturition (birth of first pup) and continuing until 0.4-0.8 days post partum, and in additional samples collected less frequently. Progesterone concentrations at 48, 24, 12 and 3 h pre partum averaged 2.8 +/- 0.3, 2.2 +/- 0.4, 1.0 +/- 0.3 and 0.7 +/- 0.2 ng/ml. At those times PGFM values averaged 380 +/- 80, 800 +/- 220, 1450 +/- 450 and 1930 +/- 580 pg/ml, respectively. Mean concentrations of PGFM increased about 2.5-fold between 48 and 15 h pre partum in association with the onset of luteolysis, and then increased another 2.5 times before parturition as progesterone fell to nadir values. Peak levels of PGFM ranged from 1060 to 7150 pg/ml (2100 +/- 600 pg/ml) and occurred within 1-9 h after the birth of the first pup and before the birth of the last pup. These results suggest that prepartum luteolysis in dogs is initiated by increases in maternal concentrations of PGF, and that progesterone withdrawal causes a further increase in PGF which completes luteolysis and provides a major portion of the uterotonic activity causing expulsion of pups.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号