首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infection of legume roots with Rhizobium species results in the development of a root nodule structure in which the bacteria form an intracellular symbiosis with the plant. We report here that the infection of soybean (Glycine max L.) roots with Rhizobium japonicum results in the synthesis by the plant of at least 18–20 polypeptides other than leghemoglobin during the development of root nodules. Identification of these “nodule-specific” host polypeptides (referred to as nodulins) was accomplished by two-dimensional gel analysis of the immunoprecipitates formed by a “nodule-specific” antiserum with in vitro translation products of root-nodule polysomes that are free of bacteroidal contaminations. Nodulins account for 7–11% of the total 35S-methionine-labeled protein synthesized in the host cell cytoplasm, and the majority of them are of 12,000–20,000 molecular weight. These proteins are absent from the uninfected roots, bacteroids and free-living Rhizobium, and appear to be coded for by the plant genes that may be obligatory for the development of symbiosis in the legume root nodules. Analysis of nodulins in ineffective (unable to fix nitrogen) nodules developed due to Rhizobium strains SM5 and 61A24 showed that their synthesis is reduced and their expression differentially influenced by mutations in rhizobia. Two polypeptides of bacterial origin were also found to be cross-reactive with the “nodule-specific” antiserum, suggesting that they are secreted by Rhizobium into the host cell cytoplasm during symbiotic nitrogen fixation.  相似文献   

2.
Development of a legume root nodule is a complex process culminating in a plant/bacterial symbiosis possessing the capacity for biological dinitrogen fixation. Formation of root nodules is initiated by the binding and stabilization of rhizobia to plant root hairs, mediated in part by a receptor/ligand recognition system composed of lectins on the plant root surface and lectin-binding sites on the rhizobial cell surface. The dinitrogen fixation activity of these root nodules may be an important feature of enclosed, space-based life support systems, and may provide an ecological method to recycle nitrogen for amino acid production. However, the effects on nodule development of varied gravitational fields, or of root nutrient delivery hardware, remain unknown. We have investigated the effects of microgravity on root nodule formation, with preliminary experiments focused upon the receptor/ligand component. Microgravity, obtained during parabolic flight aboard NASA 930, has no apparent effect on the binding of purified lectin to rhizobia, a result that will facilitate forthcoming experiments using intact root tissues.  相似文献   

3.
Characterization of nodule growth and function, phosphorus and nitrogen status of plant tissues and host-plant growth of nodulated soybean ( Glycine max L. Merr.) plants developing and recovering from phosphorus deficiency was used to evaluate the role of phosphorus in symbiotic dinitrogen fixation. The sequence of physiological responses during recovery from phosphorus deficiency was; (1) rapid uptake of phosphorus, (2) rapid increases in the phosphorus concentration of leaves and nodules, (3) enhanced growth and function of nodules, (4) increased nitrogen concentrations in all plant organs and (5) enhanced plant growth. The sequence of physiological responses to onset of phosphorus deficiency was; (1) decreased phosphorus uptake, (2) decreased phosphorus concentrations in leaves and nodules, (3) decreased nodule function, (4) decreased nitrogen concentration in plant organs and (5) decreased plant growth. These results, in conjunction with previously published data (Sa and Israel, Plant Physiol. 97: 928–935, 1991), support an interpretation that the total response of symbiotic dinitrogen fixation in soybean plants to altered phosphorus supply is a function of both indirect effects on host-plant growth and more direct effects on the metabolic function of nodules.  相似文献   

4.
Crotalaria are plants of the Fabaceae family whose nodulation characteristics have been little explored despite the recent discovery of their unexpected ability to be efficiently nodulated in symbiosis with bacteria of the genus Methylobacterium. It has been shown that methylotrophy plays a key role in this unusual symbiotic system, as it is expressed within the nodule and as non-methylotroph mutants had a depleting effect on plant growth response. Within the nodule, Methylobacterium is thus able to obtain carbon both from host plant photosynthesis and from methylotrophy. In this context, the aim of the present study was to show the histological and cytological impacts of both symbiotic and methylotrophic metabolism within Crotalaria podocarpa nodules. It was established that if Crotalaria nodules are multilobed, each lobe has the morphology of indeterminate nodules but with a different anatomy; that is, without root hair infection or infection threads. In the fixation zone, bacteroids display a spherical shape and there is no uninfected cell. Crotalaria nodulation by Methylobacterium displayed some very unusual characteristics such as starch storage within bacteroid-filled cells of the fixation zone and also the complete lysis of apical nodular tissues (where bacteria have a free-living shape and express methylotrophy). This lysis could possibly reflect the bacterial degradation of plant wall pectins through bacterial pectin methyl esterases, thus producing methanol as a substrate, allowing bacterial multiplication before release from the nodule.  相似文献   

5.
To analyse nodular antioxidant enzyme expression in response to salt stress, Phaseolus vulgaris genotype BAT477 was inoculated with reference strain CIAT899, and treated with 50 mM NaCl. Plant growth, nodulation and nitrogen fixing activity were analysed. Results showed that: (1) all parameters, particularly in nodules, were affected by salt treatments, and (2) confirmed preferential growth allocation to roots. The ARA was significantly decreased by salt treatments. Protein dosage confirmed that nodules were more affected by salt treatment than were roots. We analysed superoxide dismutase, catalase, ascorbate peroxidase and peroxidase in nodules, roots and a free rhizobial strain. Our results indicated that SOD and CAT nodular isozymes had bacterial and root origins. The SOD expressed the same CuZn, Fe and Mn SOD isoforms in nodules and roots, whereas in free rhizobia we found only one Fe and Mn SOD. APX and POX nodule and root profiles had only root origins, as no rhizobial band was detected. Under salt stress, plant growth, nitrogen fixation and activities of antioxidant defense enzymes in nodules were affected. Thus, these enzymes appear to preserve symbiosis from stress turned out that NaCl salinity lead to a differential regulation of distinct SOD and POX isoenzyme. So their levels in nodules appeared to be consistent with a symbiotic nitrogen fixing efficiency hypothesis, and they seem to function as the molecular mechanisms underlying the nodule response to salinity.  相似文献   

6.
7.
The establishment of rhizobia as nitrogen-fixing endosymbionts within legume root nodules requires the disruption of the plant cell wall to breach the host barrier at strategic infection sites in the root hair tip and at points of bacterial release from infection threads (IT) within the root cortex. We previously found that Rhizobium leguminosarum bv. trifolii uses its chromosomally encoded CelC2 cellulase to erode the noncrystalline wall at the apex of root hairs, thereby creating the primary portal of its entry into white clover roots. Here, we show that a recombinant derivative of R. leguminosarum bv. trifolii ANU843 that constitutively overproduces the CelC2 enzyme has increased competitiveness in occupying aberrant nodule-like root structures on clover that are inefficient in nitrogen fixation. This aberrant symbiotic phenotype involves an extensive uncontrolled degradation of the host cell walls restricted to the expected infection sites at tips of deformed root hairs and significantly enlarged infection droplets at termini of wider IT within the nodule infection zone. Furthermore, signs of elevated plant host defense as indicated by reactive oxygen species production in root tissues were more evident during infection by the recombinant strain than its wild-type parent. Our data further support the role of the rhizobial CelC2 cell wall-degrading enzyme in primary infection, and show evidence of its importance in secondary symbiotic infection and tight regulation of its production to establish an effective nitrogen-fixing root nodule symbiosis.  相似文献   

8.
Ten aromatic amino acid auxotrophs of Sinorhizobium meliloti (previously called Rhizobium meliloti) Rmd201 were generated by random mutagenesis with transposon Tn5 and their symbiotic properties were studied. Normal symbiotic activity, as indicated by morphological features, was observed in the tryptophan synthase mutants and the lone tyrosine mutant. The trpE and aro mutants fixed trace amounts of nitrogen whereas the phe mutant was completely ineffective in nitrogen fixation. Histology of the nodules induced by trpE and aro mutants exhibited striking similarities. Each of these nodules contained an extended infection zone and a poorly developed nitrogen fixation zone. Transmission electron microscopic studies revealed that the bacteroids in the extended infection zone of these nodules did not show maturation tendency. A leaky mutant, which has a mutation in trpC, trpD, or trpF gene, was partially effective in nitrogen fixation. The histology of the nodules induced by this strain was like that of the nodules induced by the parental strain but the inoculated plants were stunted. These studies demonstrated the involvement of anthranilic acid and at least one more intermediate of tryptophan biosynthetic pathway in bacteroidal maturation and nitrogen fixation in S. meliloti. The alfalfa plant host seems to provide tryptophan and tyrosine but not phenylalanine to bacteroids in nodules.  相似文献   

9.
The plant plasma membrane-localized NADPH oxidases, known as respiratory burst oxidase homologues (RBOHs), appear to play crucial roles in plant growth and development. They are involved in important processes, such as root hair growth, plant defence reactions and abscisic acid signalling. Using sequence similarity searches, we identified seven putative RBOH-encoding genes in the Medicago truncatula genome. A phylogenetic reconstruction showed that Rboh gene duplications occurred in legume species. We analysed the expression of these MtRboh genes in different M. truncatula tissues: one of them, MtRbohA, was significantly up-regulated in Sinorhizobium meliloti-induced symbiotic nodules. MtRbohA expression appeared to be restricted to the nitrogen-fixing zone of the functional nodule. Moreover, using S. meliloti bacA and nifH mutants unable to form efficient nodules, a strong link between nodule nitrogen fixation and MtRbohA up-regulation was shown. MtRbohA expression was largely enhanced under hypoxic conditions. Specific RNA interference for MtRbohA provoked a decrease in the nodule nitrogen fixation activity and the modulation of genes encoding the microsymbiont nitrogenase. These results suggest that hypoxia, prevailing in the nodule-fixing zone, may drive the stimulation of MtRbohA expression, which would, in turn, lead to the regulation of nodule functioning.  相似文献   

10.
Leghemoglobins (Lbs) play an important role in legumes-rhizobia symbiosis. Lbs bind O2 and protect nitrogenase activity from damage by O2 in nodules, therefore, they are regarded as a marker of active nitrogen fixation in nodules. Additionally, Lbs are involved in the nitric oxide (NO) signaling pathway, acting as a NO scavenger during nodule development and nitrogen fixation. However, regulators responsible for Lb expression and modulation of Lb activity have not been characterized. In our previous work, a Jasmonate-Zim-domain (JAZ) protein interacting with a Lb (AsB2510) in Astragalus sinicus was identified and designated AsJAZ1. In this study, the interaction between AsJAZ1 and AsB2510 was verified using a yeast two-hybrid system and in vitro Glutathione S-transferase (GST) pull-down assays, resulting in identification of the interaction domain as a TIFY (previously known as zinc-finger protein expressed in inflorescence meristem, ZIM) domain. TIFY domain is named after the most conserved amino acids within the domain. Bimolecular fluorescence complementation (BiFC) was used to confirm the interaction between AsJAZ1 and AsB2510 in tobacco cells, demonstrating that AsJAZ1-AsB2510 interaction was localized to the cell membrane and cytoplasm. Furthermore, the expression patterns and the symbiotic phenotypes of AsJAZ1 were investigated. Knockdown of AsJAZ1 expression via RNA interference led to decreased number of nodules, abnormal development of bacteroids, accumulation of poly-x-hydroxybutyrate (PHB) and loss of nitrogenase activity. Taken together, our results suggest that AsJAZ1 interacts with AsB2510 and participates in nodule development and nitrogen fixation. Our results provide novel insights into the functions of Lbs or JAZ proteins during legume-rhizobia symbiosis.  相似文献   

11.
Summary Symbiotic nitrogen fixation in angiosperms normally occurs in buried root nodules and is severely inhibited in flooded soils. A few plant species, however, respond to flooding by forming nodules on stems, or, in one case, submerged roots with aerenchyma. We report here the novel occurrence of aerial rhizobial nodules attached to adventitious roots of the legume,Pentaclethra macroloba, in a lowland tropical rainforest swamp in Costa Rica. Swamp sapdings (1–10 cm diameter) support an average 12 g nodules dry weight per plant on roots 2–300 cm above water, and nodules remain in aerial positions at least 6 months. Collections from four swamp plants maintained linear activity rates (3–14 moles C2H4/g nodule dry weight/hr) throughout incubations for 6 and 13 hrs; excised nodule activity in most legumes declines after 1–2 hrs. Preliminary study of the anatomy and physiology suggest aerial nodules possess unusual features associated with tolerance to swamp conditions. High host tree abundance and nodulation in the swamp compared to upland sites indicate the aerial root symbiosis may contribute more fixed nitrogen to the local ecosystem than the more typical buried root symbiosis.  相似文献   

12.
Hemoglobins are ubiquitous in nature and among the best-characterized proteins. Genetics has revealed crucial roles for human hemoglobins, but similar data are lacking for plants. Plants contain symbiotic and nonsymbiotic hemoglobins; the former are thought to be important for symbiotic nitrogen fixation (SNF). In legumes, SNF occurs in specialized organs, called nodules, which contain millions of nitrogen-fixing rhizobia, called bacteroids. The induction of nodule-specific plant genes, including those encoding symbiotic leghemoglobins (Lb), accompanies nodule development. Leghemoglobins accumulate to millimolar concentrations in the cytoplasm of infected plant cells prior to nitrogen fixation and are thought to buffer free oxygen in the nanomolar range, avoiding inactivation of oxygen-labile nitrogenase while maintaining high oxygen flux for respiration. Although widely accepted, this hypothesis has never been tested in planta. Using RNAi, we abolished symbiotic leghemoglobin synthesis in nodules of the model legume Lotus japonicus. This caused an increase in nodule free oxygen, a decrease in the ATP/ADP ratio, loss of bacterial nitrogenase protein, and absence of SNF. However, LbRNAi plants grew normally when fertilized with mineral nitrogen. These data indicate roles for leghemoglobins in oxygen transport and buffering and prove for the first time that plant hemoglobins are crucial for symbiotic nitrogen fixation.  相似文献   

13.
14.
Pea plants (Pisum sativum L.) were treated with 50???M aluminum chloride at pH 4.5 for 2 or 24?h at room temperature. Following treatment, root nodule Al uptake, the generation of reactive oxygen species (ROS, O 2 and H2O2), and the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and peroxidase (POX) were investigated. Aluminum accumulation was found chiefly in the apoplast of the nodule cortex, endodermis and meristem, while the formation of peroxide was detected in the nodule cortex, infection threads and bacteroidal tissue. Further, there were increased levels of superoxide in the meristem and bacteroidal tissue. The activity of SOD (EC 1.15.1.1) and POX (EC 1.11.1.7) increased in the Al-treated nodules and the roots of pea plants, whereas CAT (EC 1.11.1.6) activity decreased. The Al absorbed by the nodules induced ROS production. The POX and SOD are important ROS-scavengers in Al-stressed nodules.  相似文献   

15.
Leghemoglobin (Lb) is essential for nitrogen fixation by intact leguminous nodules. To determine whether ferric Lb (Lb3+) was detectable in nodules under normal or stressed conditions, we monitored the status of Lb in intact nodules attached to sweet clover (Melilotus officinalis) and soybean (Glycine max [L.] Merr.) roots exposed to various conditions. The effects of N2 and O2 streams and elevated nicotinate levels on root-attached nodules were tested to determine whether the spectrophotometric technique was showing the predicted responses of Lb. The soybean and sweet clover nodules' Lb spectra indicated predominantly ferrous Lb and LbO2 in young (34 d) plants. As the nodule aged beyond 45 d, it was possible to induce Lb3+ with a 100% O2 stream (15 min). At 65 d without inducement, the nodule Lb status indicated the presence of some Lb3+ along with ferrous Lb and oxyferrous Lb. Nicotinate and fluoride were used as ligands to identify Lb3+. Computer-calculated difference spectra were used to demonstrate the changes in Lb spectra under different conditions. Some conditions that increased absorbance in the 626 nm region (indicating Lb3+ accumulation) were root-fed ascorbate and dehydroascorbate, plant exposure to darkness, and nodule water immersion.  相似文献   

16.
The symbiosis legume-arbuscular mycorrhizal fungi-nitrogen fixing bacteria is of relevant interest in Mediterranean regions where Anthyllis cytisoides L. grows. In these areas, nitrogen is one of the nutrients that most limits plant growth. In addition, the long periods of water deficit decrease the diffusion rate of phosphorus and, consequently, also decrease the biological nitrogen fixation. It is well known that mycorrhizal fungi can improve phosphorus uptake and, recently, some authors have found that antioxidant activities in mycorrhizal plants can delay drought-induced nodule senescence. The objective of our work was to evaluate weather mycorrhizal fungi could preserve the nodule metabolism in A. cytisoides subjected to drought. Results showed that a low soil water content associated with an enhancement of soil compaction accelerated the senescence of nodules in both non-mycorrhizal and mycorrhizal plants. However, while total soluble protein, leghaemoglobin (Lb) content, as well as carbon and antioxidant metabolism significantly decreased in nodules from non-mycorrhizal A. cytisoides subjected to drought, nodules from stressed mycorrhizal plants maintained Lb levels, showed greater rates of carbon metabolism, and exhibited higher enzymatic activities related to the removal of reactive oxygen species. In addition to the greater activity of antioxidant enzymes, other mechanisms related or unrelated to enhanced nodule water status could also be implied in the better nodule functioning observed in mycorrhizal plants under stressful conditions.  相似文献   

17.
The nodules which developed on the roots ofPisum sativum after inoculation withRhizobium leguminosarum bv.viciae strains showing a Hup+ symbiotic phenotype and/or a high relative efficiency of electron transfer to dinitrogen (RE) had a high nitrogen content of their tissue. In comparison with the nodules initiated by a strain possessing the Hup symbiotic phenotype or by an indigenous soilRhizobium population, the nitrogen-rich root nodules contained up to four times more nitrogen (9.2% of dry mass). In the nitrogen-rich nodules, total amino acid, and especially Ala, Lys and Phe contents were significantly increased. The nitrogen-rich nodule symbiotic phenotype (Nrn) was well expressed, irrespective of pea cultivars and host plant age. If a strain showing the Nrn phenotype was applied in double-strain inocula, a significant correlation was found between increasing rates of the strain and increasing percentage nitrogen content of nodule tissue in the nodulated plants.  相似文献   

18.
Nitric oxide (NO) has recently gained interest as a major signaling molecule during plant development and response to environmental cues. Its role is particularly crucial for plant-pathogen interactions, during which it participates in the control of plant defense response and resistance. Indication for the presence of NO during symbiotic interactions has also been reported. Here, we defined when and where NO is produced during Medicago truncatula-Sinorhizobium meliloti symbiosis. Using the NO-specific fluorescent probe 4,5-diaminofluorescein diacetate, NO production was detected by confocal microscopy in functional nodules. NO production was localized in the bacteroid-containing cells of the nodule fixation zone. The infection of Medicago roots with bacterial strains impaired in nitrogenase or nitrite reductase activities lead to the formation of nodules with an unaffected NO level, indicating that neither nitrogen fixation nor denitrification pathways are required for NO production. On the other hand, the NO synthase inhibitor N-methyl-L-arginine impaired NO detection, suggesting that a NO synthase may participate to NO production in nodules. These data indicate that a NO production occurs in functional nodules. The location of such a production in fully metabolically active cells raises the hypothesis of a new function for NO during this interaction unrelated to defense and cell-death activation.  相似文献   

19.
Roots of seedlings of the “beefwood” tree, Casuarina cunninghamiana Miq. grown in nitrogen-free nutrient solution were inoculated with a suspension prepared from crashed root nodules taken from mature plants. Marked deformation of root hairs was evident but no infection threads were observed in root hairs. The mode of infection remains undetermined. Root nodules were initiated within three weeks and thereafter numerous upward-growing nodule roots developed from each nodule. Nodules in this symbiotic nitrogen-fixing plant resulted from an infection caused by an unidentified actinomycete-like soil microorganism. Anatomical analysis of nodule formation showed that nodules are the result of repeated endogenous lateral root initiations, one placed upon another in a complexly branched and truncated root system. The endophyte-infected cortical tissues derived from successive root primordia form the swollen nodular mass. Nodule roots develop from nodule lobes after escaping from the initial inhibitory effects of the endophyte. Included is a discussion of the anatomical similarities between nodules of Casuarina which produce nodule roots and those of Alnus which form coralloid nodules usually lacking nodule roots.  相似文献   

20.
Common bean plants inoculated with salt-tolerant Rhizobium tropici wild-type strain CIAT899 formed a more active symbiosis than did its decreased salt-tolerance (DST) mutant derivatives (HB8, HB10, HB12 and HB13). The mutants formed partially effective (HB10, HB12) or almost ineffective (HB8, HB13) nodules (Fix(d)) under non-saline conditions. The DST mutant formed nodules that accumulated more proline than did the wild-type nodules, while soluble sugars were accumulated mainly in ineffective nodules. Under salt stress, plant growth, nitrogen fixation, and the activities of the antioxidant defense enzymes of nodules were affected in all symbioses tested. Overall, mutant nodules showed lower antioxidant enzyme activities than wild-type nodules. Levels of nodule catalase appeared to correlate with symbiotic nitrogen-fixing efficiency. Superoxide dismutase and dehydroascorbate reductase seem to function in the molecular mechanisms underlying the tolerance of nodules to salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号